Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,823)

Search Parameters:
Keywords = interaction disorder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1399 KiB  
Review
Lipid−lncRNA Crossroads: An Overview of Interactions Between Lipids and lncRNA
by Andrea Bayona-Hernandez, Ana Miladinović, Ludovica Antiga, Pavel Hozak, Martin Sztacho and Enrique Castano
Cells 2025, 14(15), 1193; https://doi.org/10.3390/cells14151193 (registering DOI) - 2 Aug 2025
Abstract
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in [...] Read more.
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in cellular regulation, and growing evidence reveals a complex interplay between these molecules. These interactions contribute to key biological functions, such as cancer progression, lipid droplet transport, autophagy, liquid−liquid phase separation, and the formation of organelles without membranes. Understanding the lipid−lncRNA interface opens new avenues for unraveling cellular regulation and disease mechanisms, holding great potential not only for elucidating the fundamental aspects of cellular biology but also for identifying innovative therapeutic targets for metabolic disorders and cancer. This review highlights the biological relevance of lipid–lncRNA interactions by exploring their roles in cellular organization, regulation, and diseases, including metabolic and cancer-related disorders. Full article
(This article belongs to the Section Cell Microenvironment)
21 pages, 2399 KiB  
Review
Various Approaches Employed to Enhance the Bioavailability of Antagonists Interfering with the HMGB1/RAGE Axis
by Harbinder Singh
Int. J. Transl. Med. 2025, 5(3), 35; https://doi.org/10.3390/ijtm5030035 (registering DOI) - 2 Aug 2025
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. Blocking the HMGB1/RAGE axis using various small synthetic or natural molecules has been proven to be an effective therapeutic approach to treating these inflammatory conditions. However, the low water solubility of these pharmacoactive molecules limits their clinical use. Pharmaceutically active molecules with low solubility and bioavailability in vivo convey a higher risk of failure for drug development and drug innovation. The pharmacokinetic and pharmacodynamics parameters of these compounds are majorly affected by their solubility. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. This review mainly describes various technologies utilized to improve the bioavailability of synthetic or natural molecules which have been particularly used in various inflammatory conditions acting specifically through the HMGB1/RAGE pathway. Full article
Show Figures

Figure 1

20 pages, 2424 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 (registering DOI) - 1 Aug 2025
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 (registering DOI) - 1 Aug 2025
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

23 pages, 1746 KiB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 (registering DOI) - 1 Aug 2025
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

31 pages, 1295 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 (registering DOI) - 1 Aug 2025
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
20 pages, 2976 KiB  
Review
The Role of DNA in Neural Development and Cognitive Function
by Tharsius Raja William Raja, Janakiraman Pillai Udaiyappan and Michael Pillay
DNA 2025, 5(3), 37; https://doi.org/10.3390/dna5030037 (registering DOI) - 1 Aug 2025
Abstract
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. [...] Read more.
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. Neural progenitors are formed and differentiated according to genetic instructions, whereas epigenetic changes, such as DNA methylation, dynamically control gene expression in response to external stimuli. These processes shape behavior and cognitive resilience by influencing neural identity, synaptic efficiency, and adaptation. This review also examines how DNA damage and repair mechanisms affect the integrity of neurons, which are essential for memory and learning. It also emphasizes how genetic predispositions and environmental factors interact to determine a person’s susceptibility to neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. Developments in gene-editing technologies, such as CRISPR, and non-viral delivery techniques provide encouraging treatment avenues for neurodegenerative disorders. This review highlights the fundamental role of DNA in coordinating the intricate interactions between molecular and environmental factors that underlie brain function and diseases. Full article
Show Figures

Graphical abstract

18 pages, 3111 KiB  
Article
Ectopic Recruitment of the CTCF N-Terminal Domain with Two Proximal Zinc-Finger Domains as a Tool for 3D Genome Engineering
by Eugenia A. Tiukacheva, Artem V. Luzhin, Natalia Kruglova, Anastasia S. Shtompel, Grigorii Antonov, Anna Tvorogova, Yegor Vassetzky, Sergey V. Ulianov and Sergey V. Razin
Int. J. Mol. Sci. 2025, 26(15), 7446; https://doi.org/10.3390/ijms26157446 (registering DOI) - 1 Aug 2025
Abstract
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated [...] Read more.
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated CTCF fused with programmable DNA-binding module dCas9 and fluorescent tracker EGFP. We found that the recruitment of a chimeric protein based on the CTCF N-terminal domain and two zinc-finger domains to the human HOXD locus leads to the de novo formation of a spatial contact with a nearby cohesin/CTCF-bound region, anchoring several chromatin loops. This chimeric protein did not show binding to CTCF motifs and did not affect the epigenetic and transcription profile of the locus. Recruitment of this chimeric protein is also able to restore chromatin loops, lost after deletion of an endogenous CTCF-binding site. Together, our data indicate that the ectopic recruitment of the CTCF N-terminal part could be an appropriate tool for 3D genome engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1782 KiB  
Review
Nutrition and Micronutrient Interactions in Autoimmune Thyroid Disorders: Implications for Cardiovascular Health
by Michał Mazur, Magdalena Szymańska, Agnieszka Malik, Wojciech Szlasa and Joanna Popiołek-Kalisz
Pathophysiology 2025, 32(3), 37; https://doi.org/10.3390/pathophysiology32030037 (registering DOI) - 1 Aug 2025
Abstract
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role [...] Read more.
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role of these nutrients in reducing cardiovascular disease (CVD) risk in autoimmune thyroid disorders remains insufficiently understood. This review explores the influence of specific micronutrients—including selenium, iodine, and zinc—and dietary patterns, particularly the Mediterranean diet, on the pathophysiology of hypothyroidism and Hashimoto’s thyroiditis. We introduce a novel framework that integrates emerging data on sex-specific micronutrient interactions and nutritional immunomodulation. Unlike the existing literature, this review introduces original hypotheses related to sex-specific nutritional immunomodulation and proposes a novel framework for micronutrient-driven dietary intervention in Hashimoto’s thyroiditis. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

11 pages, 827 KiB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 (registering DOI) - 1 Aug 2025
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

20 pages, 3519 KiB  
Article
Hylocereus polyrhizus Pulp Residues Polysaccharide Alleviates High-Fat Diet-Induced Obesity by Modulating Intestinal Mucus Secretion and Glycosylation
by Guanghui Li, Kit-Leong Cheong, Yunhua He, Ahluk Liew, Jiaxuan Huang, Chen Huang, Saiyi Zhong and Malairaj Sathuvan
Foods 2025, 14(15), 2708; https://doi.org/10.3390/foods14152708 (registering DOI) - 1 Aug 2025
Abstract
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese [...] Read more.
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese colitis mouse model (n = 5 per group) and combined nano-capillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) technology to quantitatively analyze the dynamic changes in O-glycosylation. Additionally, through quantitative O-glycosylation proteomics and whole-proteome analysis, we identified 155 specifically altered O-glycosylation sites in colon tissue, with the glycosylation modification level of the MUC2 core protein increased by approximately 2.1-fold. The results indicate that HPPP alleviates colonic mucosal damage by regulating interactions between mucus O-glycosylation. Overall, we demonstrated that HPPP increases HFD-induced O-glycosylation sites, improves intestinal mucosal structure in obese mice, and provides protective effects against obesity-induced intestinal mucosal damage. Full article
Show Figures

Figure 1

28 pages, 13735 KiB  
Article
Immunohistopathological Analysis of Spongiosis Formation in Atopic Dermatitis Compared with Other Skin Diseases
by Ryoji Tanei and Yasuko Hasegawa
Dermatopathology 2025, 12(3), 23; https://doi.org/10.3390/dermatopathology12030023 - 1 Aug 2025
Abstract
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis [...] Read more.
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis in AD compared with those in other eczematous dermatitis and inflammatory skin diseases by using immunohistochemical methods. Infiltration of IDECs (CD11c+ cells and/or CD206+ cells) and T-lymphocytes, accompanied by degenerated keratinocytes and aggregated LCs (CD207+ cells), was frequently observed as a common feature of spongiosis in multiple conditions. However, IDECs expressing IgE were identified exclusively in IgE-mediated AD. Aggregation of IDECs was predominantly observed in the spongiosis of adaptive immune-mediated eczematous disorders, such as AD and allergic contact dermatitis. These IDEC aggregations constituted the major components of the epidermal dendritic cell clusters seen in AD and other eczematous or eczematoid dermatoses, and may serve as a useful distinguishing marker from Pautrier collections seen in cutaneous T-cell lymphoma. These findings suggest that IDECs, in cooperation with other immune cells, may play a pivotal role in spongiosis formation in AD and various skin diseases, although the underlying immunopathological mechanisms differ among these conditions. Full article
Show Figures

Figure 1

13 pages, 272 KiB  
Article
Effects of Cognitive Behavioral Therapy-Based Educational Intervention Addressing Fine Particulate Matter Exposure on the Mental Health of Elementary School Children
by Eun-Ju Bae, Seobaek Cha, Dong-Wook Lee, Hwan-Cheol Kim, Jiho Lee, Myung-Sook Park, Woo-Jin Kim, Sumi Chae, Jong-Hun Kim, Young Lim Lee and Myung Ho Lim
Children 2025, 12(8), 1015; https://doi.org/10.3390/children12081015 - 1 Aug 2025
Abstract
Objectives: This study assessed the effectiveness of a cognitive behavioral therapy (CBT)-based fine dust education program, grounded in the Health Belief Model (HBM), on elementary students’ fine dust knowledge, related behaviors, and mental health (depression, anxiety, stress, sleep quality). Methods: From [...] Read more.
Objectives: This study assessed the effectiveness of a cognitive behavioral therapy (CBT)-based fine dust education program, grounded in the Health Belief Model (HBM), on elementary students’ fine dust knowledge, related behaviors, and mental health (depression, anxiety, stress, sleep quality). Methods: From September to November 2024, 95 students (grades 4–6) living near a coal-fired power plant in midwestern South Korea were assigned to either an intervention group (n = 44) or a control group (n = 51). The intervention group completed a three-session CBT-based education program; the control group received stress management education. Assessments were conducted at weeks 1, 2, 4, and 8 using standardized mental health and behavior scales (PHQ: Patient Health Questionnaire, GAD: Generalized Anxiety Disorder Assessment, PSS: Perceived Stress Scale, ISI: Insomnia Severity Index). Results: A chi-square test was conducted to compare pre- and post-test changes in knowledge and behavior related to PM2.5. The intervention group showed significant improvements in seven fine dust-related knowledge and behavior items (e.g., PM2.5 awareness rose from 33.3% to 75.0%; p < 0.05). The control group showed limited gains. Regarding mental health, based on a mixed-design ANCOVA, anxiety scores significantly declined over time in the intervention group, with group and interaction effects also significant (p < 0.05). Depression scores showed time effects, but group and interaction effects were not significant. No significant changes were observed for stress, sleep, or group × PM2.5 interactions. Conclusions: The CBT-based education program effectively enhanced fine dust knowledge, health behaviors, and reduced anxiety among students. It presents a promising, evidence-based strategy to promote environmental and mental health in school-aged children. Full article
(This article belongs to the Special Issue Advances in Mental Health and Well-Being in Children (2nd Edition))
12 pages, 500 KiB  
Review
Neuroendocrinological Aspects of a Tailored Hormonal Contraception
by Christian Battipaglia, Anna Szeliga, Veronica Setti, Gregory Bala, Peter Chedraui, Alessandro D. Genazzani and Blazej Meczekalski
Endocrines 2025, 6(3), 37; https://doi.org/10.3390/endocrines6030037 (registering DOI) - 31 Jul 2025
Abstract
Hormonal contraceptives (HCs) are widely used and generally well tolerated; however, their neuroendocrinological effects remain underappreciated in clinical decision-making. Beyond ovulation suppression, HCs influence brain function by modulating key neurotransmitters such as GABA, serotonin, and dopamine, as well as neurosteroids like allopregnanolone and [...] Read more.
Hormonal contraceptives (HCs) are widely used and generally well tolerated; however, their neuroendocrinological effects remain underappreciated in clinical decision-making. Beyond ovulation suppression, HCs influence brain function by modulating key neurotransmitters such as GABA, serotonin, and dopamine, as well as neurosteroids like allopregnanolone and β-endorphin. These interactions help explain why some users experience mood swings, anxiety, or changes in sexual desire, while others report improvements in well-being. In this narrative review, we explore how different estrogenic and progestin components affect central pathways involved in emotional regulation and cognition. Evidence suggests that estradiol or estetrol-based formulations combined with anti-androgenic progestins like drospirenone or nomegestrol acetate may offer a more favourable neuroendocrine profile, particularly in women with a history of mood disorders or hormonal sensitivity. Understanding these neuroendocrine mechanisms may support more personalized contraceptive choices, particularly in women with mood disorders and hormonal vulnerability. Full article
(This article belongs to the Section Neuroendocrinology and Pituitary Disorders)
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 (registering DOI) - 31 Jul 2025
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop