Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = intelligent gas sensing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5730 KiB  
Article
A Non-Invasive Diagnostic Platform for Canine Leishmaniasis Using VOC Analysis and Distributed Veterinary Infrastructure
by Marius Iulian Mihailescu, Violeta Elena Simion, Alexandra Ursachi, Varanya Somaudon, Aylen Lisset Jaimes-Mogollón, Cristhian Manuel Durán Acevedo, Carlos Cuastumal, Laura-Madalina Lixandru, Xavier Llauradó, Nezha El Bari, Benachir Bouchikhi, Dhafer Laouini, Mohamed Fethi Diouani, Adam Borhan Eddine Bessou, Nazim Messaoudi, Fayçal Zeroual and Valentina Marascu
Vet. Sci. 2025, 12(8), 732; https://doi.org/10.3390/vetsci12080732 - 4 Aug 2025
Abstract
This article describes a new software architecture for the non-invasive detection of canine leishmaniasis disease. The proposed platform combines gas-sensing technologies, artificial intelligence (AI), and modular cloud-based software components to identify disease-specific volatile organic compounds (VOCs) found in dog breath and hair samples. [...] Read more.
This article describes a new software architecture for the non-invasive detection of canine leishmaniasis disease. The proposed platform combines gas-sensing technologies, artificial intelligence (AI), and modular cloud-based software components to identify disease-specific volatile organic compounds (VOCs) found in dog breath and hair samples. The system, which has a multi-tier architecture that includes data collection, pre-processing, machine learning-based analysis, diagnosis-request processing, and user interfaces for veterinarians, faculty researchers, and dog owners, has been integrated into a Li-ion Power website plug-in. The primary goal of implementing the proposed platform is to detect parasites at any point they are infectious to a host. This includes detecting parasites at all stages of their life cycle, where they can infect a new host. In addition, this is crucial for accurate diagnosis, effective treatment, and preventing further transmission. Full article
Show Figures

Figure 1

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 365
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

22 pages, 1066 KiB  
Article
GA-Synthesized Training Framework for Adaptive Neuro-Fuzzy PID Control in High-Precision SPAD Thermal Management
by Mingjun Kuang, Qingwen Hou, Jindong Wang, Jianping Guo and Zhengjun Wei
Machines 2025, 13(7), 624; https://doi.org/10.3390/machines13070624 - 21 Jul 2025
Viewed by 201
Abstract
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset [...] Read more.
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset is constructed through multi-scenario simulations using settling time, overshoot, and steady-state error as fitness metrics. The genetic algorithm (GA) facilitates broad exploration of the proportional–integral–derivative (PID) controller parameter space while ensuring control stability by discarding low-performing gain combinations. The resulting high-quality dataset is used to train the ANFIS model, enabling real-time, adaptive tuning of PID gains. Simulation results demonstrate that the proposed GA-ANFIS-PID controller significantly enhances dynamic response, robustness, and adaptability over both the conventional Ziegler–Nichols PID and GA-only PID schemes. The controller maintains stability under structural perturbations and abrupt thermal disturbances without the need for offline retuning, owing to the real-time inference capabilities of the ANFIS model. By combining global evolutionary optimization with intelligent online adaptation, this approach improves both accuracy and generalization, offering a practical and scalable solution for SPAD thermal management in demanding environments such as quantum communication, sensing, and single-photon detection platforms. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

33 pages, 725 KiB  
Review
Individual and Synergistic Contributions of GIS, Remote Sensing, and AI in Advancing Climate-Resilient Agriculture
by Cristian-Dumitru Mălinaș, Florica Matei, Ioana Delia Pop, Tudor Sălăgean and Anamaria Mălinaș
AgriEngineering 2025, 7(7), 230; https://doi.org/10.3390/agriengineering7070230 - 10 Jul 2025
Viewed by 637
Abstract
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial [...] Read more.
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial tools (e.g., Geographic Information Systems (GISs) and remote sensing (RS)), as well as artificial intelligence (AI), offer promising methods to support this transition. However, their individual capabilities, limitations, and appropriate applications are not always well understood or clearly delineated in the literature. A common issue is the frequent overlap between GISs and RS, with many studies assessing GIS contributions while concurrently employing RS techniques, without explicitly distinguishing between the two (or vice versa). In this sense, the objective of this review is to conduct a critical analysis of the existing state of the art in terms of the distinct roles, limitations, and complementarities of GISs, RS, and AI in advancing CRA, guided by an original definition we propose for CRA (structured around three key dimensions and their corresponding targets). Furthermore, this review introduces a synthesis matrix that integrates both the individual contributions and the synergistic potential of these technologies. This synergy-focused matrix offers not just a summary, but a practical decision support matrix that could be used by researchers, practitioners, and policymakers in selecting the most appropriate technological configuration for their objectives in CRA-related work. Such support is increasingly needed, especially considering that RS and AI have experienced exponential growth in the past five years, while GISs, despite being the more established “big brother” among these technologies, remain underutilized and is often insufficiently understood in agricultural applications. Full article
Show Figures

Graphical abstract

13 pages, 2065 KiB  
Article
Machine Learning-Based Shelf Life Estimator for Dates Using a Multichannel Gas Sensor: Enhancing Food Security
by Asrar U. Haque, Mohammad Akeef Al Haque, Abdulrahman Alabduladheem, Abubakr Al Mulla, Nasser Almulhim and Ramasamy Srinivasagan
Sensors 2025, 25(13), 4063; https://doi.org/10.3390/s25134063 - 29 Jun 2025
Viewed by 579
Abstract
It is a well-known fact that proper nutrition is essential for human beings to live healthy lives. For thousands of years, it has been considered that dates are one of the best nutrient providers. To have better-quality dates and to enhance the shelf [...] Read more.
It is a well-known fact that proper nutrition is essential for human beings to live healthy lives. For thousands of years, it has been considered that dates are one of the best nutrient providers. To have better-quality dates and to enhance the shelf life of dates, it is vital to preserve dates in optimal conditions that contribute to food security. Hence, it is crucial to know the shelf life of different types of dates. In current practice, shelf life assessment is typically based on manual visual inspection, which is subjective, error-prone, and requires considerable expertise, making it difficult to scale across large storage facilities. Traditional cold storage systems, whilst being capable of monitoring temperature and humidity, lack the intelligence to detect spoilage or predict shelf life in real-time. In this study, we present a novel IoT-based shelf life estimation system that integrates multichannel gas sensors and a lightweight machine learning model deployed on an edge device. Unlike prior approaches, our system captures the real-time emissions of spoilage-related gases (methane, nitrogen dioxide, and carbon monoxide) along with environmental data to classify the freshness of date fruits. The model achieved a classification accuracy of 91.9% and an AUC of 0.98 and was successfully deployed on an Arduino Nano 33 BLE Sense board. This solution offers a low-cost, scalable, and objective method for real-time shelf life prediction. This significantly improves reliability and reduces postharvest losses in the date supply chain. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

34 pages, 7582 KiB  
Article
Proposed SmartBarrel System for Monitoring and Assessment of Wine Fermentation Processes Using IoT Nose and Tongue Devices
by Sotirios Kontogiannis, Meropi Tsoumani, George Kokkonis, Christos Pikridas and Yorgos Kotseridis
Sensors 2025, 25(13), 3877; https://doi.org/10.3390/s25133877 - 21 Jun 2025
Viewed by 1332
Abstract
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These [...] Read more.
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These devices periodically measure key fermentation parameters: the nose monitors gas emissions, while the tongue captures acidity, residual sugar, and color changes. Both utilize low-cost, low-power sensors validated through small-scale fermentation experiments. Beyond the sensory hardware, SmartBarrel includes a robust cloud infrastructure built on open-source Industry 4.0 tools. The system leverages the ThingsBoard platform, supported by a NoSQL Cassandra database, to provide real-time data storage, visualization, and mobile application access. The system also supports adaptive breakpoint alerts and real-time adjustment to the nonlinear dynamics of wine fermentation. The authors developed a novel deep learning model called V-LSTM (Variable-length Long Short-Term Memory) to introduce intelligence to enable predictive analytics. This auto-calibrating architecture supports variable layer depths and cell configurations, enabling accurate forecasting of fermentation metrics. Moreover, the system includes two fuzzy logic modules: a device-level fuzzy controller to estimate alcohol content based on sensor data and a fuzzy encoder that synthetically generates fermentation profiles using a limited set of experimental curves. SmartBarrel experimental results validate the SmartBarrel’s ability to monitor fermentation parameters. Additionally, the implemented models show that the V-LSTM model outperforms existing neural network classifiers and regression models, reducing RMSE loss by at least 45%. Furthermore, the fuzzy alcohol predictor achieved a coefficient of determination (R2) of 0.87, enabling reliable alcohol content estimation without direct alcohol sensing. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Viewed by 820
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

15 pages, 36663 KiB  
Article
Self-Sensing of Piezoelectric Micropumps: Gas Bubble Detection by Artificial Intelligence Methods on Limited Embedded Systems
by Kristjan Axelsson, Mohammadhossien Sheikhsarraf, Christoph Kutter and Martin Richter
Sensors 2025, 25(12), 3784; https://doi.org/10.3390/s25123784 - 17 Jun 2025
Viewed by 402
Abstract
Gas bubbles are one of the main disturbances encountered when dispensing drugs of microliter volumes using portable miniaturized systems based on piezoelectric diaphragm micropumps. The presence of a gas bubble in the pump chamber leads to the inaccurate administration of the required dose [...] Read more.
Gas bubbles are one of the main disturbances encountered when dispensing drugs of microliter volumes using portable miniaturized systems based on piezoelectric diaphragm micropumps. The presence of a gas bubble in the pump chamber leads to the inaccurate administration of the required dose due to its impact on the flowrate. This is particularly important for highly concentrated drugs such as insulin. Different types of sensors are used to detect gas bubbles: inline on the fluidic channels or inside the pump chamber itself. These solutions increase the complexity, size, and cost of the microdosing system. To address these problems, a radically new approach is taken by utilizing the sensing capability of the piezoelectric diaphragm during micropump actuation. This work demonstrates the workflow to build a self-sensing micropump based on artificial intelligence methods on an embedded system. This is completed by the implementation of an electronic circuit that amplifies and samples the loading current of the piezoelectric ceramic with a microcontroller STM32G491RE. Training datasets of 11 micropumps are generated at an automated testbench for gas bubble injections. The training and hyper-parameter optimization of artificial intelligence algorithms from the TensorFlow and scikit-learn libraries are conducted using a grid search approach. The classification accuracy is determined by a cross-training routine, and model deployment on STM32G491RE is conducted utilizing the STM32Cube.AI framework. The finally deployed model on the embedded system has a memory footprint of 15.23 kB, a runtime of 182 µs, and detects gas bubbles with an accuracy of 99.41%. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

26 pages, 2634 KiB  
Article
Optimized Dual-Battery System with Intelligent Auto-Switching for Reliable Soil Nutrient Monitoring in Remote IoT Applications
by Doan Perdana, Pascal Lorenz and Bagus Aditya
J. Sens. Actuator Netw. 2025, 14(3), 53; https://doi.org/10.3390/jsan14030053 - 19 May 2025
Viewed by 833
Abstract
This study introduces a novel dual-battery architecture with intelligent auto-switching control, designed to ensure uninterrupted operation of agricultural sensing systems in environments with unpredictable energy availability. The proposed system integrates Lithium-Sulphur (Li-S) and Lithium-Ion (Li-Ion) batteries with advanced switching algorithms—specifically, the Dynamic Load [...] Read more.
This study introduces a novel dual-battery architecture with intelligent auto-switching control, designed to ensure uninterrupted operation of agricultural sensing systems in environments with unpredictable energy availability. The proposed system integrates Lithium-Sulphur (Li-S) and Lithium-Ion (Li-Ion) batteries with advanced switching algorithms—specifically, the Dynamic Load Balancing–Power Allocation Optimisation (DLB–PAO) and Dynamic Load Balancing–Genetic Algorithm (DLB–GA)—tailored to maximise sensor operational longevity. By optimizing the dual-battery configuration for real-world deployment and conducting comparative evaluations across multiple system designs, this work advances an innovative engineering solution with significant practical implications for sustainable agriculture and remote sensing applications. Unlike conventional single-battery systems or passive redundancy approaches, the architecture introduces active redundancy, adaptive energy management, and fault tolerance, substantially improving operational continuity. A functional prototype was experimentally validated using realistic load profiles, demonstrating seamless battery switching, extended uptime, and enhanced energy reliability. To further assess long-term performance under continuous Internet of Things (IoT) operation, a simulation framework was developed in MATLAB/Simulink, incorporating battery degradation models and empirical sensor load profiles. The experimental results reveal distinct performance improvements. A baseline single-battery system sustains 28 h of operation with 31.2% average reliability, while a conventional dual-battery configuration extends operation to 45 h with 42.6% reliability. Implementing the DLB–PAO algorithm elevates the average reliability to 91.7% over 120 h, whereas the DLB–GA algorithm achieves near-perfect reliability (99.9%) for over 170 h, exhibiting minimal variability (standard deviation: 0.9%). The integration of intelligent auto-switching mechanisms and metaheuristic optimisation algorithms demonstrates a marked enhancement in both reliability and energy efficiency for soil nutrient monitoring systems. This method extends the lifespan of electronic devices while ensuring reliable energy storage over time. It creates a practical foundation for sustainable IoT agricultural systems in areas with limited resources. Full article
Show Figures

Figure 1

27 pages, 6230 KiB  
Review
Critical Perspectives on the Design of Polymeric Materials for Mitigating Thermal Runaway in Lithium-Ion Batteries
by Hangyu Zhou, Jianhong He, Shang Gao, Xuan Cao, Chenghui Li, Qing Zhang, Jialiang Gao, Yongzheng Yao, Chuanwei Zhai, Zhongchun Hu, Hongqing Zhu and Rongxue Kang
Polymers 2025, 17(9), 1227; https://doi.org/10.3390/polym17091227 - 30 Apr 2025
Viewed by 970
Abstract
During the global energy transition, electric vehicles and electrochemical energy storage systems are rapidly gaining popularity, leading to a strong demand for lithium battery technology with high energy density and long lifespan. This technological advancement, however, hinges critically on resolving safety challenges posed [...] Read more.
During the global energy transition, electric vehicles and electrochemical energy storage systems are rapidly gaining popularity, leading to a strong demand for lithium battery technology with high energy density and long lifespan. This technological advancement, however, hinges critically on resolving safety challenges posed by intrinsically reactive components particularly flammable polymeric separators, organic electrolyte systems, and high-capacity electrodes, which collectively elevate risks of thermal runaway (TR) under operational conditions. The strategic integration of smart polymeric materials that enable early detection of TR precursors (e.g., gas evolution, thermal spikes, voltage anomalies) and autonomously interrupt TR propagation chains has emerged as a vital paradigm for next-generation battery safety engineering. This paper begins with the development characteristics of thermal runaway in lithium batteries and analyzes recent breakthroughs in polymer-centric component design, multi-parameter sensing polymers, and TR propagation barriers. The discussion extends to intelligent material systems for emerging battery chemistries (e.g., solid-state, lithium-metal) and extreme operational environments, proposing design frameworks that leverage polymer multifunctionality for hierarchical safety mechanisms. These insights establish foundational principles for developing polymer-integrated lithium batteries that harmonize high energy density with intrinsic safety, addressing critical needs in sustainable energy infrastructure. Full article
(This article belongs to the Special Issue Advanced Polymer Materials for Safe Ion Batteries)
Show Figures

Figure 1

27 pages, 13890 KiB  
Article
A Fast Multi-Scale of Distributed Batch-Learning Growing Neural Gas for Multi-Camera 3D Environmental Map Building
by Chyan Zheng Siow, Azhar Aulia Saputra, Takenori Obo and Naoyuki Kubota
Biomimetics 2024, 9(9), 560; https://doi.org/10.3390/biomimetics9090560 - 16 Sep 2024
Viewed by 1442
Abstract
Biologically inspired intelligent methods have been applied to various sensing systems in order to extract features from a huge size of raw sensing data. For example, point cloud data can be applied to human activity recognition, multi-person tracking, and suspicious person detection, but [...] Read more.
Biologically inspired intelligent methods have been applied to various sensing systems in order to extract features from a huge size of raw sensing data. For example, point cloud data can be applied to human activity recognition, multi-person tracking, and suspicious person detection, but a single RGB-D camera is not enough to perform the above tasks. Therefore, this study propose a 3D environmental map-building method integrating point cloud data measured via multiple RGB-D cameras. First, a fast multi-scale of distributed batch-learning growing neural gas (Fast MS-DBL-GNG) is proposed as a topological feature extraction method in order to reduce computational costs because a single RGB-D camera may output 1 million data. Next, random sample consensus (RANSAC) is applied to integrate two sets of point cloud data using topological features. In order to show the effectiveness of the proposed method, Fast MS-DBL-GNG is applied to perform topological mapping from several point cloud data sets measured in different directions with some overlapping areas included in two images. The experimental results show that the proposed method can extract topological features enough to integrate point cloud data sets, and it runs 14 times faster than the previous GNG method with a 23% reduction in the quantization error. Finally, this paper discuss the advantage and disadvantage of the proposed method through numerical comparison with other methods, and explain future works to improve the proposed method. Full article
(This article belongs to the Special Issue Biomimetics in Intelligent Sensor)
Show Figures

Figure 1

21 pages, 1142 KiB  
Article
A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles
by Haoyi Zhang, Fuquan Zhao, Haokun Song, Han Hao and Zongwei Liu
Sustainability 2024, 16(10), 4090; https://doi.org/10.3390/su16104090 - 13 May 2024
Cited by 2 | Viewed by 1925
Abstract
Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these [...] Read more.
Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact. Full article
(This article belongs to the Special Issue Autonomous Systems and Intelligent Transportation Systems)
Show Figures

Figure 1

17 pages, 21377 KiB  
Article
Structure Optimization and Data Processing Method of Electronic Nose Bionic Chamber for Detecting Ammonia Emissions from Livestock Excrement Fermentation
by Yeping Shi, Yunbo Shi, Haodong Niu, Jinzhou Liu and Pengjiao Sun
Sensors 2024, 24(5), 1628; https://doi.org/10.3390/s24051628 - 1 Mar 2024
Cited by 1 | Viewed by 1808
Abstract
In areas where livestock are bred, there is a demand for accurate, real-time, and stable monitoring of ammonia concentration in the breeding environment. However, existing electronic nose systems have slow response times and limited detection accuracy. In this study, we introduce a novel [...] Read more.
In areas where livestock are bred, there is a demand for accurate, real-time, and stable monitoring of ammonia concentration in the breeding environment. However, existing electronic nose systems have slow response times and limited detection accuracy. In this study, we introduce a novel solution: the bionic chamber construction of the electronic nose is optimized, and the sensor response data in the chamber are analyzed using an intelligent algorithm. We analyze the structure of the biomimetic chamber and the surface airflow of the sensor array to determine the sensing units of the system. The system employs an electronic nose to detect ammonia and ethanol gases in a circulating airflow within a closed box. The captured signals are processed, followed by the application of classification and regression models for data prediction. Our results suggest that the system, leveraging the biomimetic chamber, offers rapid gas detection response times. A high classification prediction accuracy, with a determination coefficient R2 value of 0.99 for single-output regression and over 0.98 for multi-output regression predictions, is achieved by incorporating a backpropagation (BP) neural network algorithm. These outcomes demonstrate the effectiveness of the electronic nose, based on an optimized bionic chamber combined with a BP neural network algorithm, in accurately detecting ammonia emitted during livestock excreta fermentation, satisfying the ammonia detection requirements of breeding farms. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

12 pages, 9781 KiB  
Article
Layer-Dependent Sensing Performance of WS2-Based Gas Sensors
by You Zhou, Sheng Wang, Sichen Xin, Sezin Sayin, Zhiqiang Yi, Zhenyu Li and Mona Zaghloul
Nanomaterials 2024, 14(2), 235; https://doi.org/10.3390/nano14020235 - 22 Jan 2024
Cited by 9 | Viewed by 2824
Abstract
Two-dimensional (2D) materials, such as tungsten disulfide (WS2), have attracted considerable attention for their potential in gas sensing applications, primarily due to their distinctive electrical properties and layer-dependent characteristics. This research explores the impact of the number of WS2 layers [...] Read more.
Two-dimensional (2D) materials, such as tungsten disulfide (WS2), have attracted considerable attention for their potential in gas sensing applications, primarily due to their distinctive electrical properties and layer-dependent characteristics. This research explores the impact of the number of WS2 layers on the ability to detect gases by examining the layer-dependent sensing performance of WS2-based gas sensors. We fabricated gas sensors based on WS2 in both monolayer and multilayer configurations and methodically evaluated their response to various gases, including NO2, CO, NH3, and CH4 at room temperature and 50 degrees Celsius. In contrast to the monolayer counterpart, the multilayer WS2 sensor exhibits enhanced gas sensing performance at higher temperatures. Furthermore, a comprehensive gas monitoring system was constructed employing these WS2-based sensors, integrated with additional electronic components. To facilitate user access to data and receive alerts, sensor data were transmitted to a cloud-based platform for processing and storage. This investigation not only advances our understanding of 2D WS2-based gas sensors but also underscores the importance of layer engineering in tailoring their sensing capabilities for diverse applications. Additionally, the development of a gas monitoring system employing 2D WS2 within this study holds significant promise for future implementation in intelligent, efficient, and cost-effective sensor technologies. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors)
Show Figures

Figure 1

27 pages, 11829 KiB  
Article
Non−Invasive Assessment, Classification, and Prediction of Biophysical Parameters Using Reflectance Hyperspectroscopy
by Renan Falcioni, Glaucio Leboso Alemparte Abrantes dos Santos, Luis Guilherme Teixeira Crusiol, Werner Camargos Antunes, Marcelo Luiz Chicati, Roney Berti de Oliveira, José A. M. Demattê and Marcos Rafael Nanni
Plants 2023, 12(13), 2526; https://doi.org/10.3390/plants12132526 - 2 Jul 2023
Cited by 9 | Viewed by 2787
Abstract
Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV−VIS−NIR−SWIR reflectance hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA [...] Read more.
Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV−VIS−NIR−SWIR reflectance hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA3) concentrations. Through spectroscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield, and biomass, were effectively evaluated based on the interaction of light with leaf structures. The shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations with these growth parameters. When classifying tobacco plants grown under different GA3 concentrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least squares regression (PLSR) models effectively predicted morphological attributes, with R2CV values ranging from 0.81 to 0.87 and RPDP values exceeding 2.09 for all parameters. Based on Pearson’s coefficient XYZ interpolations and HVI algorithms, the NIR−SWIR band combination proved the most effective for predicting height and leaf area, while VIS−NIR was optimal for optimal energy yield, and VIS−VIS was best for predicting biomass. To further corroborate these findings, the SWIR bands for certain morphological characteristic wavelengths selected with s−PLS were most significant for SWIR1 and SWIR2, while i−PLS showed a more uniform distribution in VIS−NIR−SWIR bands. Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for remote sensing measurements to estimate plant morphological parameters. These findings underscore the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring within stationary high-throughput phenotyping systems in greenhouses. These insights align with advancements in digital and precision technology, indicating a promising future for research and innovation in this field. Full article
(This article belongs to the Special Issue Integration of Spectroscopic and Photosynthetic Analyses in Plants)
Show Figures

Figure 1

Back to TopTop