Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology
Abstract
1. Introduction
2. Methods
3. One Health Framework
One Health is an integrated, unifying approach that aims to sustainably balance and optimize the health of people, animals, and ecosystems. It recognizes the health of humans, domestic and wild animals, plants, and the wider environment (including ecosystems) as closely linked and interdependent. The approach mobilizes multiple sectors, disciplines, and communities at varying levels of society to work together to foster well-being and tackle threats to health and ecosystems while addressing the collective need for healthy food, water, energy, and air, acting on climate change, and contributing to sustainable development.(p. 11) [24]
3.1. The 4 Cs Concepts in the One Health Approach
- Equity across sectors and disciplines to ensure fairness and equal treatment among various fields and areas of study;
- Sociopolitical and multicultural parity to recognize that all individuals have the same rights and opportunities and prioritize the inclusion and active participation of all communities, particularly marginalized ones;
- Socio-ecological balance to foster a harmonious relationship between humans, animals, and the natural environment; acknowledging the importance of biodiversity; ensuring equitable access to natural spaces and resources; and recognizing the intrinsic value of all living organisms within ecosystems;
- Stewardship emphasizes the human responsibility to adopt sustainable practices and behaviors that uphold animal welfare and the integrity of ecosystems, thus safeguarding the health and prosperity of both current and future generations;
- Transdisciplinarity and multisectoral collaboration encourage cooperation among all relevant fields to integrate modern and traditional knowledge and ensure a broad representation of different perspectives.
3.2. One Health Strategies
3.3. Challenges and Barriers to the Implementation of the One Health Framework
- Political and Institutional Barriers
- Operational and Logistical Challenges
- Cultural and Communication Barriers
4. Classification of Zoonoses
5. Zoonotic Disease Dynamics and Climate Change
5.1. Changes in Vector Ecology
5.2. Changes in Ecosystems and Wildlife Habitats
5.3. Human Behavior and Exposure Risks
6. Triple Planetary Crisis: Climate Change, Biodiversity Loss, and Pollution Roles in Zoonotic Disease Emergence
6.1. Pollution-Induced Immune Suppression and Increased Susceptibility to Infections
6.2. Climate Effects on Human and Animal Health
6.3. Host–Pathogen–Environment Interactions and the Role of Pollutants in Zoonotic Diseases
7. Mitigation and Adaptation Strategies from the One Health Approach Prospective
7.1. Strengthening Surveillance and Early Warning Systems
7.1.1. Definition and Purpose of the Integrated One Health Surveillance
7.1.2. Case Studies Demonstrating the Integrated One-Health Surveillance
- Example 1: The PREDICT Project by USAID
- Example 2: Participatory One Health Disease Detection (PODD) System in Thailand
- Example 3: Cambodia National Health Hotline
- Example 4: AfyaData: Advancing Disease Surveillance in Tanzania.
7.1.3. Utilizing Evaluation Tools
7.2. Enhancing Interdisciplinary Collaboration
7.3. One Health Zoonotic Disease Prioritization (OHZDP)
7.3.1. Goals of the OHZDP Process
7.3.2. Expected Outcomes of the OHZDP Process
7.3.3. Benefits of the OHZDP Process
8. Future Considerations and Research Gaps
8.1. Identified Research Gaps
8.2. Proposed Future Considerations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CH4 | Methane |
CO2 | Carbon dioxide |
DNA | Deoxyribonucleic acid |
DRC | Democratic Republic of Congo |
ED | Endocrine Disruptors |
EID | Emerging Infectious Diseases |
ENSO | El Niño-Southern Oscillation |
EO | Earth Observation |
FAO | Food and Agriculture Organization |
GHG | Greenhouse Gases |
GLEWS | Global Early Warning System for Major Animal Diseases and Zoonoses |
GOARN | Global Outbreak Alert and Response Network |
MPs | Microplastics |
N2O | Nitrous Oxide |
OH | One Health |
OHJPA | One Health Joint Plan of Action |
OHHLEP | One Health High-Level Expert Panel |
OHZDP | One Health Zoonotic Disease Prioritization |
PODD | Participatory One Health Disease Detection |
PM | Particulate Matter |
SDGs | Sustainable Development Goals |
TBD | Tick-Borne Diseases |
ToC | Theory of Change |
UFPs | Ultrafine Particles |
UN | United Nations |
UNEP | United Nations Environment Program |
WHO | World Health Organization |
WOAH | World Organization for Animal Health |
References
- World Health Organization. Zoonoses Fact Sheet; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/zoonoses (accessed on 1 October 2024).
- McArthur, D.B. Emerging Infectious Diseases. Nurs. Clin. N. Am. 2019, 54, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Kim, B.I.; Lim, J.S.; Tan, C.S.; Chun, B.C. One Health Perspectives on Emerging Public Health Threats. J. Prev. Med. Public Health 2017, 50, 411–414. [Google Scholar] [CrossRef]
- Chomel, B.B. Zoonoses. In Encyclopedia of Microbiology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 820–829. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123739445002133 (accessed on 18 October 2024).
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef] [PubMed]
- Nzietchueng, S.; Kitua, A.; Nyatanyi, T.; Rwego, I.B. Facilitating implementation of the one health approach: A definition of a one health intervention. One Health Amst. Neth. 2023, 16, 100491. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Daszak, P.; Wood, J.L.N. One Health, emerging infectious diseases and wildlife: Two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef] [PubMed]
- WGI Climate Change 2021: The Physical Science Basis: Summary for Policymakers [Internet]. Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (accessed on 1 October 2024).
- NASA Science. Evidence on Climate Change. 2024. Available online: https://science.nasa.gov/climate-change/evidence/ (accessed on 1 October 2024).
- Machado, C.B.; Campos, T.L.O.B.; Abou Rafee, S.A.; Martins, J.A.; Grimm, A.M.; De Freitas, E.D. Extreme Rainfall Events in the Macro-Metropolis of São Paulo: Trends and connection with climate oscillations. J. Appl. Meteorol. Climatol. 2021, 60, 661–675. Available online: https://journals.ametsoc.org/view/journals/apme/aop/JAMC-D-20-0173.1/JAMC-D-20-0173.1.xml (accessed on 18 October 2024). [CrossRef]
- Anyamba, A.; Chretien, J.P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris, R.; et al. Global Disease Outbreaks Associated with the 2015–2016 El Niño Event. Sci. Rep. 2019, 9, 1930. [Google Scholar] [CrossRef]
- Louis, S.; Carlson, A.K.; Suresh, A.; Rim, J.; Mays, M.; Ontaneda, D.; Dhawan, A. Impacts of Climate Change and Air Pollution on Neurologic Health, Disease, and Practice: A Scoping Review. Neurology 2023, 100, 474–483. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Ara Jahan, S. A Review of the Consequences of Global Climate Change on Human Health. J. Environ. Sci. Health Part C 2014, 32, 299–318. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Markers for Global Climate Change and Its Impact on Social, Biological and Ecological Systems: A Review. Am. J. Clim. Change 2020, 09, 159–203. [Google Scholar] [CrossRef]
- İnci, A.; Doğanay, M.; Özdarendeli, A.; Düzlü, Ö.; Yıldırım, A. Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats. Turk. J. Parasitol. 2018, 42, 39–80. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, M.N.F. The concept of one health is applied to the problem of zoonotic diseases. Rev. Med. Virol. 2022, 32, e2326. [Google Scholar] [CrossRef] [PubMed]
- Elsohaby, I.; Villa, L. Zoonotic diseases: Understanding the risks and mitigating the threats. BMC Vet. Res. 2023, 19, 186. [Google Scholar] [CrossRef]
- Agrimi, U.; Carere, M.; Cubadda, F.; Dar, O.; Declich, S.; Dente, M.G.; Farina, M.; Ihekweazu, C.; Lavazza, A.; Mancini, L.; et al. One Health-Based Conceptual Frameworks for Comprehensive and Coordinated Prevention and Preparedness Plans Addressing Global Health Threats. In TF 1-Global Health and COVID-19. 2021, pp. 1–30. Available online: https://www.medilabsecure.com/sites/default/files/2023-02/mls_wp4_policy_brief.pdf (accessed on 14 October 2024).
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.R.; Leighton, F.A. A history of One Health. Rev. Sci. Tech. 2014, 33, 413–420. [Google Scholar] [CrossRef]
- Gruetzmacher, K.; Karesh, W.B.; Amuasi, J.H.; Arshad, A.; Farlow, A.; Gabrysch, S.; Jetzkowitz, J.; Lieberman, S.; Palmer, C.; Winkler, A.S.; et al. The Berlin principles on one health–Bridging global health and conservation. Sci. Total Environ. 2021, 764, 142919. [Google Scholar] [CrossRef]
- FAO; UNEP; WHO. WOAH One Health High-Level Expert Panel (OHHLEP) Annual Report 2021 [Internet]. 2021. Available online: https://cdn.who.int/media/docs/default-source/one-health/ohhlep/ohhlep-annual-report-2021.pdf?sfvrsn=f2d61e40_10&download=true (accessed on 1 October 2024).
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar]
- Lebov, J.; Grieger, K.; Womack, D.; Zaccaro, D.; Whitehead, N.; Kowalcyk, B.; MacDonald, P.D. A framework for One Health research. One Health 2017, 3, 44–50. [Google Scholar] [CrossRef]
- One Health Joint Plan of Action, 2022–2026 [Internet]. FAO; UNEP; WHO; World Organisation for Animal Health (WOAH) (Founded as OIE). 2022. Available online: http://www.fao.org/documents/card/en/c/cc2289en (accessed on 18 October 2024).
- Yopa, D.S.; Massom, D.M.; Kiki, G.M.; Sophie, R.W.; Fasine, S.; Thiam, O.; Zinaba, L.; Ngangue, P. Barriers and enablers to the implementation of one health strategies in developing countries: A systematic review. Front. Public Health 2023, 11, 1252428. [Google Scholar] [CrossRef]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, P.P. Influenza: The centennial of a zoonosis. Rev. Med. Virol. 2019, 29, e2030. Available online: https://pubmed.ncbi.nlm.nih.gov/30576029/ (accessed on 15 October 2024). [CrossRef]
- Huang, Y.J.S.; Higgs, S.; Vanlandingham, D.L. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front. Microbiol. 2019, 10, 22. [Google Scholar] [CrossRef]
- CDC One Health. About Zoonotic Diseases. 2024. Available online: https://www.cdc.gov/one-health/about/about-zoonotic-diseases.html (accessed on 4 October 2024).
- Otranto, D.; Eberhard, M.L. Zoonotic helminths affect the human eye. Parasites Vectors 2011, 4, 41. [Google Scholar] [CrossRef]
- Olmos, M.B.; Bostik, V. Climate change and human security-the proliferation of vector-borne diseases due to climate change. Mil. Med. Sci. Lett./Vojen. Zdr. Listy 2021, 90, 100–106. [Google Scholar] [CrossRef]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Laojun, S.; Changbunjong, T.; Abdulloh, A.; Chaiphongpachara, T. Geometric morphometrics to differentiate species and explore seasonal variation in three Mansonia species (Diptera: Culicidae) in central Thailand and their association with meteorological factors. Med. Vet. Entomol. 2024, 38, 325–340. [Google Scholar] [CrossRef]
- The Lancet Regional Health–Americas. Viruses, bacteria, vectors, and climate change: How worried should the Americas be? Lancet Reg. Health-Am. 2024, 29, 100675. [Google Scholar]
- Wilke, A.B.B.; Vasquez, C.; Medina, J.; Unlu, I.; Beier, J.C.; Ajelli, M. Presence and abundance of malaria vector species in Miami-Dade County, Florida. Malar J. 2024, 23, 24. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.T.; Pindar, A.; Galpern, P.; Packer, L.; Potts, S.G.; Roberts, S.M.; Rasmont, P.; Schweiger, O.; Colla, S.R.; Richardson, L.L.; et al. Climate change impacts on bumblebees converge across continents. Science 2015, 349, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Germain, G.; Simon, A.; Arsenault, J.; Baron, G.; Bouchard, C.; Chaumont, D.; Allaki, F.E.; Kimpton, A.; Lévesque, B.; Massé, A.; et al. Quebec’s Multi-Party Observatory on Zoonoses and Adaptation to Climate Change. Can. Commun. Dis. Rep. 2019, 45, 143–148. [Google Scholar] [CrossRef] [PubMed]
- McMahon, B.J.; Morand, S.; Gray, J.S. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 2018, 65, 755–765. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate change increases cross-species viral transmission risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Magouras, I.; Brookes, V.J.; Jori, F.; Martin, A.; Pfeiffer, D.U.; Dürr, S. Emerging Zoonotic Diseases: Should We Rethink the Animal–Human Interface? Front. Vet. Sci. 2020, 7, 582743. [Google Scholar] [CrossRef]
- Singh, B.B.; Sharma, R.N.; Gill, J.P.S.; Aulakh, R.S.; Bangah, S. Climate change, zoonoses and India. Rev. Sci. Tech. OIE 2011, 30, 779–788. [Google Scholar] [CrossRef]
- Wang, C.X.; Xiu, L.S.; Hu, Q.Q.; Lee, T.C.; Liu, J.; Shi, L.; Zhou, X.N.; Guo, X.K.; Hou, L.; Yin, K. Advancing early warning and surveillance for zoonotic diseases under climate change: Interdisciplinary systematic perspectives. Adv. Clim. Chang. Res. 2023, 14, 814–826. [Google Scholar] [CrossRef]
- Grange, Z.L.; Goldstein, T.; Johnson, C.K.; Anthony, S.; Gilardi, K.; Daszak, P.; Olival, K.J.; O’Rourke, T.; Murray, S.; Olson, S.H.; et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl. Acad. Sci. USA 2021, 118, e2002324118. [Google Scholar] [CrossRef]
- Choudhary, P.; Shafaati, M.; Abu Salah, M.A.H.; Chopra, H.; Choudhary, O.P.; Silva-Cajaleon, K.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Zoonotic diseases in a changing climate scenario: Revisiting the interplay between environmental variables and infectious disease dynamics. Travel. Med. Infect. Dis. 2024, 58, 102694. [Google Scholar] [CrossRef]
- Levi, T.; Keesing, F.; Oggenfuss, K.; Ostfeld, R.S. Accelerated phenology of blacklegged ticks under climate warming. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130556. [Google Scholar] [CrossRef] [PubMed]
- George, A.M.; Ansumana, R.; De Souza, D.K.; Niyas, V.K.M.; Zumla, A.; Bockarie, M.J. Climate change and the rising incidence of vector-borne diseases globally. Int. J. Infect. Dis. 2024, 139, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and Disease Emergence: Dynamics at the Wildlife–Livestock–Human Interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef]
- Glidden, C.K.; Nova, N.; Kain, M.P.; Lagerstrom, K.M.; Skinner, E.B.; Mandle, L.; Sokolow, S.H.; Plowright, R.K.; Dirzo, R.; De Leo, G.A.; et al. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 2021, 31, R1342–R1361. [Google Scholar] [CrossRef]
- Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. Urbanisation and infectious diseases in a globalised world. Lancet Infect Dis. 2011, 11, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.K.; Hitchens, P.L.; Pandit, P.S.; Rushmore, J.; Evans, T.S.; Young, C.C.W.; Doyle, M.M. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192736. [Google Scholar] [CrossRef]
- UNFCCC What is the Triple Planetary Crisis? [Internet]. 2022. Available online: https://unfccc.int/news/what-is-the-triple-planetary-crisis (accessed on 4 October 2024).
- Butler, C.D. Planetary Epidemiology: Towards First Principles. Curr. Environ. Health Rep. 2018, 5, 418–429. [Google Scholar] [CrossRef]
- Tran, H.M.; Tsai, F.J.; Lee, Y.L.; Chang, J.H.; Chang, L.T.; Chang, T.Y.; Chung, K.F.; Kuo, H.P.; Lee, K.Y.; Chuang, K.J.; et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Sci. Total Environ. 2023, 898, 166340. Available online: https://www.sciencedirect.com/science/article/pii/S0048969723049653 (accessed on 8 October 2024). [CrossRef]
- Joshi, M.; Goraya, H.; Joshi, A.; Bartter, T. Climate change and respiratory diseases: A 2020 perspective. Curr. Opin. Pulm. Med. 2020, 26, 119. Available online: https://journals.lww.com/co-pulmonarymedicine/fulltext/2020/03000/climate_change_and_respiratory_diseases__a_2020.4.aspx (accessed on 8 October 2024). [CrossRef]
- Ramanathan, V. Climate Change, Air Pollution, and Health: Common Sources, Similar Impacts, and Common Solutions. In Health of People, Health of Planet and Our Responsibility: Climate Change, Air Pollution and Health [Internet]; Al-Delaimy, W.K., Ramanathan, V., Sánchez Sorondo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Feng, F.; Cheng, B.; Shen, J.; Wang, H.; Jiao, H.; Li, M. Respiratory mortality associated with ozone in China: A systematic review and meta-analysis. Environ. Pollut. 2021, 280, 116957. Available online: https://linkinghub.elsevier.com/retrieve/pii/S026974912100539X (accessed on 4 October 2024). [CrossRef] [PubMed]
- Ross, M.A. Integrated Science Assessment for Particulate Matter; US Environ Prot Agency: Washington, DC, USA, 2009; pp. 61–161.
- Vallero, D.A. Fundamentals of Air Pollution; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Jung, C.C.; Huang, C.Y.; Su, H.J.; Chen, N.T.; Yeh, C.L. Impact of agricultural activity on PM2.5 and its compositions in elementary schools near corn and rice farms. Sci. Total Environ. 2024, 906, 167496. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Marsland, A.L.; Kinnee, E.J.; Tunno, B.J.; Manuck, S.B.; Gianaros, P.J.; Clougherty, J.E. Long-Term Ambient Air Pollution Exposures and Circulating and Stimulated Inflammatory Mediators in a Cohort of Midlife Adults. Environ. Health Perspect. 2021, 129, 057007. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428564/ (accessed on 6 October 2024). [CrossRef]
- Conde-Avila, V.; Ortega-Martínez, L.D.; Loera, O.; El Kassis, E.G.; Dávila, J.G.; Valenzuela, C.M.; Armendáriz, B.P. Pesticides degradation by immobilised microorganisms. Int. J. Environ. Anal. Chem. 2021, 101, 2975–3005. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, A.N.; Saxena, R.; Paul, D.; Tomar, R.S. Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal. Agric. Biotechnol. 2021, 31, 101883. [Google Scholar] [CrossRef]
- Colwell, M.L.; Townsel, C.; Petroff, R.L.; Goodrich, J.M.; Dolinoy, D.C. Epigenetics and the exposome: DNA methylation as a proxy for health impacts of prenatal environmental exposures. Exposome 2023, 3, osad001. [Google Scholar] [CrossRef]
- van der Plaat, D.A.; de Jong, K.; de Vries, M.; van Diemen, C.C.; Nedeljković, I.; Amin, N.; Kromhout, H.; Vermeulen, R.; Postma, D.S.; van Duijn, C.M.; et al. Occupational exposure to pesticides is associated with differential DNA methylation. Occup. Environ. Med. 2018, 75. Available online: https://pubmed.ncbi.nlm.nih.gov/29459480/ (accessed on 8 October 2024). [CrossRef]
- Paredes-Céspedes, D.M.; Herrera-Moreno, J.F.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Salazar, A.M.; Ostrosky-Wegman, P.; Barrón-Vivanco, B.S.; Rojas-García, A.E. Pesticide Exposure Modifies DNA Methylation of Coding Region of WRAP53α, an Antisense Sequence of p53, in a Mexican Population. Chem. Res. Toxicol. 2019, 32, 1441–1448. Available online: https://pubmed.ncbi.nlm.nih.gov/31243981/ (accessed on 8 October 2024). [CrossRef]
- Kori, R.K.; Singh, M.K.; Jain, A.K.; Yadav, R.S. Neurochemical and Behavioral Dysfunctions in Pesticide Exposed Farm Workers: A Clinical Outcome. Indian J. Clin. Biochem. IJCB 2018, 33, 372–381. [Google Scholar] [CrossRef]
- Lacouture, A.; Lafront, C.; Peillex, C.; Pelletier, M.; Audet-Walsh, É. Impacts of endocrine-disrupting chemicals on prostate function and cancer. Environ. Res. 2022, 204 Pt B, 112085. [Google Scholar] [CrossRef]
- Pizzorno, J. Environmental Toxins and Infertility. Integr. Med. Encinitas J. 2018, 17, 8–11. [Google Scholar]
- Requena, M.; López-Villén, A.; Hernández, A.F.; Parrón, T.; Navarro, Á.; Alarcón, R. Environmental exposure to pesticides and risk of thyroid diseases. Toxicol. Lett. 2019, 315, 55–63. [Google Scholar] [CrossRef]
- Espinosa, C.; Beltrán, J.M.G.; Esteban, M.A.; Cuesta, A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 2018, 235, 30–38. Available online: https://www.sciencedirect.com/science/article/pii/S0269749117331317 (accessed on 6 October 2024). [CrossRef] [PubMed]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. Available online: https://www.sciencedirect.com/science/article/pii/S0269749116301932 (accessed on 13 October 2024). [CrossRef]
- Masud, N.; Davies-Jones, A.; Griffin, B.; Cable, J. Differential effects of two prevalent environmental pollutants on host-pathogen dynamics. Chemosphere 2022, 295, 133879. Available online: https://www.sciencedirect.com/science/article/pii/S0045653522003721 (accessed on 13 October 2024). [CrossRef] [PubMed]
- Sulukan, E.; Köktürk, M.; Ceylan, H.; Beydemir, Ş.; Işik, M.; Atamanalp, M.; Ceyhun, S.B. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). Chemosphere 2017, 180, 77–85. Available online: https://www.sciencedirect.com/science/article/pii/S0045653517305416 (accessed on 13 October 2024). [CrossRef] [PubMed]
- Wang, F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.; Zeng, E.Y. Interaction of toxic chemicals with microplastics: A critical review. Water Res. 2018, 139, 208–219. Available online: https://www.sciencedirect.com/science/article/pii/S0043135418302835 (accessed on 13 October 2024). [CrossRef]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B.M.; Andersen, H.E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M.; et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 2020, 4, 1060–1068. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chia, R.W.; Veerasingam, S.; Uddin, S.; Jeon, W.H.; Moon, H.S.; Cha, J.; Lee, J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. Sci. Total Environ. 2024, 946, 174297. Available online: https://www.sciencedirect.com/science/article/pii/S0048969724044450 (accessed on 13 October 2024). [CrossRef]
- Mendoza, L.M.R.; Balcer, M. Microplastics in Freshwater Environments. In Encyclopedia of the World’s Biomes [Internet]; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 325–353. Available online: https://www.sciencedirect.com/science/article/pii/B9780124095489123942 (accessed on 13 October 2024).
- Yang, X.; Lwanga, E.H.; Bemani, A.; Gertsen, H.; Salanki, T.; Guo, X.; Fu, H.; Xue, S.; Ritsema, C.; Geissen, V. Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. Environ. Pollut 2019, 245, 829–835. Available online: https://www.sciencedirect.com/science/article/pii/S0269749118334602 (accessed on 13 October 2024). [CrossRef] [PubMed]
- Khor, N.; Arimah, B.; Otieno, R.; Oostrum, M.; Mutinda, M.; Martins, J. World Cities Report 2022 Envisaging the Future of Cities; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2022; Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 15 October 2024).
- Mathers, C. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Aström, C.; Rocklöv, J.; Hales, S.; Béguin, A.; Louis, V.; Sauerborn, R. Potential distribution of dengue fever under scenarios of climate change and economic development. EcoHealth 2012, 9, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130552. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342958/ (accessed on 14 October 2024). [CrossRef] [PubMed]
- Erlanger, T.E.; Keiser, J.; Utzinger, J. Effect of dengue vector control interventions on entomological parameters in developing countries: A systematic review and meta-analysis. Med. Vet. Entomol. 2008, 22, 203–221. [Google Scholar] [CrossRef]
- Gubler, D.J. The changing epidemiology of yellow fever and dengue, 1900 to 2003, full circle? Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 319–330. [Google Scholar] [CrossRef]
- World Health Organization. A Global Brief on Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. Available online: https://www.sciencedirect.com/science/article/pii/S0946672X05000969 (accessed on 14 October 2024). [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. EXS 2012, 101, 133–164. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144270/ (accessed on 14 October 2024).
- Ackland, M.L.; Bornhorst, J.; Dedoussis, G.V.; Dietert, R.R.; Nriagu, J.O.; Pacyna, J.M.; Pettifor, J.M. Metals in the Environment as Risk Factors for Infectious Diseases: Gaps and Opportunities. In Trace Metals and Infectious Diseases [Internet]; Nriagu, J.O., Skaar, E.P., Eds.; MIT Press: Cambridge, MA, USA, 2015. Available online: http://www.ncbi.nlm.nih.gov/books/NBK569691/ (accessed on 25 September 2024).
- Lehmann, I.; Sack, U.; Lehmann, J. Metal ions affecting the immune system. Met. Ions Life Sci. 2011, 8, 157–185. [Google Scholar]
- Rehder, D.; Black, R.E.; Bornhorst, J.; Dietert, R.R.; DiRita, V.J.; Navarro, M.; Perry, R.D.; Rink, L.; Skaar, E.P.; Soares, M.C.; et al. Metals in Host–Microbe Interaction: The Host Perspective. In Trace Metals and Infectious Diseases [Internet]; Nriagu, J.O., Skaar, E.P., Eds.; MIT Press: Cambridge, MA, USA, 2015. Available online: http://www.ncbi.nlm.nih.gov/books/NBK569668/ (accessed on 26 September 2024).
- Weiss, G.; Carver, P.L. Role of divalent metals in infectious disease susceptibility and outcome. Clin. Microbiol. Infect. 2018, 24, 16–23. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312803/ (accessed on 14 October 2024). [CrossRef]
- Zheng, Y.; Li, G.; Xing, Y.; Xu, W.; Yue, T. Adsorption removal of mercury from flue gas by metal selenide: A review. J. Environ. Sci. 2025, 148, 420–436. Available online: https://www.sciencedirect.com/science/article/pii/S1001074223000815 (accessed on 14 October 2024). [CrossRef] [PubMed]
- Malek, A.; Aouad, K.; El Khoury, R.; Halabi-Tawil, M.; Choucair, J. Chronic Mercury Intoxication Masquerading as Systemic Disease: A Case Report and Review of the Literature. Eur. J. Case Rep. Intern. Med. 2017, 4, 000632. [Google Scholar] [CrossRef] [PubMed]
- Moutaouakkil, Y.; Mounir, R.; El Cadi, M.A.; Lamsaouri, J.; Bousliman, Y.; ElJaoudi, R. Intoxications with trace metal elements: A new concept of the metal profile. Ann. Biol. Clin. 2024, 82, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Nakamura, M.; Murata, K. Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects. Nippon. Eiseigaku Zasshi (Jpn. J. Hyg.) 2018, 73, 258–264. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef]
- Institute of Medicine (U.S.). Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases; Keusch, G., Ed.; National Academies Press: Washington, DC, USA, 2009; 312p. [Google Scholar]
- Stärk, K.D.C.; Arroyo Kuribreña, M.; Dauphin, G.; Vokaty, S.; Ward, M.P.; Wieland, B.; Lindberg, A. One Health surveillance–More than a buzz word? Prev. Vet. Med. 2015, 120, 124–130. [Google Scholar] [CrossRef]
- Hattendorf, J.; Bardosh, K.L.; Zinsstag, J. One Health and its practical implications for surveillance of endemic zoonotic diseases in resource limited settings. Acta Trop. 2017, 165, 268–273. [Google Scholar] [CrossRef]
- Training for Mid-Level Managers (MLM). Module 8: Making Disease Surveillance Work. [Internet]; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/bitstream/handle/10665/337067/9789240015777-eng.pdf?sequence=1 (accessed on 1 October 2024).
- Hoinville, L. Animal Health Surveillance Terminology Final Report from Pre-ICAHS Workshop. Available online: https://www.fp7-risksur.eu/sites/default/files/partner_logos/icahs-workshop-2011_surveillance_tewrminology_report_V1.2.pdf (accessed on 14 October 2024).
- Groseclose, S.L.; Buckeridge, D.L. Public Health Surveillance Systems: Recent Advances in Their Use and Evaluation. Annu. Rev. Public Health 2017, 38, 57–79. [Google Scholar] [CrossRef]
- Sharan, M.; Vijay, D.; Yadav, J.P.; Bedi, J.S.; Dhaka, P. Surveillance and response strategies for zoonotic diseases: A comprehensive review. Sci. One Health 2023, 2, 100050. [Google Scholar] [CrossRef]
- PREDICT Consortium; Kelly, T.R.; Machalaba, C.; Karesh, W.B.; Crook, P.Z.; Gilardi, K.; Nziza, J.; Uhart, M.M.; Robles, E.A.; Saylors, K.; et al. Implementing One Health approaches to confront emerging and re-emerging zoonotic disease threats: Lessons from PREDICT. One Health Outlook 2020, 2, 1. [Google Scholar] [CrossRef]
- Suy Lan, C.; Sok, S.; Chheang, K.; Lan, D.M.; Soung, V.; Divi, N.; Ly, S.; Smolinski, M. Cambodia national health hotline-Participatory surveillance for early detection and response to disease outbreaks. Lancet Reg. Health-West Pac. 2022, 29, 100584. [Google Scholar] [CrossRef] [PubMed]
- Karimuribo, E.D.; Mutagahywa, E.; Sindato, C.; Mboera, L.; Mwabukusi, M.; Kariuki Njenga, M.; Teesdale, S.; Olsen, J.; Rweyemamu, M. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance. JMIR Public Health Surveill. 2017, 3, e94. [Google Scholar] [CrossRef] [PubMed]
- Surveillance Technology in Thailand, Cambodia, and Tanzania: Case Study from Ending Pandemics. In Exemplars in Global Health [Internet]; (EPIDEMIC PREPAREDNESS & RESPONSE). 2020. Available online: https://www.exemplars.health/emerging-topics/epidemic-preparedness-and-response/surveillance-technology-ending-pandemics-case-study (accessed on 1 October 2024).
- Zhao, F.; Bali, S.; Kovacevic, R.; Weintraub, J. A three-layer system to win the war against COVID-19 and invest in health systems of the future. BMJ Glob. Health 2021, 6, e007365. [Google Scholar] [CrossRef] [PubMed]
- Yavlinsky, A.; Lule, S.A.; Burns, R.; Zumla, A.; McHugh, T.D.; Ntoumi, F.; Masanja, H.; Mwakasungula, S.; Abubakar, I.; Aldridge, R.W. Mobile-based and open-source case detection and infectious disease outbreak management systems: A review. Wellcome Open Res. 2020, 5, 37. [Google Scholar] [CrossRef]
- Tegegne, H.A.; Bogaardt, C.; Collineau, L.; Cazeau, G.; Lailler, R.; Reinhardt, J.; Freeth, F.T.; Taylor, E.; Prada, J.M.; Hénaux, V. OH-EpiCap: A semi-quantitative tool for the evaluation of One Health epidemiological surveillance capacities and capabilities. Front. Public Health 2023, 11, 1053986. [Google Scholar] [CrossRef]
- Tegegne, H.A.; Freeth, F.T.A.; Bogaardt, C.; Taylor, E.; Reinhardt, J.; Collineau, L.; Prada, J.M.; Hénaux, V. Implementation of One Health surveillance systems: Opportunities and challenges—Lessons learned from the OH-EpiCap application. One Health 2024, 18, 100704. [Google Scholar] [CrossRef]
- One Health Zoonotic Disease Prioritization Process. Available online: https://www.cdc.gov/one-health/php/prioritization/?CDC_AAref_Val=https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/fact-sheet.html (accessed on 14 October 2024).
- Muhemedi, S.; Masumu, J.; Lubula, L.; Kabambi, P.; Okitolonda, E. Prioritization of Zoonotic Diseases in theDemocratic Republic of the Congo, 2016. 2018. Available online: https://www.semanticscholar.org/paper/Prioritization-of-Zoonotic-Diseases-in-Republic-of-Muhemedi-Masumu/65b8b7aa6e69125c631464e64bdac7a1ad43ddc1 (accessed on 12 October 2024).
- Balabanova, Y.; Gilsdorf, A.; Buda, S.; Burger, R.; Eckmanns, T.; Gärtner, B.; Groß, U.; Haas, W.; Hamouda, O.; Hübner, J.; et al. Communicable Diseases Prioritized for Surveillance and Epidemiological Research: Results of a Standardized Prioritization Procedure in Germany, 2011. PLoS ONE 2011, 6, e25691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borham, A.; Abdel Motaal, K.; ElSersawy, N.; Ahmed, Y.F.; Mahmoud, S.; Musaibah, A.S.; Abdelnaser, A. Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology. Int. J. Environ. Res. Public Health 2025, 22, 883. https://doi.org/10.3390/ijerph22060883
Borham A, Abdel Motaal K, ElSersawy N, Ahmed YF, Mahmoud S, Musaibah AS, Abdelnaser A. Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology. International Journal of Environmental Research and Public Health. 2025; 22(6):883. https://doi.org/10.3390/ijerph22060883
Chicago/Turabian StyleBorham, Abdallah, Kadria Abdel Motaal, Nour ElSersawy, Yassmin F. Ahmed, Shuaib Mahmoud, Abobaker Salem Musaibah, and Anwar Abdelnaser. 2025. "Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology" International Journal of Environmental Research and Public Health 22, no. 6: 883. https://doi.org/10.3390/ijerph22060883
APA StyleBorham, A., Abdel Motaal, K., ElSersawy, N., Ahmed, Y. F., Mahmoud, S., Musaibah, A. S., & Abdelnaser, A. (2025). Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology. International Journal of Environmental Research and Public Health, 22(6), 883. https://doi.org/10.3390/ijerph22060883