Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (673)

Search Parameters:
Keywords = intelligent transport management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 14160 KiB  
Article
Automated Vehicle Classification and Counting in Toll Plazas Using LiDAR-Based Point Cloud Processing and Machine Learning Techniques
by Alexander Campo-Ramírez, Eduardo F. Caicedo-Bravo and Bladimir Bacca-Cortes
Future Transp. 2025, 5(3), 105; https://doi.org/10.3390/futuretransp5030105 - 5 Aug 2025
Abstract
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, [...] Read more.
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, high-resolution cameras, and Doppler radars, with an embedded computing platform for real-time processing and on-site inference. The methodology covers data preprocessing, feature extraction, descriptor encoding, and classification using Support Vector Machines. The system supports eight vehicular categories established by national regulations, which present significant challenges due to the need to differentiate categories by axle count, the presence of lifted axles, and vehicle usage. These distinctions affect toll fees and require a classification strategy beyond geometric profiling. The system achieves 89.9% overall classification accuracy, including 96.2% for light vehicles and 99.0% for vehicles with three or more axles. It also incorporates license plate recognition for complete vehicle traceability. The system was deployed at an operational toll station and has run continuously under real traffic and environmental conditions for over eighteen months. This framework represents a robust, scalable, and strategic technological component within Intelligent Transportation Systems and contributes to data-driven decision-making for road management and toll operations. Full article
Show Figures

Figure 1

25 pages, 5349 KiB  
Review
A Comprehensive Survey of Artificial Intelligence and Robotics for Reducing Carbon Emissions in Supply Chain Management
by Mariem Mrad, Mohamed Amine Frikha and Younes Boujelbene
Logistics 2025, 9(3), 104; https://doi.org/10.3390/logistics9030104 - 4 Aug 2025
Viewed by 223
Abstract
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence [...] Read more.
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence on the applications, benefits, and challenges. Methods: A systematic scoping review was conducted on 23 peer-reviewed studies from the Scopus database, published between 2013 and 2024. Data were systematically extracted and analyzed for publication trends, application domains (e.g., transportation, warehousing), specific AI and robotic technologies, emissions reduction strategies, and implementation challenges. Results: The analysis reveals that AI-driven logistics optimization is the most frequently reported strategy for reducing transportation emissions. At the same time, robotic automation is commonly associated with improved energy efficiency in warehousing. Despite these benefits, the reviewed literature consistently identifies significant barriers, including the high energy demands of AI computation and complexities in data integration. Conclusions: This review confirms the transformative potential of AI and robotics for developing low-carbon supply chains. An evidence-based framework is proposed to guide practical implementation and identify critical gaps, such as the need for standardized validation benchmarks, to direct future research and accelerate the transition to sustainable SCM. Full article
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Viewed by 177
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 235
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 274
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 300
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

15 pages, 1306 KiB  
Article
Risk Perception in Complex Systems: A Comparative Analysis of Process Control and Autonomous Vehicle Failures
by He Wen, Zaman Sajid and Rajeevan Arunthavanathan
AI 2025, 6(8), 164; https://doi.org/10.3390/ai6080164 - 22 Jul 2025
Viewed by 387
Abstract
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and [...] Read more.
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and 30 from autonomous vehicles (AVs), to examine differences in risk triggers, perception paradigms, and interaction failures between humans and artificial intelligence (AI). Results: Our findings reveal that PCS risks are predominantly internal to the system and detectable through deterministic, rule-based mechanisms, whereas AVs’ risks are externally driven and managed via probabilistic, multi-modal sensor fusion. More importantly, despite these architectural differences, both domains exhibit recurring human–AI interaction failures, including over-reliance on automation, mode confusion, and delayed intervention. In the case of PCSs, these failures are historically tied to human–automation interaction; this article extrapolates these patterns to anticipate potential human–AI interaction challenges as AI adaptation increases. Conclusions: This study highlights the need for a hybrid risk perception framework and improved human-centered design to enhance situational awareness and responsiveness. While AI has not yet been implemented in PCS incident studies, this work interprets human–automation failures in these cases as indicative of potential challenges in human–AI interaction that may arise in future AI-integrated process systems. Implications extend to developing safer intelligent systems across industrial and transportation sectors. Full article
Show Figures

Figure 1

21 pages, 730 KiB  
Article
A Multimodal Artificial Intelligence Framework for Intelligent Geospatial Data Validation and Correction
by Lars Skaug and Mehrdad Nojoumian
Inventions 2025, 10(4), 59; https://doi.org/10.3390/inventions10040059 - 22 Jul 2025
Viewed by 299
Abstract
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant [...] Read more.
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant data quality issues persist. The high apparent precision of GPS coordinates belies their actual accuracy as we find that approximately 20% of crash sites need correction—results consistent with existing research. To address this challenge, we present a novel credibility scoring and correction algorithm that leverages a state-of-the-art multimodal large language model (LLM) capable of integrated visual and textual reasoning. Our framework synthesizes information from structured coordinates, crash diagrams, and narrative text, employing advanced artificial intelligence techniques for comprehensive geospatial validation. In addition to the LLM, our system incorporates open geospatial data from Overture Maps, an emerging collaborative mapping initiative, to enhance the spatial accuracy and robustness of the validation process. This solution was developed as part of research leading to a patent for autonomous vehicle routing systems that require high-precision crash location data. Applied to a dataset of 5000 crash reports, our approach systematically identifies records with location discrepancies requiring correction. By uniting the latest developments in multimodal AI and open geospatial data, our solution establishes a foundation for intelligent data validation in electronic reporting systems, with broad implications for automated infrastructure management and autonomous vehicle applications. Full article
Show Figures

Figure 1

40 pages, 1540 KiB  
Review
A Survey on Video Big Data Analytics: Architecture, Technologies, and Open Research Challenges
by Thi-Thu-Trang Do, Quyet-Thang Huynh, Kyungbaek Kim and Van-Quyet Nguyen
Appl. Sci. 2025, 15(14), 8089; https://doi.org/10.3390/app15148089 - 21 Jul 2025
Viewed by 615
Abstract
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains [...] Read more.
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains limited. This paper presents a comprehensive survey of system architectures and enabling technologies in VBDA. It categorizes system architectures into four primary types as follows: centralized, cloud-based infrastructures, edge computing, and hybrid cloud–edge. It also analyzes key enabling technologies, including real-time streaming, scalable distributed processing, intelligent AI models, and advanced storage for managing large-scale multimodal video data. In addition, the study provides a functional taxonomy of core video processing tasks, including object detection, anomaly recognition, and semantic retrieval, and maps these tasks to real-world applications. Based on the survey findings, the paper proposes ViMindXAI, a hybrid AI-driven platform that combines edge and cloud orchestration, adaptive storage, and privacy-aware learning to support scalable and trustworthy video analytics. Our analysis in this survey highlights emerging trends such as the shift toward hybrid cloud–edge architectures, the growing importance of explainable AI and federated learning, and the urgent need for secure and efficient video data management. These findings highlight key directions for designing next-generation VBDA platforms that enhance real-time, data-driven decision-making in domains such as public safety, transportation, and healthcare. These platforms facilitate timely insights, rapid response, and regulatory alignment through scalable and explainable analytics. This work provides a robust conceptual foundation for future research on adaptive and efficient decision-support systems in video-intensive environments. Full article
Show Figures

Figure 1

18 pages, 3004 KiB  
Article
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction
by Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song and Lunming Qin
Mathematics 2025, 13(14), 2316; https://doi.org/10.3390/math13142316 - 21 Jul 2025
Viewed by 310
Abstract
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, [...] Read more.
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting. Full article
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 529
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 687
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 415
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

23 pages, 1388 KiB  
Article
Machine Learning-Based State-of-Health Estimation of Battery Management Systems Using Experimental and Simulation Data
by Anas Al-Rahamneh, Irene Izco, Adrian Serrano-Hernandez and Javier Faulin
Mathematics 2025, 13(14), 2247; https://doi.org/10.3390/math13142247 - 11 Jul 2025
Viewed by 512
Abstract
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric [...] Read more.
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric buses (e-buses), which, despite their environmental benefits, introduce significant operational challenges—chief among them, the management of battery systems, the most critical and complex component of e-buses. The development of efficient and reliable Battery Management Systems (BMSs) is thus central to ensuring battery longevity, operational safety, and overall vehicle performance. This study examines the potential of intelligent BMSs to improve battery health diagnostics, extend service life, and optimize system performance through the integration of simulation, real-time analytics, and advanced deep learning techniques. Particular emphasis is placed on the estimation of battery state of health (SoH), a key metric for predictive maintenance and operational planning. Two widely recognized deep learning models—Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM)—are evaluated for their efficacy in predicting SoH. These models are embedded within a unified framework that combines synthetic data generated by a physics-informed battery simulation model with empirical measurements obtained from real-world battery aging datasets. The proposed approach demonstrates a viable pathway for enhancing SoH prediction by leveraging both simulation-based data augmentation and deep learning. Experimental evaluations confirm the effectiveness of the framework in handling diverse data inputs, thereby supporting more robust and scalable battery management solutions for next-generation electric urban transportation systems. Full article
(This article belongs to the Special Issue Operations Research and Intelligent Computing for System Optimization)
Show Figures

Figure 1

27 pages, 2217 KiB  
Review
From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)
by Arpita Adhikari and Chaudhery Mustansar Hussain
Processes 2025, 13(7), 2207; https://doi.org/10.3390/pr13072207 - 10 Jul 2025
Viewed by 661
Abstract
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have [...] Read more.
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have revolutionized PM2.5 sensing by enabling high-accuracy predictions, and scalable solutions through data-driven approaches. Meanwhile, sustainable green technologies—such as urban greening, phytoremediation, and smart air purification systems—offer eco-friendly, long-term strategies to reduce PM2.5 levels. This review, covering research publications from 2021 to 2025, systematically explores the integration of ML models with conventional sensor networks to enhance pollution forecasting, pollutant source attribution, and intelligent pollutant monitoring. The paper also highlights the convergence of ML and green technologies, including nature-based solutions and AI-driven environmental planning, to support comprehensive air quality management. In addition, the study critically examines integrated policy frameworks and lifecycle-based assessments that enable equitable, sector-specific mitigation strategies across industrial, transportation, energy, and urban planning domains. By bridging the gap between cutting-edge technology and sustainable practices, this study provides a comprehensive roadmap for researchers to combat PM2.5 pollution. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Figure 1

Back to TopTop