A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare
Abstract
1. Introduction
- Digital Twin Prototype (DTP): Developed before a physical product exists. It enables rapid prototyping and testing of design concepts, materials, and predicted behaviors in a virtual setting [6].
- Digital Twin Instance (DTI): Created for an already existing physical product. A DTI establishes a real-time bidirectional communication link between the physical and virtual domains, allowing for continuous monitoring, validation, and updates [7].
- Digital Twin Aggregation (DTA): DTAs focus on analyzing large-scale data from physical products by leveraging intelligent capabilities to optimize design, monitor performance, and draw data-driven conclusions about product functionality and usage [8].
- Mental representation: Formulating an idea of the envisioned product or system.
- Virtual representation: Creating a computer-generated model to replicate behavior under real-world conditions.
- Physical realization: Deploying the optimized design into the real environment.
- Parameter definition: Specifying which characteristics are transferable between physical and virtual entities.
- Connection features: Enabling synchronization between the physical and virtual worlds.
- Data analysis methods: Applying techniques in the virtual environment to interpret and leverage collected data.
- Integrated simulation: Running virtual experiments that inform physical processes and vice versa.
- Process improvement: Refining design, enhancing performance, and building large-scale datasets over time.
- Ethical and legal considerations: Ensuring data privacy, security, and regulatory compliance.
2. Methods
2.1. Phase 1: Recent Technological Progress (Past Seven Years)
2.1.1. Search Strategy
- (“Rehabilitation Robotics” AND “Technology”)
- (“Digital Twin” OR “Digital Twins”)
- (“Digital Twins in Healthcare” OR “Digital Twins” AND “Healthcare”).
2.1.2. Selection and Screening
- The study explicitly integrates AI with DTs in a healthcare or clinical context.
- The research focuses on improving disease screening, diagnosis, or patient monitoring and rehabilitation.
- The publication clearly reports technical features or performance metrics (e.g., accuracy, sensitivity, specificity) of the implemented system.
2.2. Phase 2: Bibliometric Analysis (2018–2024)
2.3. Research Questions
- RQ1: What are the leading technologies used as medical support in diagnostic or monitoring processes involving DTs and AI?
- RQ2: What are the main characteristics of DT applications in the healthcare sector, and how have these been integrated with AI methods?
- RQ3: What benefits can DT and AI offer for future healthcare applications, particularly regarding personalized treatment and predictive analytics?
3. Progress of the Last Seven Years
- Larger and more diverse datasets: Robust and high-quality data are essential for improving AI model generalizability and confidence in patient-specific predictions.
- More extensive testing and clinical trials: Regulatory bodies and healthcare providers demand evidence from controlled studies demonstrating consistent and reliable performance.
- Greater integration of real-world and virtual systems: Truly seamless bidirectional communication remains a challenge, particularly when attempting real-time synchronization between patient data and virtual models.
4. Bibliometric Analysis from 2018 to 2024
4.1. Rehabilitation Robotics and Technology
4.2. Digital Twins in Multiple Sectors
4.3. Digital Twins in Healthcare
Core Journals and Bradford’s Law
5. Applications of Digital Twins in the Health Field: A Critical Analysis
5.1. Critical Considerations: Addressing Data Heterogeneity and Privacy Protection in Healthcare Digital Twins
5.1.1. Critical Analysis of AI-Supported Digital Twin Architectures
5.1.2. Real-Time Communication Protocols for Healthcare Digital Twins
5.1.3. Implementation Challenges and Critical Limitations
5.2. Towards Personalized Medicine: Challenges in Continuous Adaptation and Performance Management with Digital Twins
5.3. From Monitoring to Personalized Treatment: Overcoming Real-Time Update Limitations and Algorithmic Biases
5.4. Innovation in Intervention: Digital Twins in Drug Development and Assisted Rehabilitation
5.5. Continuous Monitoring and Assistance: Integrating DTs, IoT, and AI for Proactive Care
5.6. Future Trends and the Horizon of Digital Twins in Healthcare
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Diao, J.; Wang, D.; Jian, Z.; Wang, Y.; Jiang, Z. Digital-Twin–Based Patient Evaluation during Stroke Rehabilitation. In Proceedings of the ACM on Human–Computer Interaction, San Antonio, TX, USA, 9–12 May 2023; ACM: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- WHO. Communicable and Noncommunicable Diseases, and Mental Health. 2024. Available online: https://www.who.int/our-work/communicable-and-noncommunicable-diseases-and-mental-health (accessed on 22 August 2024).
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Appl. Sci. 2023, 13, 7940. [Google Scholar] [CrossRef]
- Elbasheer, M.; Longo, F.; Mirabelli, G.; Nicoletti, L.; Padovano, A.; Solina, V. Shaping the role of the digital twins for human-robot dyad: Connotations, scenarios, and future perspectives. IET Collab. Intell. Manuf. 2023, 5, e12066. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Harper, K.E.; Ganz, C.; Harper, K.E. Digital Twin Architecture and Standards. IIC J. Innov. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; de J. Lozoya-Santos, J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Mashaly, M. Connecting the twins: A review on digital twin technology & its networking requirements. Procedia Comput. Sci. 2021, 184, 299–305. [Google Scholar] [CrossRef]
- Aydın, O.; Karaarslan, E. OpenAI ChatGPT Generated Literature Review: Digital Twin in Healthcare. SSRN Electron. J. 2022, 2, 22–31. [Google Scholar] [CrossRef]
- Erol, T.; Mendi, A.F.; Doğan, D. The Digital Twin Revolution in Healthcare. In Proceedings of the 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; MacFeely, S. Impactful Digital Twin in the Healthcare Revolution. Big Data Cogn. Comput. 2022, 6, 83. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2024, 11, 959–975. [Google Scholar] [CrossRef]
- Wang, H.; Arulraj, T.; Ippolito, A.; Popel, A.S. From virtual patients to digital twins in immuno-oncology: Lessons learned from mechanistic quantitative systems pharmacology modeling. Digit. Med. 2024, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Laschi, C. Soft robotics for human health. Device 2024, 2, 100432. [Google Scholar] [CrossRef]
- Sosa-Méndez, D.; Cena, C.E.G. Robotic digital twin as a training platform for rehabilitation health personnel. Enfoque UTE 2023, 14, 19–26. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, L.J.; Yang, G.S.; Ma, C.J. A digital twin-driven trajectory tracking control method of a lower-limb exoskeleton. Control Eng. Pract. 2022, 127, 105271. [Google Scholar] [CrossRef]
- Quinn, A.R.J.; Saxby, D.J.; Yang, F.; de Sousa, A.C.C.; Pizzolato, C. A digital twin framework for robust control of robotic-biological systems. J. Biomech. 2023, 152, 111557. [Google Scholar] [CrossRef] [PubMed]
- Aluvalu, R.; Mudrakola, S.; Maheswari V, U.; Kaladevi, A.C.; Sandhya, M.V.; Bhat, C.R. The novel emergency hospital services for patients using digital twins. Microprocess. Microsyst. 2023, 98, 104794. [Google Scholar] [CrossRef]
- Eminaga, O.; Abbas, M.; Kunder, C.; Tolkach, Y.; Han, R.; Brooks, J.D.; Nolley, R.; Semjonow, A.; Boegemann, M.; West, R.; et al. Critical evaluation of artificial intelligent as a digital twin of pathologists for prostate cancer pathology. Nature 2024, 14, 5284. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.; Li, F.; Li, J.; Liu, J.; Wu, X. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Technol. Health Care 2023, 31, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Méndez, D.S.; Cena, C.E.G.; Bedolla-Martínez, D.; González, A.M. Innovative Metaheuristic Optimization Approach with a Bi-Triad for Rehabilitation Exoskeletons. Sensors 2024, 24, 2231. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.R.; Sunny, S.H.; Ahmed, T.; Shahria, T.; Modi, P.P.; Islam, I. Development of A Robot-assisted Telerehabilitation System with Integrated IIoT and Digital Twin. IEEE Access 2023, 11, 70174–70189. [Google Scholar] [CrossRef]
- Maksymenko, K.; Clarke, A.K.; Guerra, I.M.; Deslauriers-Gauthier, S.; Farina, D. A myoelectric digital twin for fast and realistic modelling in deep learning. Nat. Commun. 2023, 14, 1600. [Google Scholar] [CrossRef] [PubMed]
- Martínez, G.M.C.; Avilés, L.A.Z. Design methodology for rehabilitation robots: Application in an exoskeleton for upper limb rehabilitation. Appl. Sci. 2020, 10, 5459. [Google Scholar] [CrossRef]
- Lauer-Schmaltz, M.W.; Kerim, I.; Hansen, J.P.; Gulyás, G.M.; Andersen, H.B. Human Digital Twin-based interactive dashboards for informal caregivers of stroke patients. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 5–7 July 2023; pp. 215–221. [Google Scholar] [CrossRef]
- Tao, K.; Lei, J.; Huang, J. Physical Integrated Digital twin-based Interaction Mechanism of Artificial Intelligence Rehabilitation Robots Combining Visual Cognition and Motion Control. Wirel. Pers. Commun. 2024. [Google Scholar] [CrossRef]
- Shengli, W. Is Human Digital Twin possible? Comput. Methods Programs Biomed. Updat. 2021, 1, 100014. [Google Scholar] [CrossRef]
- Boulos, M.N.K.; Zhang, P. Digital twins: From personalised medicine to precision public health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef]
- Turab, M.; Jamil, S. A Comprehensive Survey of Digital Twins in Healthcare in the Era of Metaverse. BioMedInformatics 2023, 3, 563–584. [Google Scholar] [CrossRef]
- Saeed, M.M.A.; Saeed, R.A.; Ahmed, Z.E. Data Security and Privacy in the Age of AI and Digital Twins; IGI Global: Hershey, PA, USA, 2024. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, W.; Wu, F.; Li, P. Privacy and integrity-preserving data aggregation scheme for wireless sensor networks digital twins. J. Cloud Comput. 2023, 12, 140. [Google Scholar] [CrossRef]
- Meegle. Federated Learning in Digital Twins. 2025. Available online: https://www.meegle.com/en_us/topics/federated-learning/federated-learning-in-digital-twins (accessed on 10 July 2025).
- Hemdan, E.E.D.; Sayed, A. Smart and Secure Healthcare with Digital Twins: A Deep Dive into Blockchain, Federated Learning, and Future Innovations. Algorithms 2025, 18, 401. [Google Scholar] [CrossRef]
- Accenture. Edge Computing. 2024. Available online: https://www.accenture.com/gb-en/insights/cloud/edge-computing-index (accessed on 3 July 2025).
- Zhang, Y. Edge Computing for Digital Twin; Springer: Berlin/Heidelberg, Germany, 2023; pp. 46–50. [Google Scholar] [CrossRef]
- Marques, G.; Viana, J.C.; Oliveira, T.A. Hybrid artificial intelligence in healthcare: A systematic review. Appl. Sci. 2022, 12, 8206. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4793–4813. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Zhang, K.; Dong, H.; Xu, Z. Transformers in medical image analysis: A review. Med. Image Anal. 2022, 81, 102558. [Google Scholar] [CrossRef]
- Jiao, T.; Guo, C.; Feng, X.; Chen, Y.; Song, J. A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications. Comput. Mater. Contin. 2024, 80, 102263. [Google Scholar] [CrossRef]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A survey on neuromorphic computing and neural networks in Hardware. arXiv 2017. [Google Scholar] [CrossRef]
- Li, R.; Zhao, G.; Muir, D.; Ling, Y.; Burelo, K.; Khoe, M.; Wang, D.; Xing, Y.; Qiao, N. Real-time sub-milliwatt epilepsy detection implemented on a spiking neural network edge inference processor. Comput. Biol. Med. 2024, 183, 109225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, G.; Wang, P.; Yu, Z.; Huang, G. Graph Neural Networks in Biomedical Data: A Review. Curr. Bioinform. 2022, 17, bbac090. [Google Scholar] [CrossRef]
- Boll, H.O.; Amirahmadi, A.; Ghazani, M.M.; de Morais, W.O.; de Freitas, E.P.; Soliman, A.; Etminani, F.; Byttner, S.; Recamonde-Mendoza, M. Graph neural networks for clinical risk prediction based on electronic health records: A survey. J. Biomed. Inform. 2024, 151, 104616. [Google Scholar] [CrossRef]
- Iqbal, A.; Khurshaid, T.; Nauman, A.; Rhee, S.-B. Energy-Aware Ultra-Reliable Low-Latency Communication for Healthcare IoT in Beyond 5G and 6G Networks. Sensors 2025, 25, 3474. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 5G technology for healthcare: Features, serviceable pillars, and applications. Intell. Pharm. 2023, 1, 2–10. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, J. A survey on time-sensitive Networking Standards and Applications for Intelligent Driving. Processes 2023, 11, 2211. [Google Scholar] [CrossRef]
- Sharma, G.; Patel, D.; Sachs, J.; Andrade, M.; Farkas, J.; Harmatos, J.; Varga, B.; Bernhard, H.; Muzaffar, R.; Ahmed, M.; et al. Toward Deterministic communications in 6G networks: Stare of the art, open challenges and the way forward. IEEE Access 2023, 114, 106898. [Google Scholar] [CrossRef]
- Rahman, M.S.; Islam, M.A.; Uddin, M.A.; Stea, G. A survey of blockchain-based IoT eHealthcare: Applications, research issues, and challenges, Internet of Things. J. Internet Things 2022, 19, 100551. [Google Scholar] [CrossRef]
- Suhail, S.; Hussain, R.; Jurdak, R.; Oracevic, A.; Salah, K.; Hong, C.S.; Matulevičius, R. Blockchain-Based Digital Twins: Research Trends, Issues, and Future Challenges. ACM Comput. Surv. 2022, 54, 100551. [Google Scholar] [CrossRef]
- Akshatha, P.S.; Dilip Kumar, S.M.; Venugopal, K.R. MQTT Implementations, Open Issues, and Challenges: A Detailed Comparison and Survey. Int. J. Sensors Wirel. Commun. Control 2022, 12, 553–576. [Google Scholar] [CrossRef]
- Lakshmi, G.J.; Ghonge, M.; Obaid, A.J. Cloud based IoT Smart Healthcare System for Remote Patient Monitoring. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, e4. [Google Scholar] [CrossRef]
- Torab-Miandoab, A.; Samad-Soltani, T.; Jodati, A.; Rezaei-Hachesu, P. Interoperability of heterogeneous health information systems: A systematic literature review. BMC Med. Inform. Decis. Mak. 2023, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Lewerenz, S.; Carmo, A.; Martins, H. Interoperability of telemonitoring data in digital health solutions: A scoping review. Front. Digit. Health 2025, 2, 1502260. [Google Scholar] [CrossRef] [PubMed]
- Sujan, M.; Smith-Frazer, C.; Malamateniou, C.; Connor, J.; Gardner, A.; Unsworth, H.; Husain, H. Validation framework for the use of AI in healthcare: Overview of the new British standard BS30440. BMJ Health Care Inform. 2023, 30, e100749. [Google Scholar] [CrossRef] [PubMed]
- FDA. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. 2021. Available online: https://www.fda.gov/media/145022/download (accessed on 3 July 2025).
- Palaniappan, K.; Lin, E.Y.T.; Vogel, S.; Kou, G. Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector. Healthcare 2024, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Topol, E.J. Telemedicine 2020 and the Next Decade. Lancet 2020, 395, 859. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health; Guidance Document; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Wahl, B.; Cossy-Gantner, A.; Germann, S.; Schwalbe, N.R. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob. Health 2018, 3, e000798. [Google Scholar] [CrossRef] [PubMed]
- Barricelli, B.R.; Casiraghi, E.; Gliozzo, J.; Petrini, A.; Valtolina, S. Human Digital Twin for Fitness Management. IEEE Access 2020, 8, 26637–26664. [Google Scholar] [CrossRef]
- Rikhsivoev, M.; Arabboev, M.; Begmatov, S.; Saydiakbarov, S.; Aliyarov, K.; Nosirov, K.; Khamidjonov, Z.; Vakhkhobov, S. Comparative Analysis of AI Methods for Athletes Training. Bull. TUIT Manag. Commun. Technol. 2023, 4, 1–8. [Google Scholar]
- Tong, Y.; Ye, L. Sports health monitoring management system based on artificial intelligence algorithm. Front. Phys. 2023, 11, 1141944. [Google Scholar] [CrossRef]
- Biró, A.; Cuesta-Vargas, A.I.; Szilágyi, L. AI-Assited Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Seriees Datasets. Sensors 2024, 24, 132. [Google Scholar] [CrossRef]
- Kaul, R.; Ossai, C.; Forkan, A.R.M.; Jayaraman, P.P.; Zelcer, J.; Vaughan, S.; Wickramasinghe, N. The role of AI for developing digital twins in healthcare: The case of cancer care. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1480. [Google Scholar] [CrossRef]
- Levshinskii, V.; Galazis, C.; Ovchinnikov, L.; Vesnin, S.; Losev, A.; Goryanin, I. Application of Data Mining and Machine Learning in Microwave Radiometry (MWR). In Biomedical Engineering Systems and Technologies; Springer: Cham, Switzerland, 2020; Volume 1211, pp. 265–288. [Google Scholar] [CrossRef]
- Paksoy, N.; Yagin, F.H. Artificial Intelligence-based Colon Cancer Prediction by Identifying Genomic Biomarkers. Med. Rec. 2022, 4, 196–202. [Google Scholar] [CrossRef]
- Alshuhri, M.S.; Al-Musawi, S.G.; Al-Alwany, A.A.; Uinarni, H.; Rasulova, I.; Rodrigues, P.; Alkhafaji, A.T.; Alshanberi, A.M.; Alawadi, A.H.; Abbas, A.H. Artificial intelligence in cancer diagnosis: Opportunities and challenges. Pathol. Res. Pract. 2024, 253, 154996. [Google Scholar] [CrossRef] [PubMed]
- Levshinskii, V.; Galazis, C.; Losev, A.; Zamechnik, T.; Kharybina, T.; Vesnin, S.; Goryanin, I. Using AI and passive medical radiometry for diagnostics (MWR) of venous diseases. Comput. Methods Programs Biomed. 2022, 215, 106611. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Bautista, J.A.; Hernandez-Zavala, A.; Huerta-Ruelas, J.A.; Hatwagner, M.F.; Chaparro-Cardenas, S.L.; Koczy, L.T. Detection of Human Footprint Alterations by Fuzzy Cognitive Maps Trained with Genetic Algorithm. In Proceedings of the 2018 17th Mexican International Conference on Artificial Intelligence (MICAI 2018), Guadalajara, Mexico, 27 October 2018–2 November 2018; pp. 32–38. [Google Scholar] [CrossRef]
- An, G.; Cockrell, C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Front. Syst. Biol. 2022, 2, 928387. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.T.; Paci, M.; Tervonen, A.; Passini, E.; Koivumäki, J.; Hyttinen, J.; Lenk, K. From Multiscale Biophysics to Digital Twins of Tissues and Organs: Future Opportunities for in-silico Pharmacology. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2024, 10, 576–594. [Google Scholar] [CrossRef]
- Rahman, H.U.; Mahmood, M.H.B.; Khan, M.S.A.; Sama, N.U.; Asaruddin, M.R.; Afzal, M. To explore the pharmacological mechanism of action using digital twin. Int. J. Adv. Appl. Sci. 2022, 9, 52–62. [Google Scholar] [CrossRef]
- Amram, B.; Klempner, U.; Leibler, Y.; Greenbaum, D. In Their Own Image: Ethical Implications of the Rise of Digital Twins/Clones/Simulacra in Healthcare. T Am. J. Bioeth. 2023, 9, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. Intelligent Digital Twins for Personalized Migraine Care. J. Pers. Med. 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, N.; Jayaraman, P.P.; Forkan, A.R.M.; Ulapane, N.; Kaul, R.; Vaughan, S.; Zelcer, J. A Vision for Leveraging the Concept of Digital Twins to Support the Provision of Personalized Cancer Care. IEEE Internet Comput. 2022, 5, 17–24. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; Pietro, G.D.; Esposito, M. The Role of Artificial Intelligence in Future Rehabilitation Services: A Systematic Literature Review. IEEE Access 2023, 11, 11024–11043. [Google Scholar] [CrossRef]
- Abedi, A.; Colella, T.J.F.; Pakosh, M.; Khan, S.S. Artificial intelligence-driven virtual rehabilitation for people living in the community: A scoping review. Npj Digit. Med. 2024, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Ciraolo, D.; Fazio, M.; Calabrò, R.S.; Villari, M.; Celesti, A. Facial expression recognition based on emotional artificial intelligence for tele-rehabilitation. Biomed. Signal Process. Control 2024, 92, 106096. [Google Scholar] [CrossRef]
- Zanitti, M.; Ferens, M.; Ferrarin, A.; Trovò, F.; Miskovic, V.; Prelaj, A.; Shen, M.; Kosta, S. MetaLung: Towards a Secure Architecture for Lung Cancer Patient Care on the Metaverse. In Proceedings of the 2023 IEEE International Conference on Metaverse Computing and Networking Applications (MetaCom 2023), Kyoto, Japan, 26–28 June 2023; pp. 201–208. [Google Scholar] [CrossRef]
- de Boer, B.; Strasser, C.; Mulder, S. Imagining digital twins in healthcare: Designing for values as designing for technical milieus. Prometh. Crit. Stud. Innov. 2022, 38, 67–81. [Google Scholar] [CrossRef]
- Kadari, K.K.; Sichani, A.S.; Moreno, W. A pathway to In-Memory Computing driven Wellness Digital Twin utilizing Remote Patient Monitoring System (WDT-RPMS). Rev. Tecnol. Marcha 2023, 36, 12–22. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Aaas, A.K.F.F.M.E.A.; Shinde, R.B.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Volkov, I.; Radchenko, G.; Tchernykh, A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare. Program. Comput. Softw. 2021, 47, 578–590. [Google Scholar] [CrossRef]
- Yang, Y. Application of wearable devices based on artificial intelligence sensors in sports human health monitoring. Meas. Sensors 2024, 33, 101086. [Google Scholar] [CrossRef]
- Huanxia, W. A method for patient gait real-time monitoring based on powered exoskeleton and digital twin. In Proceedings of the Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022), Chongqing, China, 16–18 September 2023; p. 136. [Google Scholar] [CrossRef]
- Adibi, S.; Rajabifard, A.; Shojaei, D.; Wickramasinghe, N. Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis. Sensors 2024, 24, 2793. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhong, R.Y. A digital twin enabled wearable device for customized healthcare. Digit. Twin 2022, 2, 17. [Google Scholar] [CrossRef]
- Klimo, M.; Kvassay, M.; Kvassayova, N. Digital Twin and Modelling a 3D Human Body in Healthcare. In Proceedings of the 21st International Conference on Emerging eLearning Technologies and Applications (ICETA 2023), Stary Smokovec, Slovakia, 26–27 October 2023; pp. 307–312. [Google Scholar] [CrossRef]
- Sai, S.; Gaur, A.; Hassija, V.; Chamola, V. Artificial Intelligence Empowered Digital Twin and NFT-Based Patient Monitoring and Assisting Framework for Chronic Disease Patients. IEEE Internet Things Mag. 2024, 7, 101–106. [Google Scholar] [CrossRef]
- Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Laaki, H.; Miche, Y.; Tammi, K. Prototyping a Digital Twin for Real Time Remote Control over Mobile Networks: Application of Remote Surgery. IEEE Access 2019, 7, 20235–20336. [Google Scholar] [CrossRef]
- Vallée, A. Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins. J. Med. Internet Res. 2024, 26. [Google Scholar] [CrossRef] [PubMed]
Ref | Device | Goal | Software or Algorithms | Outcomes | Type of DT |
---|---|---|---|---|---|
Sosa-Méndez D. et al. [18] | Upper limb | Assess the upper limb rehabilitator’s function, simulating independent shoulder, elbow, and wrist movements. | Matlab/Simulink and SolidWorks | The robotic device is viable for advanced rehabilitation and can guide early-phase therapies using DTs, reducing costs by minimizing physical acquisitions. | DTP |
Gao L. et al. [19] | Lower Limb Exoskeleton (LLE) | Synchronize motions between virtual and physical environments using the DDPG-PSO algorithm. | DDPG-PSO algorithms | A control strategy achieves a trajectory tracking error below 0.05 between the two environments. | DTA |
Quinn A. et al. [20] | Robotic Knee Manipulator | Validate a robotic knee manipulator considering a DT and physical design. | OpenSim, SimBody, a C++ programming library, developed | configured the manipulator to reduce root-mean-square in flexion, adduction, and internal rotations movements with robotic DT. | DTI |
Aluvalu R. et al. [21] | Emergency Room Symptomatology Identifier | Use an intelligent expert system to match patients’ symptoms with their digital records and relatives’ records in the cloud, aiming to reduce emergency department wait times and improve diagnosis accuracy. | – | Preliminary results show a success rate of over 80%, aiding medical staff and patients with expected diagnostic capabilities from data analysis. | DTP |
Eminaga O. et al. [22] | Prostate cancer | Testing a DT using AI to detect prostate cancer through a database of 2603 images comparing six pathologies with the xPatho system. | xPatho system | xPatho identifies human pathology features but fails to develop a reliable DT for pathologists. | DTA |
Wang W. et al. [23] | Gait Exoskeleton Robot | Relate active exoskeleton data to real patient needs at the simulation level. | – | Reliable exoskeleton gait results were obtained for a specific patient trajectory. | DTP |
Sosa Méndez et al. [24] | Upper Limb Rehabilitation | Optimize the design of an upper limb rehabilitation device using a computerized method to advance to the construction. | SolidWorks and Matlab | The virtual model reduced the mechanism’s initial mass by 49% and proposed significant changes before construction and validation, with a maximum mean error of 0.11 rad. | DTP and DTI |
Rahaman Khan M et al. [25] | Upper Limb Dysfunction | Offers remote therapy via an IIoT platform with a GUI and AR. | ThingWorx IIOT platform. Vuforia. Robots: xArm 5 and DMRbot. Exoskeleton: SREx | Performs 2D and 3D upper limb exercises with AR for telerehabilitation. | DTI |
Maksymenko K et al. [26] | Myoelectrical digital twin | Training deep learning algorithms by simulating large amounts of data | Python API, ANN, Matlab | Cloud-based myoelectric DT simulating patient anatomy, motor unit traits, and muscle features. | DTA |
Cruz Martínez G et al. [27] | Exoskeleton for passive rehabilitation of upper limb | Outline the phases and stages of the trajectory tracking methodology for a 7 DoF exoskeleton and validate it using a DT. | ERMIS exoskeleton, CPU SIEMENS 1500, Matlab - Simulink | Methodology for upper limb rehabilitation achieving 94.97% to 98.56% accuracy in trajectory tracking. | DTI |
Lauer-Schmaltz et al. [28] | Avatar-based Human Digital Twins | Tore sensor information from the patient in a Human Digital Twin (HDT). | Graphical interface with avatar platform | User interface with animated avatar for caregivers to view patient exercises and therapy consultation dates. | DTI |
Tao K. et al. [29] | Robotic interaction mechanism | Use AI to interpret visual stimuli and create adaptive trajectories for motor rehabilitation. | Visual cognition algorithms, facial expressions, and gestures. | AI-based robotic DT system for personalized learning. | DTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaparro-Cárdenas, S.L.; Ramirez-Bautista, J.-A.; Terven, J.; Córdova-Esparza, D.-M.; Romero-Gonzalez, J.-A.; Ramírez-Pedraza, A.; Chavez-Urbiola, E.A. A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare. Healthcare 2025, 13, 1763. https://doi.org/10.3390/healthcare13141763
Chaparro-Cárdenas SL, Ramirez-Bautista J-A, Terven J, Córdova-Esparza D-M, Romero-Gonzalez J-A, Ramírez-Pedraza A, Chavez-Urbiola EA. A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare. Healthcare. 2025; 13(14):1763. https://doi.org/10.3390/healthcare13141763
Chicago/Turabian StyleChaparro-Cárdenas, Silvia L., Julian-Andres Ramirez-Bautista, Juan Terven, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-Gonzalez, Alfonso Ramírez-Pedraza, and Edgar A. Chavez-Urbiola. 2025. "A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare" Healthcare 13, no. 14: 1763. https://doi.org/10.3390/healthcare13141763
APA StyleChaparro-Cárdenas, S. L., Ramirez-Bautista, J.-A., Terven, J., Córdova-Esparza, D.-M., Romero-Gonzalez, J.-A., Ramírez-Pedraza, A., & Chavez-Urbiola, E. A. (2025). A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare. Healthcare, 13(14), 1763. https://doi.org/10.3390/healthcare13141763