The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl)
Abstract
1. Introduction
- (i).
- The biocompatibility of P3HT remains somewhat unclear because of several reasons; For example, many studies on the biocompatibility of P3HT use P3HT after oxidizing it (e.g., with an oxygen plasma treatment [4,14] or with Rozen’s reagent [16]), after mixing it with other materials (e.g., with other polymers [9,10,12,23,24,27], carbon nanotubes [28], etc.) or after coating it with other materials (e.g., with fibronectin [6,11,15,21,29,30], polylysine [9,13,28,31,32], polypyrrole [9], etc.). As a consequence, the biocompatibility (or the lack of it) observed in these studies is not entirely that of P3HT. When complications brought about by oxidation, mixing and/or coating of P3HT are not present, the literature on the biocompatibility of P3HT is still contradictory. Some mouse fibroblasts (e.g., L929) were observed to not adhere to and grow onto P3HT films at all [33]. Other mouse fibroblasts (e.g., 3T3) were observed to adhere to and grow onto P3HT films but to show significantly lower viability than on plastic cell culture ware [34]. Roughly 30% of PC-12 cells (originating from rat adrenal pheochromocytoma) died when cultured on P3HT-based nanofibers subjected to photoexcitation and only coating these nanofibers with polypyrrole lowered the number of dead cells [9]. The compatibility of P3HT with human embryonic kidney 293 cells (HEK-293 cells) remains a subject of debate as well. Some studies indicated that P3HT films [30] and P3HT nanoparticles [35] do not affect the viability of HEK-293 cells. Other studies [36,37] show that HEK-293 cells incubated with P3HT nanoparticles exhibit a 20–40% reduction in viability compared to untreated cells. Factors such as the specific cellular model, the way P3HT is presented to the cellular model, and the exact manner P3HT is photoexcited play critical roles in determining the biocompatibility of P3HT. Therefore, the biocompatibility of P3HT-based materials cannot be assumed and requires thorough investigation.
- (ii).
- While an important advantage of P3HT (in comparison with other polymers) is the photoexcitability of this polymer, there are many studies on the biocompatibility of P3HT which were carried out in the absence of a controlled illumination (e.g., [5,12,27,28,33,34,36]). Moreover, when controlled illumination was used, the parameters of the illumination were quite different from one study to the other and not always properly justified. For example, Aziz et al. photoexcited P3HT in contact with human adipose tissue-derived stem cells (hASCs) using light with a wavelength of λ = 532 nm, light power density of LPD = 20 mW/cm2 and using 20 ms (or 400 ms) long pulses distanced at 200 ms (or 4000 ms) from each other [4]. Meanwhile, Lodola et al. photoexcited P3HT in contact with endothelial colony-forming cells (ECFCs) using light with λ = 525 nm, LPD = 40 mW/cm2 and using 30 ms long pulses distanced at 70 ms from each other [6]. Criado-Gonzalez et al. photoexcited nanoporous P3HT thin films in contact with human umbilical vein endothelial cells (HUVECs) with a light with λ = 520 nm, LPD = 110 mW/cm2 and using a 2.5 s long pulse [21]. Interestingly enough, somewhat smaller power density (i.e., 6 mW/cm2) was used to generate ROS with porous P3HT nanoparticles internalized by HUVEC cells [22]. Most of the used LPDs exceed those we experience during normal activities and are far from being comfortable for human eye. They also come with important heat dissipation that explains the short duration of the light pulses used during the investigations.
- (iii).
- In addition to this, a thorough, side-by-side comparison of the biocompatibility of P3HT films and the biocompatibility of P3HT nanoparticles made of the same polymer batch is also missing, although it is widely accepted that the biocompatibility of a material could show dependency on the lateral size of the material [38,39].
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the P3HT Nanoparticles and P3HT-PCBM Nanoparticles
2.3. Preparation of P3HT-Coated Glass Substrates
2.4. Characterization of P3HT-Based Materials
2.5. Cells and Their Culturing
2.6. Investigation of the Biocompatibility of P3HT Nanoparticles and Films
2.7. MTT Assay
3. Results and Discussion
3.1. Properties of the Investigated P3HT-Based Materials
3.2. Viability of bEND.3 Cells in Contact with Different Forms of P3HT, with and Without Illumination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brinkmann, M. Structure and Morphology Control in Thin Films of Regioregular Poly(3-hexylthiophene). J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1218–1233. [Google Scholar] [CrossRef]
- Poelking, C.; Daoulas, K.; Troisi, A.; Andrienko, D. Morphology and Charge Transport in P3HT: A Theorist’s Perspective. In P3HT Revisited—From Molecular Scale to Solar Cell Devices, Advances in Polymer Science; Ludwigs, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 139–180. ISBN 978-3-662-45145-8. [Google Scholar]
- Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597–3602. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.A.; Maver, L.; Giannasi, C.; Niada, S.; Brini, A.T.; Rosa Antognazza, M. Polythiophene-Mediated Light Modulation of Membrane Potential and Calcium Signalling in Human Adipose-Derived Stem/Stromal Cells. J. Mater. Chem. C 2022, 10, 9823–9833. [Google Scholar] [CrossRef] [PubMed]
- Campione, P.; Rizzo, M.G.; Bauso, L.V.; Ielo, I.; Messina, G.M.L.; Calabrese, G. Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film. J. Funct. Biomater. 2025, 16, 10. [Google Scholar] [CrossRef]
- Lodola, F.; Rosti, V.; Tullii, G.; Desii, A.; Tapella, L.; Catarsi, P.; Lim, D.; Moccia, F.; Antognazza, M.R. Conjugated Polymers Optically Regulate the Fate of Endothelial Colony-Forming Cells. Sci. Adv. 2019, 5, eaav4620. [Google Scholar] [CrossRef]
- Negri, S.; Faris, P.; Tullii, G.; Vismara, M.; Pellegata, A.F.; Lodola, F.; Guidetti, G.; Rosti, V.; Antognazza, M.R.; Moccia, F. Conjugated Polymers Mediate Intracellular Ca2+ Signals in Circulating Endothelial Colony Forming Cells through the Reactive Oxygen Species-Dependent Activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Cell Calcium 2022, 101, 102502. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, Y.; Bohra, H.; Zou, J.; Ranjan, V.D.; Zhang, Y.; Zhang, Q.; Wang, M. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS Appl. Mater. Interfaces 2019, 11, 4833–4841. [Google Scholar] [CrossRef]
- Yuan, B.; Aziz, M.R.F.; Li, S.; Wu, J.; Li, D.; Li, R.-K. An Electro-Spun Tri-Component Polymer Biomaterial with Optoelectronic Properties for Neuronal Differentiation. Acta Biomater. 2022, 139, 82–90. [Google Scholar] [CrossRef]
- Wu, C.; Pu, Y.; Zhang, Y.; Liu, X.; Qiao, Z.; Xin, N.; Zhou, T.; Chen, S.; Zeng, M.; Tang, J.; et al. A Bioactive and Photoresponsive Platform for Wireless Electrical Stimulation to Promote Neurogenesis. Adv. Healthc. Mater. 2022, 11, 2201255. [Google Scholar] [CrossRef]
- Yang, K.; Oh, J.Y.; Lee, J.S.; Jin, Y.; Chang, G.-E.; Chae, S.S.; Cheong, E.; Baik, H.K.; Cho, S.-W. Photoactive Poly(3-Hexylthiophene) Nanoweb for Optoelectrical Stimulation to Enhance Neurogenesis of Human Stem Cells. Theranostics 2017, 7, 4591–4604. [Google Scholar] [CrossRef]
- Gattazzo, F.; De Maria, C.; Whulanza, Y.; Taverni, G.; Ahluwalia, A.; Vozzi, G. Realisation and Characterization of Conductive Hollow Fibers for Neuronal Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, M.L.; Colombo, E.; Papaleo, E.D.; Maya-Vetencourt, J.F.; Manfredi, G.; Lanzani, G.; Benfenati, F. A Hybrid P3HT-Graphene Interface for Efficient Photostimulation of Neurons. Carbon 2020, 162, 308–317. [Google Scholar] [CrossRef]
- Feyen, P.; Colombo, E.; Endeman, D.; Nova, M.; Laudato, L.; Martino, N.; Antognazza, M.R.; Lanzani, G.; Benfenati, F.; Ghezzi, D. Light-Evoked Hyperpolarization and Silencing of Neurons by Conjugated Polymers. Sci. Rep. 2016, 6, 22718. [Google Scholar] [CrossRef] [PubMed]
- Lodola, F.; Martino, N.; Tullii, G.; Lanzani, G.; Antognazza, M.R. Conjugated Polymers Mediate Effective Activation of the Mammalian Ion Channel Transient Receptor Potential Vanilloid 1. Sci. Rep. 2017, 7, 8477. [Google Scholar] [CrossRef]
- Barsotti, J.; Perotto, S.; Candini, A.; Colombo, E.; Camargo, F.V.A.; Di Marco, S.; Zangoli, M.; Sardar, S.; Barker, A.J.; D’Andrea, C.; et al. Core–Shell Architecture in Poly(3-Hexylthiophene) Nanoparticles: Tuning of the Photophysical Properties for Enhanced Neuronal Photostimulation. ACS Appl. Mater. Interfaces 2023, 15, 13472–13483. [Google Scholar] [CrossRef]
- Maya-Vetencourt, J.F.; Ghezzi, D.; Antognazza, M.R.; Colombo, E.; Mete, M.; Feyen, P.; Desii, A.; Buschiazzo, A.; Di Paolo, M.; Di Marco, S.; et al. A Fully Organic Retinal Prosthesis Restores Vision in a Rat Model of Degenerative Blindness. Nat. Mater. 2017, 16, 681–689. [Google Scholar] [CrossRef]
- Francia, S.; Di Marco, S.; DiFrancesco, M.L.; Ferrari, D.V.; Shmal, D.; Cavalli, A.; Pertile, G.; Attanasio, M.; Maya-Vetencourt, J.F.; Manfredi, G.; et al. P3HT-Graphene Device for the Restoration of Visual Properties in a Rat Model of Retinitis Pigmentosa. Adv. Mater. Technol. 2023, 8, 2201467. [Google Scholar] [CrossRef]
- Maya-Vetencourt, J.F.; Manfredi, G.; Mete, M.; Colombo, E.; Bramini, M.; Di Marco, S.; Shmal, D.; Mantero, G.; Dipalo, M.; Rocchi, A.; et al. Subretinally Injected Semiconducting Polymer Nanoparticles Rescue Vision in a Rat Model of Retinal Dystrophy. Nat. Nanotechnol. 2020, 15, 698–708. [Google Scholar] [CrossRef]
- Francia, S.; Shmal, D.; Di Marco, S.; Chiaravalli, G.; Maya-Vetencourt, J.F.; Mantero, G.; Michetti, C.; Cupini, S.; Manfredi, G.; DiFrancesco, M.L.; et al. Light-Induced Charge Generation in Polymeric Nanoparticles Restores Vision in Advanced-Stage Retinitis Pigmentosa Rats. Nat. Commun. 2022, 13, 3677. [Google Scholar] [CrossRef]
- Criado-Gonzalez, M.; Bondi, L.; Marzuoli, C.; Gutierrez-Fernandez, E.; Tullii, G.; Ronchi, C.; Gabirondo, E.; Sardon, H.; Rapino, S.; Malferrari, M.; et al. Semiconducting Polymer Nanoporous Thin Films as a Tool to Regulate Intracellular ROS Balance in Endothelial Cells. ACS Appl. Mater. Interfaces 2023, 15, 35973–35985. [Google Scholar] [CrossRef]
- Criado-Gonzalez, M.; Marzuoli, C.; Bondi, L.; Gutierrez-Fernandez, E.; Tullii, G.; Lagonegro, P.; Sanz, O.; Cramer, T.; Antognazza, M.R.; Mecerreyes, D. Porous Semiconducting Polymer Nanoparticles as Intracellular Biophotonic Mediators to Modulate the Reactive Oxygen Species Balance. Nano Lett. 2024, 24, 7244–7251. [Google Scholar] [CrossRef]
- Tullii, G.; Bellacanzone, C.; Comas Rojas, H.; Fumagalli, F.; Ronchi, C.; Villano, A.; Gobbo, F.; Bogar, M.; Sartori, B.; Sassi, P.; et al. Composite Thiophene-Based Nanoparticles: Revisiting the PEDOT:PSS/P3HT Interface for Living-Cell Optical Modulation. ACS Appl. Mater. Interfaces 2025, 17, 22434–22447. [Google Scholar] [CrossRef] [PubMed]
- Natera Abalos, R.; Abdel Aziz, I.; Caverzan, M.; Sosa Lochedino, A.; Ibarra, L.E.; Gallastegui, A.; Chesta, C.A.; Lorena Gómez, M.; Mecerreyes, D.; Palacios, R.E.; et al. Poly(3-hexylthiophene) Nanoparticles as Visible-Light Photoinitiators and Photosensitizers in 3D Printable Acrylic Hydrogels for Photodynamic Therapies. Mater. Horiz. 2025, 12, 2524–2534. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.C.; Jiang, F.; Peshavariya, H.M.; Dusting, G.J. Regulation of Cell Proliferation by NADPH Oxidase-Mediated Signaling: Potential Roles in Tissue Repair, Regenerative Medicine and Tissue Engineering. Pharmacol. Ther. 2009, 122, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.-R.; Ku, S.-Y.; Cho, M.S.; Kim, Y.Y.; Kim, Y.J.; Oh, S.K.; Kim, S.H.; Moon, S.Y.; Choi, Y.M. Reactive Oxygen Species Enhance Differentiation of Human Embryonic Stem Cells into Mesendodermal Lineage. Exp. Mol. Med. 2010, 42, 175–186. [Google Scholar] [CrossRef]
- Ciocca, M.; Febo, C.; Gentile, G.; Orlando, A.; Massoumi, F.; Altana, A.; Cantarella, G.; Zanon, A.; Gaiardo, A.; Lugli, P.; et al. 3D-Bioprinted Light-Sensitive Cell Scaffold Based on Alginate-Conjugated Polymer Nanoparticles for Biophotonics Applications. BioNanoScience 2025, 15, 251. [Google Scholar] [CrossRef]
- Campione, P.; Latte Bovio, C.; Calabrese, G.; Santoro, F.; Messina, G.M.L. P3HT-Based Electroactive Films for In Vitro Neuronal Cell Interfacing. Adv. Mater. Interfaces 2025, 12, 2400776. [Google Scholar] [CrossRef]
- Vaquero, S.; Bossio, C.; Bellani, S.; Martino, N.; Zucchetti, E.; Lanzani, G.; Rosa Antognazza, M. Conjugated Polymers for the Optical Control of the Electrical Activity of Living Cells. J. Mater. Chem. B 2016, 4, 5272–5283. [Google Scholar] [CrossRef]
- Martino, N.; Feyen, P.; Porro, M.; Bossio, C.; Zucchetti, E.; Ghezzi, D.; Benfenati, F.; Lanzani, G.; Antognazza, M.R. Photothermal Cellular Stimulation in Functional Bio-Polymer Interfaces. Sci. Rep. 2015, 5, 8911. [Google Scholar] [CrossRef]
- Milos, F.; Tullii, G.; Gobbo, F.; Lodola, F.; Galeotti, F.; Verpelli, C.; Mayer, D.; Maybeck, V.; Offenhäusser, A.; Antognazza, M.R. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS Appl. Mater. Interfaces 2021, 13, 23438–23451. [Google Scholar] [CrossRef]
- Benfenati, V.; Martino, N.; Antognazza, M.R.; Pistone, A.; Toffanin, S.; Ferroni, S.; Lanzani, G.; Muccini, M. Photostimulation of Whole-Cell Conductance in Primary Rat Neocortical Astrocytes Mediated by Organic Semiconducting Thin Films. Adv. Healthc. Mater. 2014, 3, 392–399. [Google Scholar] [CrossRef]
- Scarpa, G.; Idzko, A.-L.; Götz, S.; Thalhammer, S. Biocompatibility Studies of Functionalized Regioregular Poly(3-Hexylthiophene) Layers for Sensing Applications. Macromol. Biosci. 2010, 10, 378–383. [Google Scholar] [CrossRef]
- Šafaříková, E.; Švihálková Šindlerová, L.; Stříteský, S.; Kubala, L.; Vala, M.; Weiter, M.; Víteček, J. Evaluation and Improvement of Organic Semiconductors’ Biocompatibility towards Fibroblasts and Cardiomyocytes. Sens. Actuators B Chem. 2018, 260, 418–425. [Google Scholar] [CrossRef]
- Zangoli, M.; Maria, F.D.; Zucchetti, E.; Bossio, C.; Antognazza, M.R.; Lanzani, G.; Mazzaro, R.; Corticelli, F.; Baroncini, M.; Barbarella, G. Engineering Thiophene-Based Nanoparticles to Induce Phototransduction in Live Cells under Illumination. Nanoscale 2017, 9, 9202–9209. [Google Scholar] [CrossRef]
- Zucchetti, E.; Zangoli, M.; Bargigia, I.; Bossio, C.; Maria, F.D.; Barbarella, G.; D’Andrea, C.; Lanzani, G.; Antognazza, M.R. Poly(3-Hexylthiophene) Nanoparticles for Biophotonics: Study of the Mutual Interaction with Living Cells. J. Mater. Chem. B 2017, 5, 565–574. [Google Scholar] [CrossRef]
- Bossio, C.; Abdel Aziz, I.; Tullii, G.; Zucchetti, E.; Debellis, D.; Zangoli, M.; Di Maria, F.; Lanzani, G.; Antognazza, M.R. Photocatalytic Activity of Polymer Nanoparticles Modulates Intracellular Calcium Dynamics and Reactive Oxygen Species in HEK-293 Cells. Front. Bioeng. Biotechnol. 2018, 6, 114. [Google Scholar] [CrossRef]
- Watari, F.; Takashi, N.; Yokoyama, A.; Uo, M.; Akasaka, T.; Sato, Y.; Abe, S.; Totsuka, Y.; Tohji, K. Material Nanosizing Effect on Living Organisms: Non-Specific, Biointeractive, Physical Size Effects. J. R. Soc. Interface 2009, 6, S371–S388. [Google Scholar] [CrossRef] [PubMed]
- Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle Size Effects in Biomedical Applications. ACS Appl. Nano Mater. 2021, 4, 6471–6496. [Google Scholar] [CrossRef]
- Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process. Adv. Mater. 2002, 14, 651–655. [Google Scholar] [CrossRef]
- Holmes, N.P.; Burke, K.B.; Sista, P.; Barr, M.; Magurudeniya, H.D.; Stefan, M.C.; Kilcoyne, A.L.D.; Zhou, X.; Dastoor, P.C.; Belcher, W.J. Nano-Domain Behaviour in P3HT:PCBM Nanoparticles, Relating Material Properties to Morphological Changes. Sol. Energy Mater. Sol. Cells 2013, 117, 437–445. [Google Scholar] [CrossRef]
- Antognazza, M.R.; Di Paolo, M.; Ghezzi, D.; Mete, M.; Di Marco, S.; Maya-Vetencourt, J.F.; Maccarone, R.; Desii, A.; Di Fonzo, F.; Bramini, M.; et al. Characterization of a Polymer-Based, Fully Organic Prosthesis for Implantation into the Subretinal Space of the Rat. Adv. Healthc. Mater. 2016, 5, 2271–2282. [Google Scholar] [CrossRef]
- Wittenburg, G.; Lauer, G.; Oswald, S.; Labudde, D.; Franz, C.M. Nanoscale Topographic Changes on Sterilized Glass Surfaces Affect Cell Adhesion and Spreading. J. Biomed. Mater. Res. A 2014, 102, 2755–2766. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xie, W.; Yu, L.; Camacho, L.C.; Nie, C.; Zhang, M.; Haag, R.; Wei, Q. Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells. Small 2020, 16, 1905422. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.J.; Thomas, D.S.; Köhler, A.; Wilson, J.S.; Kim, J.-S.; Ramsdale, C.M.; Sirringhaus, H.; Friend, R.H. Effect of Interchain Interactions on the Absorption and Emission of Poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203. [Google Scholar] [CrossRef]
- Hwang, I.; McNeill, C.R.; Greenham, N.C. Drift-Diffusion Modeling of Photocurrent Transients in Bulk Heterojunction Solar Cells. J. Appl. Phys. 2009, 106, 094506. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Liu, A.C.Y.; Kumar, A.; McNeill, C.R.; Kabra, D. Effect of Regioregularity on Recombination Dynamics in Inverted Bulk Heterojunction Organic Solar Cells. J. Phys. Appl. Phys. 2017, 51, 015501. [Google Scholar] [CrossRef]
- Chen, T.-A.; Wu, X.; Rieke, R.D. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J. Am. Chem. Soc. 1995, 117, 233–244. [Google Scholar] [CrossRef]
- Shrotriya, V.; Ouyang, J.; Tseng, R.J.; Li, G.; Yang, Y. Absorption Spectra Modification in Poly(3-Hexylthiophene):Methanofullerene Blend Thin Films. Chem. Phys. Lett. 2005, 411, 138–143. [Google Scholar] [CrossRef]
- Yamagata, H.; Spano, F.C. Interplay between Intrachain and Interchain Interactions in Semiconducting Polymer Assemblies: The HJ-Aggregate Model. J. Chem. Phys. 2012, 136, 184901. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Xie, H.X.; de Boer, B.; Koster, L.J.A.; Blom, P.W.M. Charge Transport and Photocurrent Generation in Poly(3-Hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2006, 16, 699–708. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An Overview on Nanoparticles Used in Biomedicine and Their Cytotoxicity. J. Drug Deliv. Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
- Fröhlich, E.; Samberger, C.; Kueznik, T.; Absenger, M.; Roblegg, E.; Zimmer, A.; Pieber, T.R. Cytotoxicity of Nanoparticles Independent from Oxidative Stress. J. Toxicol. Sci. 2009, 34, 363–375. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Shadi Mirmohammadi, S.; Sadat Qazi, F.; Saeidirad, M.; KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of Morphology and Size of Nanoscale Drug Carriers on Cellular Uptake and Internalization Process: A Review. RSC Adv. 2023, 13, 80–114. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered Nanoparticles Interacting with Cells: Size Matters. J. Nanobiotechnology 2014, 12, 5. [Google Scholar] [CrossRef]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano–Bio Interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Journeay, W.S.; Laurent, S. Effect of Nanoparticles on the Cell Life Cycle. Chem. Rev. 2011, 111, 3407–3432. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Zhang, W.; Zhu, X.; Zhang, S. An Updated Overview of Some Factors That Influence the Biological Effects of Nanoparticles. Front. Bioeng. Biotechnol. 2023, 11, 1254861. [Google Scholar] [CrossRef] [PubMed]
No. | P3HT-Based Material | Light Stimulation | Notation for the Experimental Group |
---|---|---|---|
1 | no | no | -P3HT film/-light |
2 | no | yes | -P3HT film/+light |
3 | P3HT film | no | +P3HT film/-light |
4 | P3HT film | yes | +P3HT film/+light |
5 | no | no | -P3HT NPs/-light |
6 | no | yes | -P3HT NPs/+light |
7 | P3HT nanoparticles | no | +P3HT NPs/-light |
8 | P3HT nanoparticles | yes | +P3HT NPs/+light |
9 | no | no | -P3HT-PCBM NPs/-light |
10 | no | yes | -P3HT-PCBM NPs/+light |
11 | P3HT-PCBM nanoparticles | no | +P3HT-PCBM NPs/-light |
12 | P3HT-PCBM nanoparticles | yes | +P3HT-PCBM NPs/+light |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudor, D.A.; David, S.; Gheorghiu, M.; Gáspár, S. The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl). Materials 2025, 18, 4671. https://doi.org/10.3390/ma18204671
Tudor DA, David S, Gheorghiu M, Gáspár S. The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl). Materials. 2025; 18(20):4671. https://doi.org/10.3390/ma18204671
Chicago/Turabian StyleTudor, Daniela A., Sorin David, Mihaela Gheorghiu, and Szilveszter Gáspár. 2025. "The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl)" Materials 18, no. 20: 4671. https://doi.org/10.3390/ma18204671
APA StyleTudor, D. A., David, S., Gheorghiu, M., & Gáspár, S. (2025). The Impact of Physical Form on the Biocompatibility of Poly(3-hexylthiophene-2,5-diyl). Materials, 18(20), 4671. https://doi.org/10.3390/ma18204671