Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (856)

Search Parameters:
Keywords = intelligent lighting systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 14160 KiB  
Article
Automated Vehicle Classification and Counting in Toll Plazas Using LiDAR-Based Point Cloud Processing and Machine Learning Techniques
by Alexander Campo-Ramírez, Eduardo F. Caicedo-Bravo and Bladimir Bacca-Cortes
Future Transp. 2025, 5(3), 105; https://doi.org/10.3390/futuretransp5030105 - 5 Aug 2025
Abstract
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, [...] Read more.
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, high-resolution cameras, and Doppler radars, with an embedded computing platform for real-time processing and on-site inference. The methodology covers data preprocessing, feature extraction, descriptor encoding, and classification using Support Vector Machines. The system supports eight vehicular categories established by national regulations, which present significant challenges due to the need to differentiate categories by axle count, the presence of lifted axles, and vehicle usage. These distinctions affect toll fees and require a classification strategy beyond geometric profiling. The system achieves 89.9% overall classification accuracy, including 96.2% for light vehicles and 99.0% for vehicles with three or more axles. It also incorporates license plate recognition for complete vehicle traceability. The system was deployed at an operational toll station and has run continuously under real traffic and environmental conditions for over eighteen months. This framework represents a robust, scalable, and strategic technological component within Intelligent Transportation Systems and contributes to data-driven decision-making for road management and toll operations. Full article
Show Figures

Figure 1

24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

18 pages, 5052 KiB  
Article
Slope Stability Assessment Using an Optuna-TPE-Optimized CatBoost Model
by Liangcheng Wang, Chengliang Zhang, Wei Wang, Tao Deng, Tao Ma and Pei Shuai
Eng 2025, 6(8), 185; https://doi.org/10.3390/eng6080185 - 4 Aug 2025
Abstract
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope [...] Read more.
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope stability classification model grounded in the Optuna-TPE-CatBoost framework. By leveraging the Tree-structured Parzen Estimator (TPE) within the Optuna framework, the model adaptively optimizes CatBoost hyperparameters, thus enhancing prediction accuracy and robustness. It incorporates six key features—slope height, slope angle, unit weight, cohesion, internal friction angle, and the pore pressure ratio—to establish a comprehensive and intelligent assessment system. Utilizing a dataset of 272 slope cases, the model was trained with k-fold cross-validation and dynamic class imbalance strategies to ensure its generalizability. The optimized model achieved impressive performance metrics: an area under the receiver operating characteristic curve (AUC) of 0.926, an accuracy of 0.901, a recall of 0.874, and an F1-score of 0.881, outperforming benchmark algorithms such as XGBoost, LightGBM, and the unoptimized CatBoost. Validation via engineering case studies confirms that the model accurately evaluates slope stability across diverse scenarios and effectively captures the complex interactions between key parameters. This model offers a reliable and interpretable solution for slope stability assessment under complex failure mechanisms. Full article
Show Figures

Figure 1

16 pages, 13514 KiB  
Article
Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
by Runze Song, Haoyu Liu, Yueyang Hu, Man Zhang and Wenyi Sheng
Appl. Sci. 2025, 15(15), 8612; https://doi.org/10.3390/app15158612 (registering DOI) - 4 Aug 2025
Abstract
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the [...] Read more.
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the synchronous acquisition of three types of crop data: visible light images, thermal infrared images, and laser point clouds. The paper innovatively proposed the Difference Structural Similarity Index Measure (DSSIM) index, combined with statistical indicators (average point number difference, average coordinate error), distribution characteristic indicators (Charm distance), and Hausdorff distance to characterize the stability of the system. After 72 consecutive hours of synchronization testing on the timing boards, it was verified that the root mean square error of the synchronization time for each timing board reached the ns level. The synchronous trigger acquisition time for crop parameters under time synchronization was controlled at the microsecond level. Using pepper as the crop sample, 133 consecutive acquisitions were conducted. The acquisition success rate for the three phenotypic data types of pepper samples was 100%, with a DSSIM of approximately 0.96. The average point number difference and average coordinate error were both about 3%, while the Charm distance and Hausdorff distance were only 1.14 mm and 5 mm. This system can provide hardware support for multi-parameter acquisition and data registration in the fast mobile crop phenotype platform, laying a reliable data foundation for crop growth monitoring, intelligent yield analysis, and prediction. Full article
(This article belongs to the Special Issue Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture)
Show Figures

Figure 1

23 pages, 1693 KiB  
Review
From Vision to Illumination: The Promethean Journey of Optical Coherence Tomography in Cardiology
by Angela Buonpane, Giancarlo Trimarchi, Francesca Maria Di Muro, Giulia Nardi, Marco Ciardetti, Michele Alessandro Coceani, Luigi Emilio Pastormerlo, Umberto Paradossi, Sergio Berti, Carlo Trani, Giovanna Liuzzo, Italo Porto, Antonio Maria Leone, Filippo Crea, Francesco Burzotta, Rocco Vergallo and Alberto Ranieri De Caterina
J. Clin. Med. 2025, 14(15), 5451; https://doi.org/10.3390/jcm14155451 - 2 Aug 2025
Viewed by 218
Abstract
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize [...] Read more.
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize atherosclerotic plaques was demonstrated in an in vitro study, and the following year marked the acquisition of the first in vivo OCT image of a human coronary artery. A major milestone followed in 2000, with the first intracoronary imaging in a living patient using time-domain OCT. However, the real inflection point came in 2006 with the advent of frequency-domain OCT, which dramatically improved acquisition speed and image quality, enabling safe and routine imaging in the catheterization lab. With the advent of high-resolution, second-generation frequency-domain systems, OCT has become clinically practical and widely adopted in catheterization laboratories. OCT progressively entered interventional cardiology, first proving its safety and feasibility, then demonstrating superiority over angiography alone in guiding percutaneous coronary interventions and improving outcomes. Today, it plays a central role not only in clinical practice but also in cardiovascular research, enabling precise assessment of plaque biology and response to therapy. With the advent of artificial intelligence and hybrid imaging systems, OCT is now evolving into a true precision-medicine tool—one that not only guides today’s therapies but also opens new frontiers for discovery, with vast potential still waiting to be explored. Tracing its historical evolution from ophthalmology to cardiology, this narrative review highlights the key technological milestones, clinical insights, and future perspectives that position OCT as an indispensable modality in contemporary interventional cardiology. As a guiding thread, the myth of Prometheus is used to symbolize the evolution of OCT—from its illuminating beginnings in ophthalmology to its transformative role in cardiology—as a metaphor for how light, innovation, and knowledge can reveal what was once hidden and redefine clinical practice. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

21 pages, 1681 KiB  
Article
Cross-Modal Complementarity Learning for Fish Feeding Intensity Recognition via Audio–Visual Fusion
by Jian Li, Yanan Wei, Wenkai Ma and Tan Wang
Animals 2025, 15(15), 2245; https://doi.org/10.3390/ani15152245 - 31 Jul 2025
Viewed by 247
Abstract
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems [...] Read more.
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems are severely affected by water turbidity, lighting conditions, and fish occlusion, while acoustic systems suffer from background noise. Although existing studies have attempted to combine acoustic and visual information, most adopt simple feature-level fusion strategies, which fail to fully explore the complementary advantages of the two modalities under different environmental conditions and lack dynamic evaluation mechanisms for modal reliability. To address these problems, we propose the Adaptive Cross-modal Attention Fusion Network (ACAF-Net), a cross-modal complementarity learning framework with a two-stage attention fusion mechanism: (1) a cross-modal enhancement stage that enriches individual representations through Low-rank Bilinear Pooling and learnable fusion weights; (2) an adaptive attention fusion stage that dynamically weights acoustic and visual features based on complementarity and environmental reliability. Our framework incorporates dimension alignment strategies and attention mechanisms to capture temporal–spatial complementarity between acoustic feeding signals and visual behavioral patterns. Extensive experiments demonstrate superior performance compared to single-modal and conventional fusion approaches, with 6.4% accuracy improvement. The results validate the effectiveness of exploiting cross-modal complementarity for underwater behavioral analysis and establish a foundation for intelligent aquaculture monitoring systems. Full article
Show Figures

Figure 1

26 pages, 27333 KiB  
Article
Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
by Naimul Hasan and Bugra Alkan
Machines 2025, 13(8), 658; https://doi.org/10.3390/machines13080658 - 27 Jul 2025
Viewed by 259
Abstract
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. [...] Read more.
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. In response, we present Gest-SAR, a SAR framework that integrates a custom MediaPipe-based gesture classification model to deliver adaptive light-guided pick-to-place assembly instructions and real-time error feedback within a closed-loop interaction instance. In a within-subject study, ten participants completed standardised Duplo-based assembly tasks using Gest-SAR, paper-based manuals, and tablet-based instructions; performance was evaluated via assembly cycle time, selection and placement error rates, cognitive workload assessed by NASA-TLX, and usability test by post-experimental questionnaires. Quantitative results demonstrate that Gest-SAR significantly reduces cycle times with an average of 3.95 min compared to Paper (Mean = 7.89 min, p < 0.01) and Tablet (Mean = 6.99 min, p < 0.01). It also achieved 7 times less average error rates while lowering perceived cognitive workload (p < 0.05 for mental demand) compared to conventional modalities. In total, 90% of the users agreed to prefer SAR over paper and tablet modalities. These outcomes indicate that natural hand-gesture interaction coupled with real-time visual feedback enhances both the efficiency and accuracy of manual assembly. By embedding AI-driven gesture recognition and AR projection into a human-centric assistance system, Gest-SAR advances the collaborative interplay between humans and machines, aligning with Industry 5.0 objectives of resilient, sustainable, and intelligent manufacturing. Full article
(This article belongs to the Special Issue AI-Integrated Advanced Robotics Towards Industry 5.0)
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 448
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

21 pages, 2514 KiB  
Article
Investigations into Picture Defogging Techniques Based on Dark Channel Prior and Retinex Theory
by Lihong Yang, Zhi Zeng, Hang Ge, Yao Li, Shurui Ge and Kai Hu
Appl. Sci. 2025, 15(15), 8319; https://doi.org/10.3390/app15158319 - 26 Jul 2025
Viewed by 174
Abstract
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is [...] Read more.
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is proposed in this paper. The method involves building a two-stage optimization framework: in the first stage, global contrast enhancement is achieved by Retinex preprocessing, which effectively improves the detail information regarding the dark area and the accuracy of the transmittance map and atmospheric light intensity estimation; in the second stage, an a priori compensation model for the dark channel is constructed, and a depth-map-guided transmittance correction mechanism is introduced to obtain a refined transmittance map. At the same time, the atmospheric light intensity is accurately calculated by the Otsu algorithm and edge constraints, which effectively suppresses the halo artifacts and color deviation of the sky region in the dark channel a priori defogging algorithm. The experiments based on self-collected data and public datasets show that the algorithm in this paper presents better detail preservation ability (the visible edge ratio is minimally improved by 0.1305) and color reproduction (the saturated pixel ratio is reduced to about 0) in the subjective evaluation, and the average gradient ratio of the objective indexes reaches a maximum value of 3.8009, which is improved by 36–56% compared with the classical DCP and Tarel algorithms. The method provides a robust image defogging solution for computer vision systems under complex meteorological conditions. Full article
Show Figures

Figure 1

22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 213
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 924
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
29 pages, 7403 KiB  
Article
Development of Topologically Optimized Mobile Robotic System with Machine Learning-Based Energy-Efficient Path Planning Structure
by Hilmi Saygin Sucuoglu
Machines 2025, 13(8), 638; https://doi.org/10.3390/machines13080638 - 22 Jul 2025
Viewed by 413
Abstract
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components [...] Read more.
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components were manufactured using Fused Deposition Modeling (FDM) with ABS (Acrylonitrile Butadiene Styrene) material. A custom power analysis tool was developed to compare energy consumption between the optimized and initial designs. Real-world current consumption data were collected under various terrain conditions, including inclined surfaces, vibration-inducing obstacles, gravel, and direction-altering barriers. Based on this dataset, a path planning model was developed using machine learning algorithms, capable of simultaneously optimizing both energy efficiency and path length to reach a predefined target. Unlike prior works that focus separately on structural optimization or learning-based navigation, this study integrates both domains within a single real-world robotic platform. Performance evaluations demonstrated superior results compared to traditional planning methods, which typically optimize distance or energy independently and lack real-time consumption feedback. The proposed framework reduces total energy consumption by 5.8%, cuts prototyping time by 56%, and extends mission duration by ~20%, highlighting the benefits of jointly applying TO and ML for sustainable and energy-aware robotic design. This integrated approach addresses a critical gap in the literature by demonstrating that mechanical light-weighting and intelligent path planning can be co-optimized in a deployable robotic system using empirical energy data. Full article
(This article belongs to the Special Issue Design and Manufacturing: An Industry 4.0 Perspective)
Show Figures

Figure 1

9 pages, 2459 KiB  
Proceeding Paper
Beyond the Red and Green: Exploring the Capabilities of Smart Traffic Lights in Malaysia
by Mohd Fairuz Muhamad@Mamat, Mohamad Nizam Mustafa, Lee Choon Siang, Amir Izzuddin Hasani Habib and Azimah Mohd Hamdan
Eng. Proc. 2025, 102(1), 4; https://doi.org/10.3390/engproc2025102004 - 22 Jul 2025
Viewed by 278
Abstract
Traffic congestion poses a significant challenge to modern urban environments, impacting both driver satisfaction and road safety. This paper investigates the effectiveness of a smart traffic light system (STL), a solution developed under the Intelligent Transportation System (ITS) initiative by the Ministry of [...] Read more.
Traffic congestion poses a significant challenge to modern urban environments, impacting both driver satisfaction and road safety. This paper investigates the effectiveness of a smart traffic light system (STL), a solution developed under the Intelligent Transportation System (ITS) initiative by the Ministry of Works Malaysia, to address these issues in Malaysia. The system integrates a network of sensors, AI-enabled cameras, and Automatic Number Plate Recognition (ANPR) technology to gather real-time data on traffic volume and vehicle classification at congested intersections. This data is utilized to dynamically adjust traffic light timings, prioritizing traffic flow on heavily congested roads while maintaining safety standards. To evaluate the system’s performance, a comprehensive study was conducted at a selected intersection. Traffic patterns were automatically analyzed using camera systems, and the performance of the STL was compared to that of traditional traffic signal systems. The average travel time from the start to the end intersection was measured and compared. Preliminary findings indicate that the STL significantly reduces travel times and improves overall traffic flow at the intersection, with average travel time reductions ranging from 7.1% to 28.6%, depending on site-specific factors. While further research is necessary to quantify the full extent of the system’s impact, these initial results demonstrate the promising potential of STL technology to enhance urban mobility and more efficient and safer roadways by moving beyond traditional traffic signal functionalities. Full article
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 282
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

25 pages, 5160 KiB  
Review
A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare
by Silvia L. Chaparro-Cárdenas, Julian-Andres Ramirez-Bautista, Juan Terven, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-Gonzalez, Alfonso Ramírez-Pedraza and Edgar A. Chavez-Urbiola
Healthcare 2025, 13(14), 1763; https://doi.org/10.3390/healthcare13141763 - 21 Jul 2025
Viewed by 659
Abstract
Digital transformation is reshaping the healthcare field by streamlining diagnostic workflows and improving disease management. Within this transformation, Digital Twins (DTs), which are virtual representations of physical systems continuously updated by real-world data, stand out for their ability to capture the complexity of [...] Read more.
Digital transformation is reshaping the healthcare field by streamlining diagnostic workflows and improving disease management. Within this transformation, Digital Twins (DTs), which are virtual representations of physical systems continuously updated by real-world data, stand out for their ability to capture the complexity of human physiology and behavior. When coupled with Artificial Intelligence (AI), DTs enable data-driven experimentation, precise diagnostic support, and predictive modeling without posing direct risks to patients. However, their integration into healthcare requires careful consideration of ethical, regulatory, and safety constraints in light of the sensitivity and nonlinear nature of human data. In this review, we examine recent progress in DTs over the past seven years and explore broader trends in AI-augmented DTs, focusing particularly on movement rehabilitation. Our goal is to provide a comprehensive understanding of how DTs bolstered by AI can transform healthcare delivery, medical research, and personalized care. We discuss implementation challenges such as data privacy, clinical validation, and scalability along with opportunities for more efficient, safe, and patient-centered healthcare systems. By addressing these issues, this review highlights key insights and directions for future research to guide the proactive and ethical adoption of DTs in healthcare. Full article
Show Figures

Figure 1

Back to TopTop