Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = intensity self-similarity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3815 KiB  
Article
Temporal Synchrony in Bodily Interaction Enhances the Aha! Experience: Evidence for an Implicit Metacognitive Predictive Processing Mechanism
by Jiajia Su and Haosheng Ye
J. Intell. 2025, 13(7), 83; https://doi.org/10.3390/jintelligence13070083 - 7 Jul 2025
Viewed by 349
Abstract
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level [...] Read more.
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level of temporal synchrony in bodily interaction: Immediate Mirror Group, Delayed Mirror Group, and No-Interaction Control Group. A three-stage experimental paradigm—Prediction, Execution, and Feedback—was constructed to decompose the traditional holistic insight task into three sequential components: solution time prediction (prediction phase), riddle solving (execution phase), and self-evaluation of Aha! experience (feedback phase). Behavioral results indicated that bodily interaction significantly influenced the intensity of the Aha! experience, likely mediated by metacognitive predictive processing. Significant or marginally significant differences emerged across key measures among the three groups. Furthermore, fNIRS results revealed that low-frequency amplitude during the “solution time prediction” task was associated with the Somato-Cognitive Action Network (SCAN), suggesting its involvement in the early predictive stage. Functional connectivity analysis also identified Channel 16 within the reward network as potentially critical to the Aha! experience, warranting further investigation. Additionally, the high similarity in functional connectivity patterns between the Mirror Game and the three insight tasks implies that shared neural mechanisms of metacognitive predictive processing are engaged during both bodily interaction and insight. Brain network analyses further indicated that the Reward Network (RN), Dorsal Attention Network (DAN), and Ventral Attention Network (VAN) are key neural substrates supporting this mechanism, while the SCAN network was not consistently involved during the insight formation stage. In sum, this study makes three key contributions: (1) it proposes a novel theoretical mechanism—implicit metacognitive predictive processing; (2) it establishes a quantifiable, three-stage paradigm for insight research; and (3) it outlines a dynamic neural pathway from bodily interaction to insight experience. Most importantly, the findings offer an integrative model that bridges embodied cognition, enactive cognition, and metacognitive predictive processing, providing a unified account of the Aha! experience. Full article
(This article belongs to the Section Studies on Cognitive Processes)
Show Figures

Figure 1

20 pages, 3406 KiB  
Article
Single-Image Super-Resolution via Cascaded Non-Local Mean Network and Dual-Path Multi-Branch Fusion
by Yu Xu and Yi Wang
Sensors 2025, 25(13), 4044; https://doi.org/10.3390/s25134044 - 28 Jun 2025
Viewed by 475
Abstract
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. It plays a crucial role in applications such as medical imaging, surveillance, and remote sensing. However, due to the ill-posed nature of the task and the inherent limitations of imaging [...] Read more.
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. It plays a crucial role in applications such as medical imaging, surveillance, and remote sensing. However, due to the ill-posed nature of the task and the inherent limitations of imaging sensors, obtaining accurate HR images remains challenging. While numerous methods have been proposed, the traditional approaches suffer from oversmoothing and limited generalization; CNN-based models lack the ability to capture long-range dependencies; and Transformer-based solutions, although effective in modeling global context, are computationally intensive and prone to texture loss. To address these issues, we propose a hybrid CNN–Transformer architecture that cascades a pixel-wise self-attention non-local means module (PSNLM) and an adaptive dual-path multi-scale fusion block (ADMFB). The PSNLM is inspired by the non-local means (NLM) algorithm. We use weighted patches to estimate the similarity between pixels centered at each patch while limiting the search region and constructing a communication mechanism across ranges. The ADMFB enhances texture reconstruction by adaptively aggregating multi-scale features through dual attention paths. The experimental results demonstrate that our method achieves superior performance on multiple benchmarks. For instance, in challenging ×4 super-resolution, our method outperforms the second-best method by 0.0201 regarding the Structural Similarity Index (SSIM) on the BSD100 dataset. On the texture-rich Urban100 dataset, our method achieves a 26.56 dB Peak Signal-to-Noise Ratio (PSNR) and 0.8133 SSIM. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 1557 KiB  
Technical Note
Growth of a Single Bubble Due to Super-Saturation: Comparison of Correlation-Based Modelling with CFD Simulation
by Johannes Manthey, Wei Ding, Hossein Mehdipour, Montadhar Guesmi, Simon Unz, Uwe Hampel and Michael Beckmann
ChemEngineering 2025, 9(3), 63; https://doi.org/10.3390/chemengineering9030063 - 17 Jun 2025
Viewed by 280
Abstract
This paper investigates and assesses the potential applicability of global mass transfer coefficients derived from large-scale experiments to the bubble growth of a single bubble in a super-saturated flow (σ=9). Therefore, it presents, for a specific flow velocity [...] Read more.
This paper investigates and assesses the potential applicability of global mass transfer coefficients derived from large-scale experiments to the bubble growth of a single bubble in a super-saturated flow (σ=9). Therefore, it presents, for a specific flow velocity (u=1ms, Re=10,678), a comparison between correlation-based modelling and 3D Large Eddy Simulation–Volume of Fluid (LES-VOF) Computational Fluid Dynamics (CFD) simulations (minimum cell size of 10 µm, Δt = 10 µs). After the verification of the CFD with pool nucleation bubbles, two cases are regarded: (1) the bubble flowing in the bulk and (2) a bubble on a wall with a crossflow. The correlation-based modelling results in a nearly linear relationship between bubble radius and time; meanwhile, theoretically, the self-similarity rule offers r~Bt0.5. The Avdeev correlation gives the best agreement with the CFD simulation for a bubble in the flow bulk (case 1), while the laminar approach for calculation of the exposure time of the penetration theory shows good agreement with the CFD simulation for the bubble growth at the wall (case 2). This preliminary study provides the first quantitative validation of global mass transfer coefficient correlations at the single-bubble scale, suggesting that computationally intensive CFD simulations may be omitted for rapid estimations. Future work will extend the analysis to a wider range of flow velocities and bubble diameters to further validate these findings. Full article
Show Figures

Figure 1

22 pages, 3049 KiB  
Article
A Monographic Experimental Investigation into Flood Discharge Atomized Raindrop Size Distributions Under Low Ambient Pressure Conditions
by Dan Liu, Jijian Lian, Dongming Liu, Fang Liu, Bin Ma, Jizhong Shi, Linlin Yan, Yongsheng Zheng, Cundong Xu and Jinxin Zhang
Water 2025, 17(12), 1721; https://doi.org/10.3390/w17121721 - 6 Jun 2025
Viewed by 424
Abstract
The construction and operation of high dam projects at high altitudes have led to concerns about the effectiveness of flood discharge security predictions resulting from the greater flood discharge atomized rain caused by ambient pressure reduction. In this study, self-similar characteristics and variation [...] Read more.
The construction and operation of high dam projects at high altitudes have led to concerns about the effectiveness of flood discharge security predictions resulting from the greater flood discharge atomized rain caused by ambient pressure reduction. In this study, self-similar characteristics and variation in atomized raindrop size distributions are analyzed to understand the phenomenon of increased atomized rain intensity under low ambient pressure from a mesoscopic scale. The monographic experiments are characterized by a low ambient pressure range (0.66P0–1.02P0) and a high waterjet velocity range (13.89–15.74 m/s). When the ambient pressure decreases by 0.10P0 (P0 = 101.325 kPa) from the reference atmospheric pressure condition as the other conditions remain fixed, the total number concentration in a two-dimensional atomized raindrop spectrum (number/(54 cm2)) and the peak value of the individual three-dimensional number concentration (number/(m3·mm) increase, which can lead to the required industry standard protective level of atomized zones increasing by one level in some cases. In addition, the spectrum trend and typical particle size ranges of the atomized raindrop size distributions present self-similarity as the ambient pressure decreases. The above studies further confirm the effects of low-ambient pressure enhancement on flood discharge atomized rain intensity, which can provide a theoretical basis for the development of random splash simulation models characterized by low pressure for high-altitude hydropower stations. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

24 pages, 2536 KiB  
Article
The Interplay of Inter- and Intramolecular Hydrogen Bonding in Ether Alcohols Related to n-Octanol
by Markus M. Hoffmann, Troy N. Smith and Gerd Buntkowsky
Molecules 2025, 30(11), 2456; https://doi.org/10.3390/molecules30112456 - 4 Jun 2025
Viewed by 635
Abstract
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how [...] Read more.
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how the positioning of the ether functionality affects intra- and intermolecular hydrogen bonding and, in turn, the physical properties of the studied alcohols. Important general trends observed from simulations with both force fields include the following: Intramolecular hydrogen bonding is majorly present in 3-butoxypropanol and 4-propoxybutanol (n = 3 and 4) while being only marginally present for 5-ethoxypentanol and 6-methoxyhexanol (n = 5 and 6) and absent in 1-hexyloxymethanol and 2-pentyloxyethanol (n = 1 and 2). The intramolecular hydrogen bonds formed by 3-butoxypropanol and 4-propoxybutanol are among the most stable ones of all present hydrogen bonds. Intermolecular hydrogen bonding is stronger between hydroxy groups (OH-OH) than between hydroxy and ether groups (OH-OE). An increased temperature causes a reduction in intermolecular OH-OH and OH-OE hydrogen bonding but a slight increase in intramolecular hydrogen bonding. A reduction in end-to-end distances at a higher temperature is also observed for all studied alcohols, which is likely a reflection of increased dihedral bond rotations. Hydrogen bonding extends mostly between just two molecules while hydrogen bonding networks are rare but do exist, involving, in some instances, up to 30 hydrogen bonds. Regardless of force field and temperature, the obtained radial distribution functions (RDFs) mostly show the same features at same distances that only vary in their intensity. 1-hexyloxymethanol forms a very specific and stable intermolecular double OH-OE hydrogen-bonded dimer. Similar double-hydrogen-bonded dimers can be found for the ether alcohols but are only significantly present for 2-pentyloxyethanol. Overall, the main difference between OPLS-AA and CHARMM is their quantitative prediction of the present hydrogen bonding speciation largely due to the stiffer dihedral potentials in OPLS-AA compared to the CHARMM force field. The simulations indicate that (a) the variations in densities are correlated to the reduced packing efficiency caused by intramolecular hydrogen bonding, (b) self-diffusion correlates with the stability of the intermolecular hydrogen bonds, and (c) the presence of hydrogen-bonded networks, although small in numbers, affect the viscosity. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

18 pages, 1414 KiB  
Article
Complementary Effect of an Educational Website for Children and Adolescents with Primary Headaches in Tertiary Care: A Randomized Controlled Trial
by Henrike Goldstein, Lisa-Marie Rau, Verena Bachhausen and Julia Wager
Children 2025, 12(6), 716; https://doi.org/10.3390/children12060716 - 30 May 2025
Viewed by 279
Abstract
Background/Objectives: Tension-type headache and migraine are common among children and adolescents, often causing significant distress and persisting into adulthood. While outpatient pain therapy is essential, it is not always sufficient. To enhance initial therapy consultations, we evaluated a new educational website in [...] Read more.
Background/Objectives: Tension-type headache and migraine are common among children and adolescents, often causing significant distress and persisting into adulthood. While outpatient pain therapy is essential, it is not always sufficient. To enhance initial therapy consultations, we evaluated a new educational website in a pediatric outpatient pain clinic. Methods: Ninety-three children with headache (Mage = 12.66, SDage = 2.86) visiting a specialized tertiary care center were randomly assigned to either an intervention or control group. The intervention group received immediate access to the website, while the control group was given access after the final assessment. Three online follow-up assessments occurred at four-week intervals after baseline. Recruitment occurred between April 2021 and October 2022. Results: Headache-related disability, headache days, and days with headache medication use significantly decreased over time (main effect; disability: β = −0.23, 95%-CI = [−0.36; −0.09], p = 0.001; days: β = −0.18, 95%-CI = [−0.32; 0.03], p = 0.018, medication: β = −0.16, 95%-CI = [−0.31; −0.02], p = 0.026). No statistically significant changes were observed for average headache intensity, passive pain coping, positive self-instructions, seeking social support, pain self-efficacy, and headache-related knowledge. Groups did not differ in their improvement over time (interaction effect). Per-protocol analysis yielded a similar trend: headache-related disability improved significantly with no interaction effects. Despite the limited impact on headache management, children rated the website as relevant and easy to understand. Conclusions: While well-received, the website’s effectiveness may have been limited by participants’ prior knowledge, concurrent therapies, and low engagement. Future research should focus on better integrating the tool into treatment plans, optimizing usage, and tailoring content to varying knowledge levels. Nevertheless, it shows potential as a long-term self-management tool. Full article
(This article belongs to the Section Pediatric Anesthesiology, Pain Medicine and Palliative Care)
Show Figures

Figure 1

22 pages, 9343 KiB  
Article
A DNA Vaccine Against Proadrenomedullin N-Terminal 20 Peptide (PAMP) Reduces Angiogenesis and Increases Lymphocyte and Macrophage Infiltration but Has No Effect on Tumor Burden in a Mouse Model of Lung Metastasis
by Tom Kalathil Raju, Srdan Tadic, Pablo Garrido, Laura Ochoa-Callejero, Judit Narro-Íñiguez, Josune García-Sanmartín and Alfredo Martínez
Vaccines 2025, 13(6), 586; https://doi.org/10.3390/vaccines13060586 - 30 May 2025
Viewed by 656
Abstract
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by [...] Read more.
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by fusing the tetanus toxin epitopes P2 and P30 to the mouse PAMP sequence to counteract self-tolerance, and the empty plasmid was used as a negative control (PcNeg). The plasmids were introduced into Salmonella typhimurium bacteria that were then transformed into bacterial ghosts. C57BL/6J mice were orally immunized with the ghosts five times at 2-week intervals. Then, B16-F10 melanoma cells were injected into the tail vein to generate lung metastases. Furthermore, naïve CD4+ T cells were exposed to PAMP, and their secretome was analyzed by proximity extension assays. Results: Significant levels of anti-PAMP immunoglobulins were detected in the blood of PcPAMP-vaccinated mice and their levels of spleen CD8+ T cells were significantly higher than in those treated with PcNeg, indicating that self-tolerance was effectively broken. Although the number and size of lung metastases was similar between both experimental groups, there was a significant reduction in intratumoral angiogenesis and in cancer cell proliferation index in the PcPAMP group. Furthermore, these animals showed an intense infiltration of lymphocytes, including regulatory T cells, and M2-like macrophages into the metastases, that was not evident in the PcNeg group. In addition, PAMP induced upregulation of IL1β, IL6, IL7, IL12, IL27, TNFα, and FGF21, and downregulation of IL16 in naïve CD4+ T cells. Conclusions: Although the vaccine was not effective in reducing tumor growth, new proliferative and immune functions have been described for PAMP. These new functions include induction of melanoma proliferation and modulation of lymphocyte and macrophage tumor infiltration dynamics. Full article
Show Figures

Figure 1

15 pages, 812 KiB  
Article
CrossFit® and Its Influence on Health Behaviors, Functional Capacity, and Psychosocial Outcomes: An Explorative Study of Gender Differences in Athlete Perspectives
by Alessandra Amato, Luca Petrigna, Leonardo Di Gregorio and Giuseppe Musumeci
J. Funct. Morphol. Kinesiol. 2025, 10(2), 196; https://doi.org/10.3390/jfmk10020196 - 28 May 2025
Viewed by 1661
Abstract
Objectives: This explorative study aimed to evaluate athletes’ perceptions of how CrossFit® affects physical, psychological, and social well-being, exploring gender differences. CrossFit® is a high-intensity functional training modality aimed at enhancing overall fitness and health. Limited research has explored its perceived [...] Read more.
Objectives: This explorative study aimed to evaluate athletes’ perceptions of how CrossFit® affects physical, psychological, and social well-being, exploring gender differences. CrossFit® is a high-intensity functional training modality aimed at enhancing overall fitness and health. Limited research has explored its perceived impact on broader aspects of well-being, particularly considering gender differences. Methods: A total of 202 participants (age 34.3 ± 10.0 years) with at least 6 months of CrossFit® experience completed an online self-reported questionnaire not previously published but created following published guidelines. The questions explore athletes’ perceptions of their improvements in physical fitness, injury occurrence, and the effects on mental well-being. Statistical analysis included descriptive statistics and parametric and non-parametric tests to investigate gender differences. Results: In total, 81.2% of participants perceived improvements in strength, while 83.2% reported enhanced aerobic capacity. Significant body composition improvements were noted by 68.3% of the sample, and 87.6% reported changes in eating habits. Injury incidence was lower among women (30.2%) than men (45.3%) (p = 0.02). Regarding psychological outcomes, 95% of respondents indicated a reduction in stress levels, 73.3% reported better sleep quality, and over 90% perceived improvements in self-esteem and daily energy. Furthermore, 98.5% of participants formed new social connections through CrossFit®, with 79.2% acknowledging a positive impact on social relationships. No significant gender differences were found across most psychological and social outcomes. Conclusions: CrossFit® is perceived positively by participants, with similar views across genders, except for injury rates. It enhances physical fitness, mental health, and social well-being, with high training adherence and relatively low injury risk. Full article
(This article belongs to the Section Physical Exercise for Health Promotion)
Show Figures

Figure 1

17 pages, 11437 KiB  
Article
A Comprehensive Evaluation of Simulating Thermal Conductivity in Oak Wood Using XCT Imaging
by Jingyao Zhao, Bonan Chen, Jiajun Lv, Jiancong Yi, Liying Yuan, Yuanchu Liu, Yingchun Cai and Xiang Chi
Forests 2025, 16(5), 834; https://doi.org/10.3390/f16050834 - 17 May 2025
Viewed by 354
Abstract
Wood drying is the most critical and energy-intensive process in the wood industry. However, the complex pore structure of wood significantly affects its thermal performance. Therefore, it is essential to study the relationship between the pore structure and the thermal properties of wood. [...] Read more.
Wood drying is the most critical and energy-intensive process in the wood industry. However, the complex pore structure of wood significantly affects its thermal performance. Therefore, it is essential to study the relationship between the pore structure and the thermal properties of wood. In this study, X-ray-computed tomography (XCT) technology, combined with digital image processing (DIP) techniques, was used to visualize and characterize the three-dimensional structure of oak samples. Parameters such as porosity, pore size and distribution, and fractal dimensions were obtained to investigate their relationship with thermal conductivity. Subsequently, the thermal conductivities of the oak samples in the tangential, radial, and axial directions were simulated based on their three-dimensional structure. The simulation results were validated using the transient plane source method (TPS). The results showed that there were significant differences in porosity and pore size between earlywood and latewood, which in turn affect the correlation between fractal dimension and thermal conductivity. The higher the self-similarity of the wood structure is, the stronger the correlation between porosity and fractal dimension will be. Due to the limitations of CT resolution and threshold segmentation methods, there may be some axial deviations in the heat transfer simulation based on XCT. However, overall, this method provides a relatively accurate estimate of the effective thermal conductivity of oak wood. In addition, the pit structure and the research on heat conduction of wood-based multi-scale pore structures are of crucial importance to the study of heat conduction in wood. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

14 pages, 547 KiB  
Article
Online Captive: The Impact of Social Media Addiction on Depression and Anxiety—An SEM Approach to the Mediating Role of Self-Esteem and the Moderating Effects of Age and Professional Status
by Daniela-Elena Lițan
Behav. Sci. 2025, 15(4), 481; https://doi.org/10.3390/bs15040481 - 7 Apr 2025
Viewed by 1700
Abstract
In the “era” in which social networks have become an integral part of everyday life, this study aims to analyze the impact of social network addiction on mental health, with a focus on the manifestation of anxiety and depression symptoms. The relationship analyzed [...] Read more.
In the “era” in which social networks have become an integral part of everyday life, this study aims to analyze the impact of social network addiction on mental health, with a focus on the manifestation of anxiety and depression symptoms. The relationship analyzed on a batch of a Romanian adult population, explained by self-esteem and influenced by factors such as age and professional status, highlights the fact that all age categories and professional status can be affected by addiction to the online environment but with different degrees of intensity. The analyses carried out using Structural Equation Modeling (SEM) suggest that young people and professionally inactive people are the categories with the highest degree of self-esteem impairment and with a high potential to manifest symptoms associated with depression and anxiety disorders, as a result of the intense use of social networks. The current study makes a significant contribution to the specialized literature, given the small volume of similar studies conducted on the adult population of Romania. Full article
Show Figures

Figure 1

9 pages, 1226 KiB  
Communication
J-Aggregate-Enhanced Hybrid Nanoporous Alumina for Resonator-Free Amplified Emission
by Evgeniia O. Soloveva, Nikita Toropov and Anton A. Starovoytov
Photonics 2025, 12(4), 330; https://doi.org/10.3390/photonics12040330 - 1 Apr 2025
Viewed by 462
Abstract
This study explores the development and optical characterization of a hybrid material combining nanoporous anodic alumina with J-aggregates of pseudoisocyanine dyes, highlighting its potential for photonic applications in bright broadband sources. The hybrid material was synthesized by impregnating an alumina matrix with a [...] Read more.
This study explores the development and optical characterization of a hybrid material combining nanoporous anodic alumina with J-aggregates of pseudoisocyanine dyes, highlighting its potential for photonic applications in bright broadband sources. The hybrid material was synthesized by impregnating an alumina matrix with a dye solution, which facilitated a thermally stimulated self-assembly process for the formation of J-aggregates. The incorporation of J-aggregates within the matrix was confirmed through several independent optical measurement techniques. A distinct absorption peak and corresponding luminescence signal were attributed to J-aggregate formation, while energy transfer from the alumina’s intrinsic oxygen vacancy centers to the dye aggregates was observed under specific excitation conditions. Amplified spontaneous emission was achieved under pulsed laser excitation, characterized by spectral narrowing and a nonlinear increase in emission intensity beyond a critical pump threshold, indicative of a similarity with random lasing facilitated by scattering within the porous structure. Full article
Show Figures

Figure 1

20 pages, 3591 KiB  
Article
Novel HSA-PMEMA Nanomicelles Prepared via Site-Specific In Situ Polymerization-Induced Self-Assembly for Improved Intracellular Delivery of Paclitaxel
by Yang Chen, Shuang Liang, Binglin Chen, Fei Jiao, Xuliang Deng and Xinyu Liu
Pharmaceutics 2025, 17(3), 316; https://doi.org/10.3390/pharmaceutics17030316 - 1 Mar 2025
Viewed by 899
Abstract
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the [...] Read more.
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the surface of these micelles may possess potential immunogenicity, posing risks in clinical applications. To address this issue, nanomicelles based on human serum albumin (HSA)–hydrophobic polymer conjugates constructed via site-specific in situ polymerization-induced self-assembly (SI-PISA) are considered a promising alternative. The HSA shell not only ensures good biocompatibility but also enhances cellular uptake because of endogenous albumin trafficking pathways. Moreover, compared to traditional methods of creating protein–hydrophobic polymer conjugates, SI-PISA demonstrates higher reaction efficiency and better preservation of protein functionality. Methods: We synthesized HSA-PMEMA nanomicelles via SI-PISA using HSA and methoxyethyl methacrylate (MEMA)—a novel hydrophobic monomer with a well-defined and stable chemical structure. The protein activity and the PTX intracellular delivery efficiency of HSA-PMEMA nanomicelles were evaluated. Results: The CD spectra of HSA and HSA-PMEMA exhibited similar shapes, and the relative esterase-like activity of HSA-PMEMA was 94% that of unmodified HSA. Flow cytometry results showed that Cy7 fluorescence intensity in cells treated with HSA-PMEMA-Cy7 was approximately 1.35 times that in cells treated with HSA-Cy7; meanwhile, HPLC results indicated that, under the same conditions, the PTX loading per unit protein mass on HSA-PMEMA was approximately 1.43 times that of HSA. These collectively contributed to a 1.78-fold overall PTX intracellular delivery efficiency of HSA-PMEMA compared to that of HSA. Conclusions: In comparison with HSA, HSA-PMEMA nanomicelles exhibit improved cellular uptake and higher loading efficiency for PTX, effectively promoting the intracellular delivery of PTX. Tremendous potential lies in these micelles for developing safer and more efficient next-generation PTX formulations for tumor treatment. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

21 pages, 5359 KiB  
Article
Deep Learning-Based Feature Matching Algorithm for Multi-Beam and Side-Scan Images
by Yu Fu, Xiaowen Luo, Xiaoming Qin, Hongyang Wan, Jiaxin Cui and Zepeng Huang
Remote Sens. 2025, 17(4), 675; https://doi.org/10.3390/rs17040675 - 16 Feb 2025
Viewed by 1303
Abstract
Side-scan sonar and multi-beam echo sounder (MBES) are the most widely used underwater surveying tools in marine mapping today. The MBES offers high accuracy in depth measurement but is limited by low imaging resolution due to beam density constraints. Conversely, side-scan sonar provides [...] Read more.
Side-scan sonar and multi-beam echo sounder (MBES) are the most widely used underwater surveying tools in marine mapping today. The MBES offers high accuracy in depth measurement but is limited by low imaging resolution due to beam density constraints. Conversely, side-scan sonar provides high-resolution backscatter intensity images but lacks precise positional information and often suffers from distortions. Thus, MBES and side-scan images complement each other in depth accuracy and imaging resolution. To obtain high-quality seafloor topography images in practice, matching between MBES and side-scan images is necessary. However, due to the significant differences in content and resolution between MBES depth images and side-scan backscatter images, they represent a typical example of heterogeneous images, making feature matching difficult with traditional image matching methods. To address this issue, this paper proposes a feature matching network based on the LoFTR algorithm, utilizing the intermediate layers of the ResNet-50 network to extract shared features between the two types of images. By leveraging self-attention and cross-attention mechanisms, the features of the MBES and side-scan images are combined, and a similarity matrix of the two modalities is calculated to achieve mutual matching. Experimental results show that, compared to traditional methods, the proposed model exhibits greater robustness to noise interference and effectively reduces noise. It also overcomes challenges, such as large nonlinear differences, significant geometric distortions, and high matching difficulty between the MBES and side-scan images, significantly improving the optimized image matching results. The matching error RMSE has been reduced to within six pixels, enabling the accurate matching of multi-beam and side-scan images. Full article
Show Figures

Figure 1

9 pages, 5868 KiB  
Article
A Novel Method to Determine Deformation Strain in a High-Temperature Mushy Zone for a Typical Electrical Strip Under Twin-Roll Strip Casting
by Wenli Hu, Yali Hou, Jianhui Shi, Jinhua Zhao and Lifeng Ma
Crystals 2025, 15(2), 178; https://doi.org/10.3390/cryst15020178 - 13 Feb 2025
Cited by 1 | Viewed by 514
Abstract
An evaluation method was proposed to calculate the deformation strain of a high-temperature mushy zone (HTMZ) related to twin-roll strip casting (TSC) with regard to typical 6.5 wt.% Si electrical steel (6.5 Si steel) on the basis of the crystal—plasticity theory. The viscoplasticity [...] Read more.
An evaluation method was proposed to calculate the deformation strain of a high-temperature mushy zone (HTMZ) related to twin-roll strip casting (TSC) with regard to typical 6.5 wt.% Si electrical steel (6.5 Si steel) on the basis of the crystal—plasticity theory. The viscoplasticity self-consistent (VPSC) model was applied to calculate the evolution discipline of crystallographic orientation (CRO) for the studied 6.5 Si steel processed by different deformation strains under a deformation mode of plane strain, and the deformation strain of HTMZ for the studied 6.5 Si steel related to TSC was further estimated by comparing the CRO feature achieved by theoretical calculation and experimental characterization. Results indicate that the distribution feature of CRO obtained by theoretical calculation becomes increasingly similar to those obtained through experimental characterization with the deformation strains increasing from 0 to 1.5. The ratio between the distribution intensities corresponding to R-Cube texture, the typical rolling texture of α-fiber, and the Cube texture achieved by theoretical calculation is the closest to the value obtained by experimental characterization at deformation strain of 1.4, and the deformation strain of HTMZ for the studied 6.5 Si steel involved in TSC is determined to be ~1.4. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 4471 KiB  
Article
Research and Application of Deep Profile Control Technology in Narrow Fluvial Sand Bodies
by Xu Zheng, Yu Wang, Yuan Lei, Dong Zhang, Wenbo Bao and Shijun Huang
Processes 2025, 13(1), 289; https://doi.org/10.3390/pr13010289 - 20 Jan 2025
Viewed by 1183
Abstract
Narrow Fluvial Sand Bodies are primarily developed along the river center, with horizontal wells for injection and production in some Bohai waterflooded oilfields. This results in a rapid increase in water cut due to a single injection–production direction. Over time, dominant water breakthrough [...] Read more.
Narrow Fluvial Sand Bodies are primarily developed along the river center, with horizontal wells for injection and production in some Bohai waterflooded oilfields. This results in a rapid increase in water cut due to a single injection–production direction. Over time, dominant water breakthrough channels form between wells, and the remaining oil moves to deeper regions, which makes conventional profile control measures less effective. We developed a quantitative method based on integrated dynamic and static big data to identify these breakthrough channels and measure the flow intensity between injection and production wells. To address deep remaining oil mobilization, we performed micro-analysis and physical simulations with heterogeneous core models, which led to the development of a deep profile control system using emulsion polymer gel and self-assembling particle flooding. Experiments show that the combined technology can reduce oil saturation in low-permeability layers to 45.3% and improve recovery by 30.2% compared to water flooding. Field trials proved to be completely effective, with a cumulative oil increase of over 23,200 cubic meters and a 12% reduction in water cut per well. This deep profile control technology offers significant water cut reduction and enhanced oil recovery. It can provide technical support for efficient water control and profile management in similar reservoirs. Full article
Show Figures

Figure 1

Back to TopTop