Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = intense pulsed light device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6160 KB  
Article
The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl)
by Daniela A. Tudor, Sorin David, Mihaela Gheorghiu and Szilveszter Gáspár
Materials 2025, 18(20), 4671; https://doi.org/10.3390/ma18204671 - 11 Oct 2025
Viewed by 597
Abstract
Poly(3-hexylthiophene-2,5-diyl) (P3HT) is a semiconducting, electron donor polymer which, in addition to its intensive use in optoelectronic devices, is increasingly investigated in biological systems. However, there are conflicting reports about the biocompatibility of P3HT, and no direct comparison between P3HT films and P3HT [...] Read more.
Poly(3-hexylthiophene-2,5-diyl) (P3HT) is a semiconducting, electron donor polymer which, in addition to its intensive use in optoelectronic devices, is increasingly investigated in biological systems. However, there are conflicting reports about the biocompatibility of P3HT, and no direct comparison between P3HT films and P3HT nanoparticles has been conducted. In this context, we investigated the viability of bEnd.3 endothelial cells when such cells are grown onto P3HT films or incubated with P3HT nanoparticles and subjected to trains of moderate power density, relatively long light pulses. We observed that, while P3HT films do not decrease the viability of bEnd.3 cells at all, P3HT nanoparticles lower the viability of bEND.3 cells by ~20%, when the nanoparticles also contain [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron acceptor, and by ~30%, when the nanoparticles do not contain PCBM. Interestingly, the used photoexcitation protocol did not impact the biocompatibility of the P3HT-based materials. The obtained results reveal that (i). nanostructuring has a detrimental impact on the compatibility of P3HT with bEND.3 endothelial cells, and (ii). P3HT-based materials can be safely combined with light when used in biological systems because light, as used in the present study, does not alter the biocompatibility of such materials. Full article
(This article belongs to the Special Issue Interaction Between Biomaterials and Biological Systems)
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Viewed by 658
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

14 pages, 3135 KB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 796
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

10 pages, 3012 KB  
Article
A Perovskite-Based Photoelectric Synaptic Transistor with Dynamic Nonlinear Response
by Jiahui Liu, Zunxian Yang, Yujie Zheng and Wenkun Su
Photonics 2025, 12(7), 734; https://doi.org/10.3390/photonics12070734 - 18 Jul 2025
Viewed by 713
Abstract
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, [...] Read more.
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, a hybrid transistor based on a mixed-halide perovskite was fabricated to achieve dynamic nonlinear changes in synaptic plasticity. The utilization of a light-induced mixed-bandgap structure within the mixed perovskite film has been demonstrated to increase the recombination paths of photogenerated carriers of the hybrid film, thereby promoting the formation of nonlinear signals in the device. The constructed heterojunction optoelectronic synaptic transistor, formed by combining a mixed-halide perovskite with a p-type semiconductor, generates dynamic nonlinear decay responses under 400 nm light pulses with an intensity as low as 0.02 mW/cm2. Furthermore, it has been demonstrated that nonlinear photocurrent growth can be achieved under 650 nm light pulses. It is important to note that this novel nonlinear response is characterized by its dynamism. These improvements provide a novel method for expanding the modulation capability of optoelectronic synaptic devices for synaptic plasticity. Full article
(This article belongs to the Special Issue Polaritons Nanophotonics: Physics, Materials and Applications)
Show Figures

Figure 1

11 pages, 5145 KB  
Article
Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
by Jiahui Liu, Yuliang Ye and Zunxian Yang
Materials 2025, 18(12), 2879; https://doi.org/10.3390/ma18122879 - 18 Jun 2025
Viewed by 802
Abstract
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized [...] Read more.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr3 film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr3 grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr3 light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr3 hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm2. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10−11 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

19 pages, 3119 KB  
Article
Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Nanomaterials 2025, 15(12), 908; https://doi.org/10.3390/nano15120908 - 11 Jun 2025
Cited by 3 | Viewed by 815
Abstract
This study reports a gate-tunable three-terminal optoelectronic synaptic device based on an Al/ZnO nanoparticles (NPs)/SiO2/Si structure for neuromorphic in-sensor memory applications. The ZnO NP film, fabricated via spin coating, exhibited strong UV-induced excitatory post-synaptic current (EPSC) responses that were modulated by [...] Read more.
This study reports a gate-tunable three-terminal optoelectronic synaptic device based on an Al/ZnO nanoparticles (NPs)/SiO2/Si structure for neuromorphic in-sensor memory applications. The ZnO NP film, fabricated via spin coating, exhibited strong UV-induced excitatory post-synaptic current (EPSC) responses that were modulated by gate voltage through charge injection across the SiO2 dielectric rather than by conventional field effect. Optical stimulation enabled short-term synaptic plasticity, with paired-pulse facilitation (PPF) values reaching 185% at a gate voltage of −5.0 V and decreasing to 180% at +5.0 V, confirming gate-dependent modulation of synaptic weight. Repeated stimulation enhanced learning efficiency and memory retention, as demonstrated by reduced pulse numbers for relearning and slower EPSC decay. Wickelgren’s power law analysis further revealed a decrease in the forgetting rate under negative gate bias, indicating improved long-term memory characteristics. A 3 × 3 synaptic device array visualized visual memory formation through EPSC-based color mapping, with darker intensities and slower fading observed under −5.0 V bias. These results highlight the critical role of gate-voltage-induced charge injection through the SiO2 dielectric in controlling optical potentiation and electrical depression, establishing ZnO NP-based optoelectronic synaptic devices as promising platforms for energy-efficient, light-driven neuromorphic computing. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

15 pages, 6282 KB  
Article
Pulsed Laser Deposition Method Used to Grow SiC Nanostructure on Porous Silicon Substrate: Synthesis and Optical Investigation for UV-Vis Photodetector Fabrication
by Reem Alzubaidi, Makram A. Fakhri and László Pohl
Thermo 2025, 5(2), 13; https://doi.org/10.3390/thermo5020013 - 11 Apr 2025
Cited by 3 | Viewed by 1887
Abstract
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at [...] Read more.
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at a vacuum of 10−2 mbar P-Si was utilized to create a sufficiently high amount of surface area for SiC film deposition to achieve efficient SiC film growth on the P-Si substrate. X-ray diffraction (XRD) analysis was performed on the crystalline structure of SiC and showed high-intensity peaks at the (111) and (220) planes, indicating that the substrate–film interaction is substantial. Surface roughness particle topography was examined via atomic force microscopy (AFM), and a mean diameter equal to 72.83 nm was found. Field emission scanning electron microscopy (FESEM) was used to analyze surface morphology, and the pictures show spherical nanoparticles and a mud-sponge-like shape demonstrating significant nanoscale features. Photoluminescence and UV-Vis spectroscopy were utilized to investigate the optical properties, and two emission peaks were observed for the SiC and P-Si substrates, at 590 nm and 780 nm. The SiC/P-Si heterojunction photodetector exhibited rectification behavior in its dark I–V characteristics, indicating high junction quality. The spectral responsivity of the SiC/P-Si observed a peak responsivity of 0.0096 A/W at 365 nm with detectivity of 24.5 A/W Jones, and external quantum efficiency reached 340%. The response time indicates a rise time of 0.48 s and a fall time of 0.26 s. Repeatability was assured by the tight clustering of the data points, indicating the good reproducibility and stability of the SiC/P-Si deposition process. Linearity at low light levels verifies efficient photocarrier generation and separation, whereas a reverse saturation current at high intensities points to the maximum carrier generation capability of the device. Moreover, Raman spectroscopy and energy dispersive spectroscopy (EDS) analysis confirmed the structural quality and elemental composition of the SiC/P-Si film, further attesting to the uniformity and quality of the material produced. This hybrid material’s improved optoelectronic properties, achieved by combining the stability of SiC with the quantum confinement effects of P-Si, make it useful in advanced optoelectronic applications such as UV-Vis photodetectors. Full article
Show Figures

Figure 1

16 pages, 4328 KB  
Article
Laser Annealing of Si Wafers Based on a Pulsed CO2 Laser
by Ziming Wang, Guochang Wang, Mingkun Liu, Sicheng Li, Zhenzhen Xie, Liemao Hu, Hui Li, Fangjin Ning, Wanli Zhao, Changjun Ke, Zhiyong Li and Rongqing Tan
Photonics 2025, 12(4), 359; https://doi.org/10.3390/photonics12040359 - 10 Apr 2025
Viewed by 2959
Abstract
Laser annealing plays a significant role in the fabrication of scaled-down semiconductor devices by activating dopant ions and rearranging silicon atoms in ion-implanted silicon wafers, thereby improving material properties. Precise temperature control is crucial in wafer annealing, particularly for repeated processes where repeatability [...] Read more.
Laser annealing plays a significant role in the fabrication of scaled-down semiconductor devices by activating dopant ions and rearranging silicon atoms in ion-implanted silicon wafers, thereby improving material properties. Precise temperature control is crucial in wafer annealing, particularly for repeated processes where repeatability affects uniformity. In this study, we employ a three-dimensional time-dependent thermal simulation model to numerically analyze the multiple static laser annealing processes based on a CO2 laser with a center wavelength of 9.3 μm and a pulse repetition rate of 10 kHz. The heat transfer equation is solved using a multiphysics coupling approach to accurately simulate the effects of different numbers of CO2 laser pulses on wafer temperature rise and repeatability. Additionally, a pyrometer is used to collect and convert the surface temperature of the wafer. Radiation intensity is converted to temperature via Planck’s law for real-time monitoring. Post-processing is performed to fit the measured temperature and the actual temperature into a linear relationship, aiding in obtaining the actual temperature under small beam spots. According to the simulation conditions, a wafer annealing device using a CO2 laser as the light source was independently built for verification, and a stable and uniform annealing effect was realized. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 637 KB  
Article
Efficacy of Enhanced Environmental Cleaning/Disinfection Using Pulsed Xenon Ultraviolet Light in Preventing Outbreaks of Methicillin-Resistant Staphylococcus aureus in Neonatal Intensive Care Units
by Kaori Ishikawa, Toshie Tsuchida, Kaoru Ichiki, Takashi Ueda, Kumiko Yamada, Kosuke Iijima, Naruhito Otani and Kazuhiko Nakajima
Epidemiologia 2025, 6(1), 12; https://doi.org/10.3390/epidemiologia6010012 - 4 Mar 2025
Cited by 2 | Viewed by 2891
Abstract
Background/Objectives: In recent years, non-contact room disinfection devices using ultraviolet light and hydrogen peroxide have emerged as disinfection methods. However, data on their usefulness in neonatal intensive care units (NICUs) are limited. Therefore, the aim of the present study was to evaluate the [...] Read more.
Background/Objectives: In recent years, non-contact room disinfection devices using ultraviolet light and hydrogen peroxide have emerged as disinfection methods. However, data on their usefulness in neonatal intensive care units (NICUs) are limited. Therefore, the aim of the present study was to evaluate the effectiveness of environmental disinfection in controlling methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in a NICU/growing care unit (GCU). Methods: Daily cleaning/disinfection of the patient environment was changed from using a cloth containing quaternary ammonium salts to an agent containing ethanol and surfactant, and terminal cleaning with a pulsed xenon ultraviolet light (PX-UV) non-contact disinfection device was added for patients with confirmed MRSA and those on contact precautions. MRSA incidence and environmental culture results were then compared before and after the method change. Results: The MRSA infection rate was 2.81/1000 patient days before the method change and 0.90/1000 patient days after the change (p = 0.008). Environmental cultures were positive in 12/137 (8.8%) before the change and 0 after the change. There were no adverse events in the neonates due to PX-UV irradiation of the environment. Conclusions: Daily cleaning and disinfection with ethanol and surfactant-containing cleaning disinfectants and a final cleaning with a PX-UV non-contact disinfection device reduced environmental MRSA contamination. In addition to adherence to hand hygiene and contact precautions, reducing MRSA present in the environment may contribute to MRSA control in NICUs and GCUs. Full article
Show Figures

Figure 1

23 pages, 4028 KB  
Article
Development and Testing of a Compact Remote Time-Gated Raman Spectrometer for In Situ Lunar Exploration
by Haiting Zhao, Xiangfeng Liu, Weiming Xu, Daoyuantian Wen, Jianan Xie, Zhenqiang Zhang, Ziqing Jiang, Zongcheng Ling, Zhiping He, Rong Shu and Jianyu Wang
Remote Sens. 2025, 17(5), 860; https://doi.org/10.3390/rs17050860 - 28 Feb 2025
Cited by 2 | Viewed by 3038
Abstract
Raman spectroscopy is capable of precisely identifying and analyzing the composition and properties of samples collected from the lunar surface, providing crucial data support for lunar scientific research. However, in situ Raman spectroscopy on the lunar surface faces challenges such as weak Raman [...] Read more.
Raman spectroscopy is capable of precisely identifying and analyzing the composition and properties of samples collected from the lunar surface, providing crucial data support for lunar scientific research. However, in situ Raman spectroscopy on the lunar surface faces challenges such as weak Raman scattering from targets, alongside requirements for lightweight and long-distance detection. To address these challenges, time-gated Raman spectroscopy (TG-LRS) based on a passively Q-switched pulsed laser and a linear intensified charge-coupled device (ICCD), which enable simultaneous signal amplification and background suppression, has been developed to evaluate the impact of key operational parameters on Raman signal detection and to explore miniaturization optimization. The TG-LRS system includes a 40 mm zoom telescope, a passively Q-switched 532 nm pulsed laser, a fiber optic delay line, a miniature spectrometer, and a linear ICCD detector. It achieves an electronic gating width under 20 ns. Within a detection range of 1.1–3.0 m, the optimal delay time varies linearly from 20 to 33 ns. Raman signal intensity increases with image intensifier gain, while the signal-to-noise ratio peaks at a gain range of 800–900 V before declining. Furthermore, the effects of focal depth, telescope aperture, laser energy, and integration time were studied. The Raman spectra of lunar minerals were successfully obtained in the lab, confirming the system’s ability to suppress solar background light. This demonstrates the feasibility of in situ Raman spectroscopy on the lunar surface and offers strong technical support for future missions. Full article
(This article belongs to the Special Issue Optical Remote Sensing Payloads, from Design to Flight Test)
Show Figures

Figure 1

16 pages, 3662 KB  
Article
Programmable LED Array for Evaluating Artificial Light Sources to Improve Insect Trapping
by Mohsen Paryavi, Keith Weiser, Michael Melzer, Damon Crook, Chandrika Ramadugu and Daniel M. Jenkins
Insects 2025, 16(2), 170; https://doi.org/10.3390/insects16020170 - 6 Feb 2025
Cited by 2 | Viewed by 3152
Abstract
We developed a programmable LED array to evaluate different wavelength illumination (UV, blue, green, yellow, amber, and red) and modulation schemes to improve catch rates in insect traps. The device can communicate through Bluetooth® with a simple Android app to update the [...] Read more.
We developed a programmable LED array to evaluate different wavelength illumination (UV, blue, green, yellow, amber, and red) and modulation schemes to improve catch rates in insect traps. The device can communicate through Bluetooth® with a simple Android app to update the operational settings to facilitate field experiments, including which LEDs to operate, when to operate (always, night only, or predefined intervals after sunset and/or before sunrise), and to change the LED intensities/modulation during operation. We used the devices to evaluate different wavelengths to improve catches in traps for coconut rhinoceros beetle (CRB; Oryctes rhinoceros Linnaeus) in the field, as well as to evaluate lighting preferences of Asian citrus psyllid (ACP; Diaphorina citri Kuwayama). In both cases, insects were most strongly attracted to constant UV illumination. However, CRB avoided traps with any “visible” wavelength LEDs placed in panels of traps, while ACP was moderately attracted to blue, yellow, and amber. For CRB, UV illumination of cups at the bottom of panel traps reduced catch rates compared to UV illumination higher in the panels of traps, consistent with observations of dorsal orientation towards light observed by other researchers in nocturnal beetles and moths. Finally, we provide some hardware design recommendations to improve the energy efficiency of similar devices for more widespread deployment in insect traps and for controlling the LEDs to evaluate the effects of intensity and modulation with minimal pulsing, which our observations suggest may result in insects avoiding traps. Full article
(This article belongs to the Collection Biocontrol and Behavioral Approaches to Manage Invasive Insects)
Show Figures

Figure 1

17 pages, 3310 KB  
Article
Fully Inkjet-Printed Flexible Graphene–Prussian Blue Platform for Electrochemical Biosensing
by Željka Boček, Marko Zubak and Petar Kassal
Biosensors 2025, 15(1), 28; https://doi.org/10.3390/bios15010028 - 8 Jan 2025
Cited by 7 | Viewed by 2986
Abstract
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work [...] Read more.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene–Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice. The graphene electrode was inkjet-printed on a flexible polyimide substrate and then thermally and photonically treated with intense pulsed light, followed by inkjet printing of a PB nanoparticle suspension. The optimization of post-printing treatment and electrode deposition conditions was performed to yield a platform with minimal sheet resistance and peak potential differences. A thorough study of PB deposition was conducted: the fully inkjet-printed system was compared against sensors with PB deposited chemically or by drop casting the PB suspension on different kinds of carbon electrodes (glassy carbon, commercial screen-printed, and in-house inkjet-printed electrodes). For hydrogen peroxide detection, the fully inkjet-printed platform exhibits excellent sensitivity, a wider linear range, better linearity, and greater stability towards higher concentrations of peroxide than the other tested electrodes. Finally, lactate oxidase was immobilized in a chitosan matrix, and the prepared biosensor exhibited analytical performance comparable to other lactate sensors found in the literature in a wide, physiologically relevant linear range for measuring lactate concentration in sweat. The development of mediator-modified electrodes with a single fabrication technology, as demonstrated here, paves the way for the scalable production of low-cost, wearable, and flexible biosensors. Full article
(This article belongs to the Special Issue Flexible Electronics for Biosensing)
Show Figures

Figure 1

13 pages, 2569 KB  
Article
Ga2O3-Based Optoelectronic Memristor and Memcapacitor Synapse for In-Memory Sensing and Computing Applications
by Hye Jin Lee, Jeong-Hyeon Kim, Seung Hun Lee and Sung-Nam Lee
Nanomaterials 2024, 14(23), 1972; https://doi.org/10.3390/nano14231972 - 8 Dec 2024
Cited by 13 | Viewed by 2261
Abstract
This study presents the fabrication and characterization of a dual-functional Pt/Ga2O3/Pt optoelectronic synaptic device, capable of operating as both a memristor and a memcapacitor. We detail the optimized radio frequency (RF) sputtering parameters, including a base pressure of 8.7 [...] Read more.
This study presents the fabrication and characterization of a dual-functional Pt/Ga2O3/Pt optoelectronic synaptic device, capable of operating as both a memristor and a memcapacitor. We detail the optimized radio frequency (RF) sputtering parameters, including a base pressure of 8.7 × 10−7 Torr, RF power of 100 W, working pressure of 3 mTorr, and the use of high-purity Ga2O3 and Pt targets. These precisely controlled conditions facilitated the formation of an amorphous Ga2O3 thin film, as confirmed by XRD and AFM analyses, which demonstrated notable optical and electrical properties, including light absorption properties in the visible spectrum. The device demonstrated distinct resistive and capacitive switching behaviors, with memory characteristics highly dependent on the wavelength of the applied light. Ultraviolet (365 nm) exposure facilitated long-term memory retention, while visible light (660 nm) supported short-term memory behavior. Paired-pulse facilitation (PPF) measurements revealed that capacitance showed slower decay rates than EPSC, suggesting a more stable memory performance due to the dynamics of carrier trapping and detrapping at the insulator interface. Learning simulations further highlighted the efficiency of these devices, with improved memory retention upon repeated exposure to UV light pulses. Visual encoding simulations on a 3 × 3 pixel array also demonstrated effective multi-level memory storage using varying light intensities. These findings suggest that Ga2O3-based memristor and memcapacitor devices have significant potential for neuromorphic applications, offering tunable memory performance across various wavelengths from ultraviolet to red. Full article
Show Figures

Figure 1

15 pages, 762 KB  
Article
Practical Security of Continuous Variable Measurement- Device-Independent Quantum Key Distribution with Local Local Oscillator
by Yewei Guo, Hang Zhang and Ying Guo
Mathematics 2024, 12(23), 3732; https://doi.org/10.3390/math12233732 - 27 Nov 2024
Cited by 1 | Viewed by 1336
Abstract
Continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) can remove the feasible side-channel attacks on detectors based on the accurate Bell-state measurement (BSM), where an optical amplitude modulator (AM) plays a crucial role in managing the intensity of the transmitted light pulse. However, [...] Read more.
Continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) can remove the feasible side-channel attacks on detectors based on the accurate Bell-state measurement (BSM), where an optical amplitude modulator (AM) plays a crucial role in managing the intensity of the transmitted light pulse. However, the AM-involved practical security has remained elusive as the operating frequency of the AM usually determines the actual secret key rate of the CV-MDI-QKD system. We find that an imperfect pulse generated from the AM at high speed can lead to a challenge to the practical security as a minor intensity change of the light pulse can bring about a potential information leakage. Taking advantage of this flaw, we suggest an attack strategy targeting the embedded AM in CV-MDI-QKD without sending the local oscillator (LO). This attack can damage the AM and thus decrease the estimated secret key rate of the system even when the orthogonal local LO (LLO) scheme is carried out. To assess the practical security risk resulting from the leaked information from the AM, we conduct numerical simulations to demonstrate the influence of the AM on the CVMDI-QKD system. Full article
(This article belongs to the Special Issue Quantum Cryptography and Applications)
Show Figures

Figure 1

28 pages, 11658 KB  
Article
A Novel Battery Temperature-Locking Method Based on Self-Heating Implemented with an Original Driving Circuit While Electric Vehicle Driving: A Numerical Investigation
by Wei Li, Shusheng Xiong and Wei Shi
World Electr. Veh. J. 2024, 15(9), 408; https://doi.org/10.3390/wevj15090408 - 6 Sep 2024
Cited by 1 | Viewed by 1757
Abstract
In extremely cold environments, when battery electric vehicles (BEVs) are navigating urban roads at low speeds, the limited heating capacity of the on-board heat pump system and positive temperature coefficient (PTC) device can lead to an inevitable decline in battery temperature, potentially falling [...] Read more.
In extremely cold environments, when battery electric vehicles (BEVs) are navigating urban roads at low speeds, the limited heating capacity of the on-board heat pump system and positive temperature coefficient (PTC) device can lead to an inevitable decline in battery temperature, potentially falling below its permissible operating range. This situation can subsequently result in vehicle malfunctions and, in severe cases, traffic accidents. Henceforth, a novel battery self-heating method during driving is proposed to maintain battery temperature. This approach is ingeniously embedded within the heating mechanism within the motor driving system without any necessity to alter or modify the existing driving circuitry. In the meantime, the battery voltage can be regulated to prevent it from surpassing the limit, thereby ensuring the battery’s safety. This method introduces the dead zone into the space vector pulse width modulation (SVPWM) algorithm to form the newly proposed dSVPWM algorithm, which successfully changes the direction of the bus current in a PWM period and forms AC, and the amplitude of the battery alternating current (AC) can also be controlled by adjusting the heating intensity defined by the ratio of the dead zone and the compensation vector to the original zero vector. Through the Simulink model of the motor driving system, the temperature hysteresis locking strategy, grounded in the field-oriented control (FOC) method and employing the dSVPWM algorithm, has been confirmed to provide controllable and sufficiently stable motor speed regulation. During the low-speed phase of the China Light Vehicle Test Cycle (CLTC), the battery temperature fluctuation is meticulously maintained within a range of ±0.2 °C. The battery’s minimum temperature has been successfully locked at around −10 °C. In contrast, the battery temperature would decrease by a significant 1.44 °C per minute without the implementation of the temperature-locking strategy. The voltage of the battery pack is always regulated within the range of 255~378 V. It remains within the specified upper and lower thresholds. The battery voltage overrun can be effectively avoided. Full article
Show Figures

Figure 1

Back to TopTop