Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = intelligent fruit localization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 19642 KiB  
Article
SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention
by Baishao Zhan, Jiawei Liao, Hailiang Zhang, Wei Luo, Shizhao Wang, Qiangqiang Zeng and Yongxian Lai
Spectrosc. J. 2025, 3(3), 22; https://doi.org/10.3390/spectroscj3030022 - 29 Jul 2025
Viewed by 198
Abstract
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature [...] Read more.
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature extraction under complex optical interference. To address the postharvest latent damage detection challenges in ‘Korla’ pears, this study proposes a collaborative detection framework integrating structured-illumination reflectance imaging (SIRI) with multi-order gated attention mechanisms. Initially, an SIRI optical system was constructed, employing 150 cycles·m−1 spatial frequency modulation and a three-phase demodulation algorithm to extract subtle interference signal variations, thereby generating RT (Relative Transmission) images with significantly enhanced contrast in subsurface damage regions. To improve the detection accuracy of latent damage areas, the MOGA-UNet model was developed with three key innovations: 1. Integrate the lightweight VGG16 encoder structure into the feature extraction network to improve computational efficiency while retaining details. 2. Add a multi-order gated aggregation module at the end of the encoder to realize the fusion of features at different scales through a special convolution method. 3. Embed the channel attention mechanism in the decoding stage to dynamically enhance the weight of feature channels related to damage. Experimental results demonstrate that the proposed model achieves 94.38% mean Intersection over Union (mIoU) and 97.02% Dice coefficient on RT images, outperforming the baseline UNet model by 2.80% with superior segmentation accuracy and boundary localization capabilities compared with mainstream models. This approach provides an efficient and reliable technical solution for intelligent postharvest agricultural product sorting. Full article
Show Figures

Figure 1

25 pages, 6123 KiB  
Article
SDA-YOLO: An Object Detection Method for Peach Fruits in Complex Orchard Environments
by Xudong Lin, Dehao Liao, Zhiguo Du, Bin Wen, Zhihui Wu and Xianzhi Tu
Sensors 2025, 25(14), 4457; https://doi.org/10.3390/s25144457 - 17 Jul 2025
Viewed by 481
Abstract
To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is [...] Read more.
To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is embedded into the SPPF module to construct an SPPF-LSKA fusion module, enhancing multi-scale feature representation for peach targets. Second, an MPDIoU-based bounding box regression loss function replaces CIoU to improve localization accuracy for overlapping and occluded peaches. The DyHead Block is integrated into the detection head to form a DMDetect module, strengthening feature discrimination for small and occluded targets in complex backgrounds. To address insufficient feature fusion flexibility caused by scale variations from occlusion and illumination differences in multi-scale peach detection, a novel Adaptive Multi-Scale Fusion Pyramid (AMFP) module is proposed to enhance the neck network, improving flexibility in processing complex features. Experimental results demonstrate that SDA-YOLO achieves precision (P), recall (R), mAP@0.95, and mAP@0.5:0.95 of 90.8%, 85.4%, 90%, and 62.7%, respectively, surpassing YOLOv11n by 2.7%, 4.8%, 2.7%, and 7.2%. This verifies the method’s robustness in complex orchard environments and provides effective technical support for intelligent fruit harvesting and yield estimation. Full article
Show Figures

Figure 1

20 pages, 3688 KiB  
Article
Intelligent Fruit Localization and Grasping Method Based on YOLO VX Model and 3D Vision
by Zhimin Mei, Yifan Li, Rongbo Zhu and Shucai Wang
Agriculture 2025, 15(14), 1508; https://doi.org/10.3390/agriculture15141508 - 13 Jul 2025
Viewed by 543
Abstract
Recent years have seen significant interest among agricultural researchers in using robotics and machine vision to enhance intelligent orchard harvesting efficiency. This study proposes an improved hybrid framework integrating YOLO VX deep learning, 3D object recognition, and SLAM-based navigation for harvesting ripe fruits [...] Read more.
Recent years have seen significant interest among agricultural researchers in using robotics and machine vision to enhance intelligent orchard harvesting efficiency. This study proposes an improved hybrid framework integrating YOLO VX deep learning, 3D object recognition, and SLAM-based navigation for harvesting ripe fruits in greenhouse environments, achieving servo control of robotic arms with flexible end-effectors. The method comprises three key components: First, a fruit sample database containing varying maturity levels and morphological features is established, interfaced with an optimized YOLO VX model for target fruit identification. Second, a 3D camera acquires the target fruit’s spatial position and orientation data in real time, and these data are stored in the collaborative robot’s microcontroller. Finally, employing binocular calibration and triangulation, the SLAM navigation module guides the robotic arm to the designated picking location via unobstructed target positioning. Comprehensive comparative experiments between the improved YOLO v12n model and earlier versions were conducted to validate its performance. The results demonstrate that the optimized model surpasses traditional recognition and harvesting methods, offering superior target fruit identification response (minimum 30.9ms) and significantly higher accuracy (91.14%). Full article
Show Figures

Figure 1

13 pages, 2266 KiB  
Article
The Detection and Classification of Grape Leaf Diseases with an Improved Hybrid Model Based on Feature Engineering and AI
by Fatih Atesoglu and Harun Bingol
AgriEngineering 2025, 7(7), 228; https://doi.org/10.3390/agriengineering7070228 - 9 Jul 2025
Viewed by 494
Abstract
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results [...] Read more.
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results in image classification. Therefore, the early detection and classification of grape diseases with the latest artificial intelligence techniques and feature reduction techniques was carried out within the scope of this study. The most well-known convolutional neural network (CNN) architectures, texture-based Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) methods, Neighborhood Component Analysis (NCA), feature reduction methods, and machine learning (ML) techniques are the methods used in this article. The proposed hybrid model was compared with two texture-based and four CNN models. The features from the most successful CNN model and texture-based architectures were combined. The NCA method was used to select the best features from the obtained feature map, and the model was classified using the best-known ML classifiers. Our proposed model achieved an accuracy value of 99.1%. This value shows that our model can be used in the detection of grape diseases. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

20 pages, 2474 KiB  
Article
Fruit Freshness Classification and Detection Based on the ResNet-101 Network and Non-Local Attention Mechanism
by Yuan Shu, Jipeng Zhang, Yihan Wang and Yangyang Wei
Foods 2025, 14(11), 1987; https://doi.org/10.3390/foods14111987 - 4 Jun 2025
Viewed by 1038
Abstract
Fruit freshness monitoring represents one of the key research foci in the quality control of fruits and vegetables. Traditional manual inspection methods are characterized by subjectivity and inefficiency, which renders them unsuitable for large-scale and real-time detection demands. Automated detection methods based on [...] Read more.
Fruit freshness monitoring represents one of the key research foci in the quality control of fruits and vegetables. Traditional manual inspection methods are characterized by subjectivity and inefficiency, which renders them unsuitable for large-scale and real-time detection demands. Automated detection methods based on deep learning have increasingly attracted attention. In this study, a fruit freshness classification method based on the ResNet-101 network and a Non-local Attention mechanism is proposed. By embedding a Non-local Attention module into ResNet-101, subtle surface feature variations of the fruit are captured, thereby enhancing the model’s capacity to identify rotten areas and detect variations in color under complex backgrounds. Experimental results show that the improved model achieves a precision of 94.7%, a recall of 94.24%, and an F1-score of 94.24%, outperforming conventional ResNet-101, ResNet-50, and VGG-16 models. In particular, under complex environmental conditions, the model demonstrates significantly improved robustness in image processing. The combination of the Non-local Attention mechanism with the ResNet-101 model can substantially enhance the accuracy and stability of fruit freshness detection, which is applicable to real-time monitoring tasks in intelligent agriculture and smart logistics. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 2012 KiB  
Article
A Synergistic Approach Using Photoacoustic Spectroscopy and AI-Based Image Analysis for Post-Harvest Quality Assessment of Conference Pears
by Mioara Petrus, Cristina Popa, Ana Maria Bratu, Vasile Bercu, Leonard Gebac, Delia-Mihaela Mihai, Ana-Cornelia Butcaru, Florin Stanica and Ruxandra Gogot
Molecules 2025, 30(11), 2431; https://doi.org/10.3390/molecules30112431 - 1 Jun 2025
Cited by 1 | Viewed by 570
Abstract
This study presents a non-invasive approach to monitoring post-harvest fruit quality by applying CO2 laser photoacoustic spectroscopy (CO2LPAS) to study the respiration of “Conference” pears from local and commercially stored (supermarket) sources. Concentrations of ethylene (C2H4), [...] Read more.
This study presents a non-invasive approach to monitoring post-harvest fruit quality by applying CO2 laser photoacoustic spectroscopy (CO2LPAS) to study the respiration of “Conference” pears from local and commercially stored (supermarket) sources. Concentrations of ethylene (C2H4), ethanol (C2H6O), and ammonia (NH3) were continuously monitored under shelf-life conditions. Our results reveal that ethylene emission peaks earlier in supermarket pears, likely due to post-harvest treatments, while ethanol accumulates over time, indicating fermentation-related deterioration. Significantly, ammonia levels increased during the late stages of senescence, suggesting its potential role as a novel biomarker for fruit degradation. The application of CO2LPAS enabled highly sensitive, real-time detection of trace gases without damaging the fruit, offering a powerful alternative to traditional monitoring methods. Additionally, artificial intelligence (AI) models, particularly convolutional neural networks (CNNs), were explored to enhance data interpretation, enabling early detection of ripening and spoilage patterns through volatile compound profiling. This study advances our understanding of post-harvest physiological processes and proposes new strategies for improving storage and distribution practices for climacteric fruits. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

18 pages, 5323 KiB  
Article
Surface Defect and Malformation Characteristics Detection for Fresh Sweet Cherries Based on YOLOv8-DCPF Method
by Yilin Liu, Xiang Han, Longlong Ren, Wei Ma, Baoyou Liu, Changrong Sheng, Yuepeng Song and Qingda Li
Agronomy 2025, 15(5), 1234; https://doi.org/10.3390/agronomy15051234 - 19 May 2025
Cited by 1 | Viewed by 677
Abstract
The damaged and deformed fruits of fresh berries severely restrict the economic value of produce, and accurate identification and grading methods have become a global research hotspot. To address the challenges of rapid and accurate defect detection in intelligent cherry sorting systems, this [...] Read more.
The damaged and deformed fruits of fresh berries severely restrict the economic value of produce, and accurate identification and grading methods have become a global research hotspot. To address the challenges of rapid and accurate defect detection in intelligent cherry sorting systems, this study proposes an enhanced YOLOv8n-based framework for sweet cherry defect identification. First, the dilation-wise residual (DWR) module replaces the conventional C2f structure, allowing for the adaptive capture of both local and global features through multi-scale convolution. This enhances the recognition accuracy of subtle surface defects and large-scale damages on cherries. Second, a channel attention feature fusion mechanism (CAFM) is incorporated at the front end of the detection head, which enhances the model’s ability to identify fine defects on the cherry surface. Additionally, to improve bounding box regression accuracy, powerful-IoU (PIoU) replaces the traditional CIoU loss function. Finally, self-distillation technology is introduced to further improve the mode’s generalization capability and detection accuracy through knowledge transfer. Experimental results show that the YOLOv8-DCPF model achieves precision, mAP, recall, and F1 score rates of 92.6%, 91.2%, 89.4%, and 89.0%, respectively, representing improvements of 6.9%, 5.6%, 6.1%, and 5.0% over the original YOLOv8n baseline network. The proposed model demonstrates high accuracy in cherry defect detection, providing an efficient and precise solution for intelligent cherry sorting in agricultural engineering applications. Full article
Show Figures

Figure 1

39 pages, 6495 KiB  
Article
Intelligent Emergency Logistics Route Model Based on Cellular Space AGNES Clustering and Symmetrical Fruit Fly Optimization Algorithm
by Xiao Zhou, Jun Wang, Wenbing Liu, Fan Jiang and Rui Li
Symmetry 2025, 17(5), 649; https://doi.org/10.3390/sym17050649 - 25 Apr 2025
Viewed by 322
Abstract
In response to the current research status and existing problems of material distribution during major emergency events, we construct an intelligent emergency logistics route model based on cellular space AGNES clustering (AGglomerative NESting clustering) and a symmetrical fruit fly optimization algorithm. We establish [...] Read more.
In response to the current research status and existing problems of material distribution during major emergency events, we construct an intelligent emergency logistics route model based on cellular space AGNES clustering (AGglomerative NESting clustering) and a symmetrical fruit fly optimization algorithm. We establish the cellular algorithm based on urban road nodes and node local spaces, and construct the topology algorithm to implement the cellular space in a way that includes distribution centers and delivery points. In the cellular space, we develop an improved AGNES clustering algorithm based on the cellular space model in accordance with the neighboring relationship between distribution centers and delivery points, which quantifies the spatial clustering relationship between the distribution centers and the delivery points. Based on the clustering model, we construct an emergency logistics route model by using a symmetrical fruit fly optimization algorithm. In line with the symmetrical feature of a logistics route from one destination to another, the traveling distances within one route section are the same in both directions. Thus, we construct the logistics sub-intervals and logistics intervals by using distribution centers and delivery points, and the optimal fruit fly individuals and corresponding fitness functions are searched within the two-level intervals to obtain the emergency logistics routes with the lowest costs. Experimental results show that the proposed algorithm can output the optimal logistics routes for each logistics sub-interval and the entire logistics interval. Compared with the traditional route planning methods Dijkstra’s algorithm and the A* algorithm, it can reduce the cost of route planning and achieve optimization rates of 9.89% and 13.12%, respectively. The t-test proves that the constructed algorithm is superior to the traditional route planning algorithms in saving route costs. Full article
(This article belongs to the Special Issue Symmetry in Computing Algorithms and Applications)
Show Figures

Figure 1

25 pages, 14345 KiB  
Article
Research on an Apple Recognition and Yield Estimation Model Based on the Fusion of Improved YOLOv11 and DeepSORT
by Zhanglei Yan, Yuwei Wu, Wenbo Zhao, Shao Zhang and Xu Li
Agriculture 2025, 15(7), 765; https://doi.org/10.3390/agriculture15070765 - 2 Apr 2025
Cited by 5 | Viewed by 1240
Abstract
Accurate apple yield estimation is essential for effective orchard management, market planning, and ensuring growers’ income. However, complex orchard conditions, such as dense foliage occlusion and overlapping fruits, present challenges to large-scale yield estimation. This study introduces APYOLO, an enhanced apple detection algorithm [...] Read more.
Accurate apple yield estimation is essential for effective orchard management, market planning, and ensuring growers’ income. However, complex orchard conditions, such as dense foliage occlusion and overlapping fruits, present challenges to large-scale yield estimation. This study introduces APYOLO, an enhanced apple detection algorithm based on an improved YOLOv11, integrated with the DeepSORT tracking algorithm to improve both detection accuracy and operational speed. APYOLO incorporates a multi-scale channel attention (MSCA) mechanism and an enhanced multi-scale prior distribution intersection over union (EnMPDIoU) loss function to enhance target localization and recognition under complex environments. Experimental results demonstrate that APYOLO outperforms the original YOLOv11 by improving mAP@0.5, mAP@0.5–0.95, accuracy, and recall by 2.2%, 2.1%, 0.8%, and 2.3%, respectively. Additionally, the combination of a unique ID with the region of line (ROL) strategy in DeepSORT further boosts yield estimation accuracy to 84.45%, surpassing the performance of the unique ID method alone. This study provides a more precise and efficient system for apple yield estimation, offering strong technical support for intelligent and refined orchard management. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 16857 KiB  
Article
D-YOLO: A Lightweight Model for Strawberry Health Detection
by Enhui Wu, Ruijun Ma, Daming Dong and Xiande Zhao
Agriculture 2025, 15(6), 570; https://doi.org/10.3390/agriculture15060570 - 7 Mar 2025
Cited by 4 | Viewed by 1373
Abstract
In complex agricultural settings, accurately and rapidly identifying the growth and health conditions of strawberries remains a formidable challenge. Therefore, this study aims to develop a deep framework, Disease-YOLO (D-YOLO), based on the YOLOv8s model to monitor the health status of strawberries. Key [...] Read more.
In complex agricultural settings, accurately and rapidly identifying the growth and health conditions of strawberries remains a formidable challenge. Therefore, this study aims to develop a deep framework, Disease-YOLO (D-YOLO), based on the YOLOv8s model to monitor the health status of strawberries. Key innovations include (1) replacing the original backbone with MobileNetv3 to optimize computational efficiency; (2) implementing a Bidirectional Feature Pyramid Network for enhanced multi-scale feature fusion; (3) integrating Contextual Transformer attention modules in the neck network to improve lesion localization; and (4) adopting weighted intersection over union loss to address class imbalance. Evaluated on our custom strawberry disease dataset containing 1301 annotated images across three fruit development stages and five plant health states, D-YOLO achieved 89.6% mAP on the train set and 90.5% mAP on the test set while reducing parameters by 72.0% and floating-point operations by 75.1% compared to baseline YOLOv8s. The framework’s balanced performance and computational efficiency surpass conventional models including Faster R-CNN, RetinaNet, YOLOv5s, YOLOv6s, and YOLOv8s in comparative trials. Cross-domain validation on a maize disease dataset demonstrated D-YOLO’s superior generalization with 94.5% mAP, outperforming YOLOv8 by 0.6%. The framework’s balanced performance (89.6% training mAP) and computational efficiency surpass conventional models, including Faster R-CNN, RetinaNet, YOLOv5s, YOLOv6s, and YOLOv8s, in comparative trials. This lightweight solution enables precise, real-time crop health monitoring. The proposed architectural improvements provide a practical paradigm for intelligent disease detection in precision agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 22455 KiB  
Article
Keypoint Detection and 3D Localization Method for Ridge-Cultivated Strawberry Harvesting Robots
by Shuo Dai, Tao Bai and Yunjie Zhao
Agriculture 2025, 15(4), 372; https://doi.org/10.3390/agriculture15040372 - 10 Feb 2025
Cited by 1 | Viewed by 1704
Abstract
With the development of intelligent modern agriculture, strawberry harvesting robots play an increasingly important role in precision agriculture. However, existing vision systems face multiple challenges in complex farmland environments, including fruit occlusion, difficulties in recognizing fruits at varying ripeness levels, and limited real-time [...] Read more.
With the development of intelligent modern agriculture, strawberry harvesting robots play an increasingly important role in precision agriculture. However, existing vision systems face multiple challenges in complex farmland environments, including fruit occlusion, difficulties in recognizing fruits at varying ripeness levels, and limited real-time processing capabilities. This study proposes a keypoint detection and 3D localization method for strawberry fruits utilizing a depth camera to address these challenges. By introducing a Haar Wavelet Downsampling (HWD) module and Gold-YOLO neck, the proposed method achieves significant improvements in feature extraction and detection performance. The integration of the HWD module effectively reduces image noise, enhances feature extraction accuracy, and strengthens the method’s ability to recognize fruit stems. Additionally, incorporating the Gold-YOLO neck structure enhances multi-scale feature fusion, improving detection accuracy and enabling the method to adapt to complex environments. To further accelerate inference speed and enable deployment in an embedded system, Layer-adaptive sparsity for Magnitude-based Pruning (LAMP) technology is employed, significantly reducing redundant parameters and thereby enhancing the lightweight performance of the model. Experimental results demonstrate that the proposed method can accurately identify strawberries at different ripeness stages and exhibits strong robustness under various lighting conditions and complex scenarios, achieving an average precision of 97.3% while reducing model parameters to 38.2% of the original model, significantly improving the efficiency of strawberry fruit localization. This method provides robust technical support for the practical application and widespread adoption of agricultural robots. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 15492 KiB  
Article
D3-YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario
by Ao Li, Chunrui Wang, Tongtong Ji, Qiyang Wang and Tianxue Zhang
Agriculture 2024, 14(12), 2268; https://doi.org/10.3390/agriculture14122268 - 11 Dec 2024
Cited by 12 | Viewed by 1538
Abstract
Accurate and efficient tomato detection is one of the key techniques for intelligent automatic picking in the area of precision agriculture. However, under the facility scenario, existing detection algorithms still have challenging problems such as weak feature extraction ability for occlusion conditions and [...] Read more.
Accurate and efficient tomato detection is one of the key techniques for intelligent automatic picking in the area of precision agriculture. However, under the facility scenario, existing detection algorithms still have challenging problems such as weak feature extraction ability for occlusion conditions and different fruit sizes, low accuracy on edge location, and heavy model parameters. To address these problems, this paper proposed D3-YOLOv10, a lightweight YOLOv10-based detection framework. Initially, a compact dynamic faster network (DyFasterNet) was developed, where multiple adaptive convolution kernels are aggregated to extract local effective features for fruit size adaption. Additionally, the deformable large kernel attention mechanism (D-LKA) was designed for the terminal phase of the neck network by adaptively adjusting the receptive field to focus on irregular tomato deformations and occlusions. Then, to further improve detection boundary accuracy and convergence, a dynamic FM-WIoU regression loss with a scaling factor was proposed. Finally, a knowledge distillation scheme using semantic frequency prompts was developed to optimize the model for lightweight deployment in practical applications. We evaluated the proposed framework using a self-made tomato dataset and designed a two-stage category balancing method based on diffusion models to address the sample class-imbalanced issue. The experimental results demonstrated that the D3-YOLOv10 model achieved an mAP0.5 of 91.8%, with a substantial reduction of 54.0% in parameters and 64.9% in FLOPs, compared to the benchmark model. Meanwhile, the detection speed of 80.1 FPS more effectively meets the demand for real-time tomato detection. This study can effectively contribute to the advancement of smart agriculture research on the detection of fruit targets. Full article
Show Figures

Figure 1

24 pages, 9054 KiB  
Article
Object Detection Algorithm for Citrus Fruits Based on Improved YOLOv5 Model
by Yao Yu, Yucheng Liu, Yuanjiang Li, Changsu Xu and Yunwu Li
Agriculture 2024, 14(10), 1798; https://doi.org/10.3390/agriculture14101798 - 12 Oct 2024
Cited by 4 | Viewed by 2376
Abstract
To address the challenges of missed and false detections in citrus fruit detection caused by environmental factors such as leaf occlusion, fruit overlap, and variations in natural light in hilly and mountainous orchards, this paper proposes a citrus detection model based on an [...] Read more.
To address the challenges of missed and false detections in citrus fruit detection caused by environmental factors such as leaf occlusion, fruit overlap, and variations in natural light in hilly and mountainous orchards, this paper proposes a citrus detection model based on an improved YOLOv5 algorithm. By introducing receptive field convolutions with full 3D weights (RFCF), the model overcomes the issue of parameter sharing in convolution operations, enhancing detection accuracy. A focused linear attention (FLA) module is incorporated to improve the expressive power of the self-attention mechanism while maintaining computational efficiency. Additionally, anchor boxes were re-clustered based on the shape characteristics of target objects, and the boundary box loss function was improved to Foal-EIoU, boosting the model’s localization ability. Experiments conducted on a citrus fruit dataset labeled using LabelImg, collected from hilly and mountainous areas, showed a detection precision of 95.83% and a mean average precision (mAP) of 79.68%. This research not only significantly improves detection performance in complex environments but also provides crucial data support for precision tasks such as orchard localization and intelligent picking, demonstrating strong potential for practical applications in smart agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 5989 KiB  
Article
Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet
by Xingmei Xu, Xiangyu Su, Lei Zhou, Helong Yu and Jian Zhang
Agronomy 2024, 14(8), 1808; https://doi.org/10.3390/agronomy14081808 - 16 Aug 2024
Viewed by 1361
Abstract
The shape and quantity of Lentinus edodes (commonly known as shiitake) fruiting bodies significantly affect their quality and yield. Accurate and rapid segmentation of these fruiting bodies is crucial for quality grading and yield prediction. This study proposed the YOLOv5seg-BotNet, a model for [...] Read more.
The shape and quantity of Lentinus edodes (commonly known as shiitake) fruiting bodies significantly affect their quality and yield. Accurate and rapid segmentation of these fruiting bodies is crucial for quality grading and yield prediction. This study proposed the YOLOv5seg-BotNet, a model for the instance segmentation of Lentinus edodes, to research its application for the mushroom industry. First, the backbone network was replaced with the BoTNet, and the spatial convolutions in the local backbone network were replaced with global self-attention modules to enhance the feature extraction ability. Subsequently, the PANet was adopted to effectively manage and integrate Lentinus edodes images in complex backgrounds at various scales. Finally, the Varifocal Loss function was employed to adjust the weights of different samples, addressing the issues of missed segmentation and mis-segmentation. The enhanced model demonstrated improvements in the precision, recall, Mask_AP, F1-Score, and FPS, achieving 97.58%, 95.74%, 95.90%, 96.65%, and 32.86 frames per second, respectively. These values represented the increases of 2.37%, 4.55%, 4.56%, 3.50%, and 2.61% compared to the original model. The model achieved dual improvements in segmentation accuracy and speed, exhibiting excellent detection and segmentation performance on Lentinus edodes fruiting bodies. This study provided technical fundamentals for future application of image detection and decision-making processes to evaluate mushroom production, including quality grading and intelligent harvesting. Full article
Show Figures

Figure 1

22 pages, 59110 KiB  
Article
Pineapple Detection with YOLOv7-Tiny Network Model Improved via Pruning and a Lightweight Backbone Sub-Network
by Jiehao Li, Yaowen Liu, Chenglin Li, Qunfei Luo and Jiahuan Lu
Remote Sens. 2024, 16(15), 2805; https://doi.org/10.3390/rs16152805 - 31 Jul 2024
Cited by 6 | Viewed by 2254
Abstract
High-complexity network models are challenging to execute on agricultural robots with limited computing capabilities in a large-scale pineapple planting environment in real time. Traditional module replacement often struggles to reduce model complexity while maintaining stable network accuracy effectively. This paper investigates a pineapple [...] Read more.
High-complexity network models are challenging to execute on agricultural robots with limited computing capabilities in a large-scale pineapple planting environment in real time. Traditional module replacement often struggles to reduce model complexity while maintaining stable network accuracy effectively. This paper investigates a pineapple detection framework with a YOLOv7-tiny model improved via pruning and a lightweight backbone sub-network (the RGDP-YOLOv7-tiny model). The ReXNet network is designed to significantly reduce the number of parameters in the YOLOv7-tiny backbone network layer during the group-level pruning process. Meanwhile, to enhance the efficacy of the lightweight network, a GSConv network has been developed and integrated into the neck network, to further diminish the number of parameters. In addition, the detection network incorporates a decoupled head network aimed at separating the tasks of classification and localization, which can enhance the model’s convergence speed. The experimental results indicate that the network before pruning optimization achieved an improvement of 3.0% and 2.2%, in terms of mean average precision and F1 score, respectively. After pruning optimization, the RGDP-YOLOv7-tiny network was compressed to just 2.27 M in parameter count, 4.5 × 109 in computational complexity, and 5.0MB in model size, which were 37.8%, 34.1%, and 40.7% of the original YOLOv7-tiny network, respectively. Concurrently, the mean average precision and F1 score reached 87.9% and 87.4%, respectively, with increases of 0.8% and 1.3%. Ultimately, the model’s generalization performance was validated through heatmap visualization experiments. Overall, the proposed pineapple object detection framework can effectively enhance detection accuracy. In a large-scale fruit cultivation environment, especially under the constraints of hardware limitations and limited computational power in the real-time detection processes of agricultural robots, it facilitates the practical application of artificial intelligence algorithms in agricultural engineering. Full article
Show Figures

Figure 1

Back to TopTop