Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = interconnected transmission system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 147
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

16 pages, 3521 KiB  
Article
HBM Package Interconnection Pseudo All-Channel Signal Integrity Simulation and Implementation Method of the Synchronous Current Load Research
by Wen-Xue Tang, Cong-Jian Mai, Li-Yan Zhou, Ying Sun, Xin-Ran Zhao, Shu-Li Liu, Gang Wang, Da-Wei Wang and Cheng-Qian Wang
Micromachines 2025, 16(8), 896; https://doi.org/10.3390/mi16080896 (registering DOI) - 31 Jul 2025
Viewed by 142
Abstract
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate [...] Read more.
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate the electrical behavior of actual signal transmission. This technique enables accurate modeling of the HBM interface under full-channel parallel data transfer conditions. In addition to the simulation methodology itself, this study focuses on three specific implementation schemes for the synchronized current loads and explores their practical applications. Comparative analysis demonstrates the necessity and effectiveness of using synchronized current loads as substitutes for real transmission loads, offering a viable and efficient solution for SI analysis in HBM interconnect systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 20327 KiB  
Article
The Effect of Scratch-Induced Microscale Surface Roughness on Signal Transmission in Radio Frequency Coaxial Connectors
by Yuqi Zhou, Tianmeng Zhang, Gang Xie and Jinchun Gao
Micromachines 2025, 16(8), 837; https://doi.org/10.3390/mi16080837 - 22 Jul 2025
Viewed by 292
Abstract
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, [...] Read more.
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, controlled micro-defects were introduced at the central contact interface to establish a quantitative relationship between surface morphology and signal degradation. An equivalent circuit model was constructed to account for local impedance variations and the cumulative effects of cascaded connector interfaces. The model was validated using S-parameter measurements obtained from vector network analyzer (VNA) testing, showing strong agreement with simulation results. Experimental results reveal that the low-roughness (0.4 μm) contact surfaces lead to degraded signal integrity due to insufficient micro-contact formation. In contrast, scratch-induced moderate roughness (0.8–4.8 μm) improves transmission performance, although signal quality declines as roughness increases within this range. These effects are further amplified in multi-connector configurations due to accumulated impedance mismatches. This work provides new insight into the coupling between microscale surface features and frequency-domain transmission characteristics, offering practical guidance for surface engineering, contact design, and the development of miniaturized, high-reliability radio frequency interconnects for next-generation communication systems. Full article
Show Figures

Figure 1

87 pages, 5171 KiB  
Review
Toward Secure Smart Grid Systems: Risks, Threats, Challenges, and Future Directions
by Jean Paul A. Yaacoub, Hassan N. Noura, Ola Salman and Khaled Chahine
Future Internet 2025, 17(7), 318; https://doi.org/10.3390/fi17070318 - 21 Jul 2025
Viewed by 493
Abstract
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. [...] Read more.
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. However, with the integration of complex technologies and interconnected systems inherent to smart grids comes a new set of safety and security challenges that must be addressed. First, this paper provides an in-depth review of the key considerations surrounding safety and security in smart grid environments, identifying potential risks, vulnerabilities, and challenges associated with deploying smart grid infrastructure within the context of the Internet of Things (IoT). In response, we explore both cryptographic and non-cryptographic countermeasures, emphasizing the need for adaptive, lightweight, and proactive security mechanisms. As a key contribution, we introduce a layered classification framework that maps smart grid attacks to affected components and defense types, providing a clearer structure for analyzing the impact of threats and responses. In addition, we identify current gaps in the literature, particularly in real-time anomaly detection, interoperability, and post-quantum cryptographic protocols, thus offering forward-looking recommendations to guide future research. Finally, we present the Multi-Layer Threat-Defense Alignment Framework, a unique addition that provides a methodical and strategic approach to cybersecurity planning by aligning smart grid threats and defenses across architectural layers. Full article
(This article belongs to the Special Issue Secure Integration of IoT and Cloud Computing)
Show Figures

Figure 1

19 pages, 3397 KiB  
Article
Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids
by Adam B. Birchfield, Jong-oh Baek and Joshua Xia
Energies 2025, 18(14), 3844; https://doi.org/10.3390/en18143844 - 19 Jul 2025
Viewed by 211
Abstract
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature [...] Read more.
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature of the problem and the complexity of engineering analysis for any one possible solution. Network synthesis methods, that is, heuristic-based techniques for building synthetic electric grid models based on complex network properties, have been developed in recent years and have the capability of balancing multiple aspects of power system design while efficiently considering large numbers of candidate lines to add. This paper presents a methodology toward scalability in addressing the large-scale TEP problem by applying network synthesis methods. The algorithm works using a novel heuristic method, inspired by simulated annealing, which alternates probabilistic removal and targeted addition, balancing the fixed cost of transmission investment with objectives of resilience via power flow contingency robustness. The methodology is demonstrated in a test case that expands a 2000-bus interconnected synthetic test case on the footprint of Texas with new transmission to support 2025-level load and generation. Full article
Show Figures

Figure 1

39 pages, 2628 KiB  
Article
A Decentralized Multi-Venue Real-Time Video Broadcasting System Integrating Chain Topology and Intelligent Self-Healing Mechanisms
by Tianpei Guo, Ziwen Song, Haotian Xin and Guoyang Liu
Appl. Sci. 2025, 15(14), 8043; https://doi.org/10.3390/app15148043 - 19 Jul 2025
Viewed by 465
Abstract
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This [...] Read more.
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This paper proposes a novel decentralized real-time broadcasting system employing a peer-to-peer (P2P) chain topology based on IPv6 networking and the Secure Reliable Transport (SRT) protocol. By exploiting the global addressing capability of IPv6, our solution simplifies direct node interconnections, effectively eliminating complexities associated with Network Address Translation (NAT). Furthermore, we introduce an innovative chain-relay transmission method combined with distributed node management strategies, substantially reducing reliance on central servers and minimizing deployment complexity. Leveraging SRT’s low-latency UDP transmission, packet retransmission, congestion control, and AES-128/256 encryption, the proposed system ensures robust security and high video stream quality across wide-area networks. Additionally, a WebSocket-based real-time fault detection algorithm coupled with a rapid fallback self-healing mechanism is developed, enabling millisecond-level fault detection and swift restoration of disrupted links. Extensive performance evaluations using Video Multi-Resolution Fidelity (VMRF) metrics across geographically diverse and heterogeneous environments confirm significant performance gains. Specifically, our approach achieves substantial improvements in latency, video quality stability, and fault tolerance over existing P2P methods, along with over tenfold enhancements in frame rates compared with conventional RTMP-based solutions, thereby demonstrating its efficacy, scalability, and cost-effectiveness for real-time video streaming applications. Full article
Show Figures

Figure 1

28 pages, 6374 KiB  
Review
Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
by Handan Xu, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui and Pengfei Tian
Photonics 2025, 12(7), 730; https://doi.org/10.3390/photonics12070730 - 18 Jul 2025
Viewed by 577
Abstract
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising [...] Read more.
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising light sources for high-speed VLC systems, owing to their high brightness, low power consumption, and high modulation bandwidth. Recent developments have also seen substantial progress in high-bandwidth GaN-based visible light detectors, which complement the transmission capabilities of micro-LEDs. This paper reviews the latest advancements in micro-LEDs as high-speed transmitters for VLC, detailing their capabilities in terms of bandwidth, data rates, modulation techniques, and diverse applications, including structured lighting systems that combine positioning, communication, and illumination. Additionally, the advantages of using micro-LEDs in GaN-based photodetectors (PDs) are discussed, highlighting their potential in enhancing bandwidth and data rates and facilitating high-speed communications across multifunctional applications. Therefore, this review will benefit the further development of micro-LEDs and their application in 6G communication and global interconnect. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

19 pages, 2017 KiB  
Article
Analysis of Grid Scale Storage Effectiveness for a West African Interconnected Transmission System
by Julius Abayateye and Daniel Zimmerle
Energies 2025, 18(14), 3741; https://doi.org/10.3390/en18143741 - 15 Jul 2025
Viewed by 245
Abstract
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to [...] Read more.
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to support growing levels of variable renewable energy in the WAPPITS. This paper uses a dynamic PSS/E grid simulation to evaluate the effectiveness of BESSs and conventional power plants for the maximum N-1 contingency scenario in WAPPITS—the loss of 400 MW of generation. BESSs outperform conventional power plants in fast frequency response; a BESS-only PFR mix produces the best technical performance for the metrics analyzed. However, this approach does not have the best marginal cost; a balanced mix of BESSs and conventional reserves achieves adequate performance on all metrics to meet grid requirements. This hybrid approach combines BESSs’ rapid power injection with the lower cost of conventional units, resulting in improved nadir frequencies (e.g., 49.70–49.76 Hz), faster settling times (1.00–2.20 s), and cost efficiency. The study indicates that an optimal approach to frequency control should include a combination of regulatory reforms and coordinated reserve procurement that includes BESS assets. Regulatory reforms should require or incentivize conventional plant to provide PFRs, possibly through creation of a (new to WAPPITS) market for ancillary services. While not a comprehensive analysis of all variables, these findings provide critical insights for policymakers and system operators. Full article
Show Figures

Figure 1

21 pages, 6897 KiB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 215
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 3070 KiB  
Article
Global Sensitivity Analysis of Tie-Line Power on Voltage Stability Margin in Renewable Energy-Integrated System
by Haifeng Zhang, Song Gao, Jiajun Zhang, Yunchang Dong, Han Gao and Deyou Yang
Electronics 2025, 14(14), 2757; https://doi.org/10.3390/electronics14142757 - 9 Jul 2025
Viewed by 213
Abstract
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation [...] Read more.
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation method for the tie-line power-voltage stability margin, aiming to quantify the impact of tie-line power on the voltage stability margin. The method first constructs an online estimation model of the voltage stability margin based on system measurement data under ambient excitation. To adapt to changes in system operating conditions, an online updating strategy for the parameters of the margin estimation model is further proposed, drawing on incremental learning principles. Subsequently, considering the source–load uncertainty of the system, a global sensitivity calculation method based on analysis of variance (ANOVA) is proposed, utilizing online acquired voltage stability margin and tie-line power data, to accurately quantify the impact of tie-lines on the voltage stability margin. The accuracy of the proposed method is verified through the Nordic test system and the China Electric Power Research Institute (CEPRI) standard test case; the results show that the error of the proposed method is less than 0.3%, and the computation time is within 1 s. Full article
Show Figures

Graphical abstract

13 pages, 920 KiB  
Project Report
Analysis of Primary and Secondary Frequency Control Challenges in African Transmission System
by Julius Abayateye and Daniel J. Zimmerle
Energy Storage Appl. 2025, 2(3), 10; https://doi.org/10.3390/esa2030010 - 8 Jul 2025
Cited by 1 | Viewed by 326
Abstract
This study analyzed the frequency control challenges within the West Africa Power Pool Interconnected Transmission System (WAPPITS) as it plans to incorporate variable renewable energy (VRE) resources, such as wind and solar energy. Concerns center on the ability of WAPPITS primary frequency control [...] Read more.
This study analyzed the frequency control challenges within the West Africa Power Pool Interconnected Transmission System (WAPPITS) as it plans to incorporate variable renewable energy (VRE) resources, such as wind and solar energy. Concerns center on the ability of WAPPITS primary frequency control reserves to adapt to high VRE penetration given the synchronization and frequency control problems experienced by the three separate synchronous blocks of WAPPITS. Optimizing solutions requires a better understanding of WAPPITS’ current frequency control approach. This study used questionnaires to understand operators’ practical experience with frequency control and compared these observations to field tests at power plants and frequency response metrics during system events. Eight (8) of ten (10) Transmission System Operators (TSOs) indicated that primary frequency control service was implemented in the TSO, but nine (9) of ten TSOs indicated that the reserves provided were inadequate to meet system needs. Five (5) of ten (10) respondents answered “yes” to the provision of secondary frequency control service, while only one (1) indicated that secondary reserves were adequate. Three (3) TSOs indicated they have AGC (Automatic Generation Control) installed in the control room, but none have implemented it for secondary frequency control. The results indicate a significant deficiency in primary control reserves, resulting in a reliance on under-frequency load shedding for primary frequency control. Additionally, the absence of an AGC system for secondary frequency regulation required manual intervention to restore frequency after events. To ensure the effectiveness of battery energy storage systems (BESSs) and the reliable operation of the WAPPITS with a higher penetration of inverter-based VRE, this paper recommends (a) implementing and enforcing basic primary frequency control structures through regional regulation and (b) establishing an ancillary services market to mobilize secondary frequency control resources. Full article
Show Figures

Figure 1

33 pages, 5209 KiB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 808
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

32 pages, 8500 KiB  
Article
Risks, Obstacles and Challenges of the Electrical Energy Transition in Europe: Greece as a Case Study
by Georgios Fotis, Theodoros I. Maris and Valeri Mladenov
Sustainability 2025, 17(12), 5325; https://doi.org/10.3390/su17125325 - 9 Jun 2025
Cited by 1 | Viewed by 678
Abstract
The European Union’s 2030 target of decreasing net greenhouse gas emissions by at least 55% has resulted in a significant uptake of renewable energy sources (RESs) in the European power system, primarily wind and solar power, as well as the closure of conventional [...] Read more.
The European Union’s 2030 target of decreasing net greenhouse gas emissions by at least 55% has resulted in a significant uptake of renewable energy sources (RESs) in the European power system, primarily wind and solar power, as well as the closure of conventional power plants that mostly used fossil fuels. The European Union’s members have accelerated the process of energy transition driven by climate change, and public authorities’ involvement in this process is impressive. The goal of this study is to present a broad overview of the existing challenges for the energy transition in Europe and how they can affect the reliability and stability of the interconnected power system in Europe and future investments, focusing especially on Greece. Unfortunately, this environmentally friendly transition is taking place without the required amount of investment in electrical energy storage technology, which raises the risk of a blackout due to the high predicted variability of RES. The gradual abandonment of conventional energy production units such as natural gas in the coming decades will intensify the problem of frequency regulation, which will become even more acute due to the particularly increased installed capacity in RESs across Europe and Greece. The European Power System, being partially unprepared for the energy transition, frequently faces a paradox: it rejects green power originating from high-RES production because of low demand, a lack of transmission line interconnections, or extremely low energy storage capacity. This paper examines all the prerequisites, including how the European electrical transmission system will be developed in the future and how new energy storage technologies will be used. Lastly, Greece’s energy future and potential risks associated with realizing the environmental goals of the European Green Deal is studied using a PESTEL analysis. Full article
Show Figures

Figure 1

24 pages, 4719 KiB  
Article
Urban Resilience and Energy Demand in Tropical Climates: A Functional Zoning Approach for Emerging Cities
by Javier Urquizo and Hugo Rivera-Torres
Urban Sci. 2025, 9(6), 203; https://doi.org/10.3390/urbansci9060203 - 2 Jun 2025
Viewed by 737
Abstract
The management of power supply and distribution is becoming increasingly challenging because of the significant increase in energy demand brought on by global population growth. Buildings are estimated to be accountable for 40% of the worldwide use of energy, which underlines how important [...] Read more.
The management of power supply and distribution is becoming increasingly challenging because of the significant increase in energy demand brought on by global population growth. Buildings are estimated to be accountable for 40% of the worldwide use of energy, which underlines how important accurate demand estimation is for the design and construction of electrical infrastructure. In this respect, transmission and distribution network planning must be adjusted to ensure a smooth transition to the National Interconnected System (NIS). A technical and analytical scientific approach to a modern neighbourhood in Ecuador called “the Nuevo Samborondón” case study (NSCS) is laid out in this article. Collecting geo-referenced data, evaluating the current electrical infrastructure, and forecasting energy demand constitute the first stages in this research procedure. The sector’s energy behaviour is accurately modelled using advanced programs such as 3D design software for modelling and drawing urban architecture along with a whole building energy simulation program and geographical information systems (GIS). For the purpose of recreating several operational situations and building the distribution infrastructure while giving priority to the current urban planning, an electrical system model is subsequently developed using power system analysis software at both levels of transmission and distribution. Furthermore, seamless digital substations are suggested as a component of the nation’s electrical infrastructure upgrade to provide redundancy and zero downtime. According to our findings, installing a 69 kV ring is a crucial step in electrifying NSCS and aligning electrical network innovations with urban planning. The system’s capacity to adjust and optimize power distribution would be strengthened provided the algorithms were given the freedom to react dynamically to changes or disruptions brought about by distributed generation sources. Full article
Show Figures

Figure 1

27 pages, 2655 KiB  
Review
Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology
by Abdallah Borham, Kadria Abdel Motaal, Nour ElSersawy, Yassmin F. Ahmed, Shuaib Mahmoud, Abobaker Salem Musaibah and Anwar Abdelnaser
Int. J. Environ. Res. Public Health 2025, 22(6), 883; https://doi.org/10.3390/ijerph22060883 - 31 May 2025
Cited by 2 | Viewed by 2310
Abstract
Background: Disruptions in the mesh of the ecosystem come with implications that severely harm the sustainability and the equilibrium of life. Interactions of humans, animals, and many other organisms, along with the whole ecological complex, have given birth to zoonotic diseases, which can [...] Read more.
Background: Disruptions in the mesh of the ecosystem come with implications that severely harm the sustainability and the equilibrium of life. Interactions of humans, animals, and many other organisms, along with the whole ecological complex, have given birth to zoonotic diseases, which can vary in type and burden. Collaborative efforts put into the prioritization of environmental, animal, and human health are envisioned as “One Health”. Understanding vector ecology and the varying mechanistic ways of transmission is crucial for constructing effective One Health surveillance tools and warning systems. Methods: We identified the literature available concerning the subject matter. We utilized scholarly databases to gather research for the last 10 years using predefined keywords. Objectives: This review aims to synthesize current knowledge on the interconnection between climate discrepancies, ecological alarms, and the emergence and spread of zoonotic diseases. We attempted to provide recommendations for future research and policy interventions. Results: Human activities have significantly impacted disease-carrying vectors and wildlife habitats, aiding their proliferation and the spillover of diseases. Global frameworks incorporating One Health principles enhance global preparedness for future health threats. Applying the integrated One Health Surveillance has strengthened early warning systems. Interdisciplinary collaborations and tools like OH-EpiCap, a comprehensive tool that assesses and enhances the capacities of One Health surveillance systems, have significantly contributed to responding to infectious disease outbreaks, as seen in the Netherlands, reducing the risk of tick-borne diseases. Conclusions: Strides have been made with comprehensive processes that identify and prioritize zoonotic diseases of most significant concern and burden, such as OHZDP, approaches like One Health, and other theories considered. A proactive and integrated approach will build resilience against potential outbreaks and ensure a healthier future for our planet and its inhabitants. Full article
(This article belongs to the Special Issue The Impact of Extreme Weather and Climate on Human Health)
Show Figures

Figure 1

Back to TopTop