Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,239)

Search Parameters:
Keywords = integrated assessment and mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9069 KiB  
Article
Prediction of Temperature Distribution with Deep Learning Approaches for SM1 Flame Configuration
by Gökhan Deveci, Özgün Yücel and Ali Bahadır Olcay
Energies 2025, 18(14), 3783; https://doi.org/10.3390/en18143783 (registering DOI) - 17 Jul 2025
Abstract
This study investigates the application of deep learning (DL) techniques for predicting temperature fields in the SM1 swirl-stabilized turbulent non-premixed flame. Two distinct DL approaches were developed using a comprehensive CFD database generated via the steady laminar flamelet model coupled with the SST [...] Read more.
This study investigates the application of deep learning (DL) techniques for predicting temperature fields in the SM1 swirl-stabilized turbulent non-premixed flame. Two distinct DL approaches were developed using a comprehensive CFD database generated via the steady laminar flamelet model coupled with the SST k-ω turbulence model. The first approach employs a fully connected dense neural network to directly map scalar input parameters—fuel velocity, swirl ratio, and equivalence ratio—to high-resolution temperature contour images. In addition, a comparison was made with different deep learning networks, namely Res-Net, EfficientNetB0, and Inception Net V3, to better understand the performance of the model. In the first approach, the results of the Inception V3 model and the developed Dense Model were found to be better than Res-Net and Efficient Net. At the same time, file sizes and usability were examined. The second framework employs a U-Net-based convolutional neural network enhanced by an RGB Fusion preprocessing technique, which integrates multiple scalar fields from non-reacting (cold flow) conditions into composite images, significantly improving spatial feature extraction. The training and validation processes for both models were conducted using 80% of the CFD data for training and 20% for testing, which helped assess their ability to generalize new input conditions. In the secondary approach, similar to the first approach, studies were conducted with different deep learning models, namely Res-Net, Efficient Net, and Inception Net, to evaluate model performance. The U-Net model, which is well developed, stands out with its low error and small file size. The dense network is appropriate for direct parametric analyses, while the image-based U-Net model provides a rapid and scalable option to utilize the cold flow CFD images. This framework can be further refined in future research to estimate more flow factors and tested against experimental measurements for enhanced applicability. Full article
Show Figures

Figure 1

16 pages, 2247 KiB  
Article
Feasibility of Hypotension Prediction Index-Guided Monitoring for Epidural Labor Analgesia: A Randomized Controlled Trial
by Okechukwu Aloziem, Hsing-Hua Sylvia Lin, Kourtney Kelly, Alexandra Nicholas, Ryan C. Romeo, C. Tyler Smith, Ximiao Yu and Grace Lim
J. Clin. Med. 2025, 14(14), 5037; https://doi.org/10.3390/jcm14145037 - 16 Jul 2025
Abstract
Background: Hypotension following epidural labor analgesia (ELA) is its most common complication, affecting approximately 20% of patients and posing risks to both maternal and fetal health. As digital tools and predictive analytics increasingly shape perioperative and obstetric anesthesia practices, real-world implementation data are [...] Read more.
Background: Hypotension following epidural labor analgesia (ELA) is its most common complication, affecting approximately 20% of patients and posing risks to both maternal and fetal health. As digital tools and predictive analytics increasingly shape perioperative and obstetric anesthesia practices, real-world implementation data are needed to guide their integration into clinical care. Current monitoring practices rely on intermittent non-invasive blood pressure (NIBP) measurements, which may delay recognition and treatment of hypotension. The Hypotension Prediction Index (HPI) algorithm uses continuous arterial waveform monitoring to predict hypotension for potentially earlier intervention. This clinical trial evaluated the feasibility, acceptability, and efficacy of continuous HPI-guided treatment in reducing time-to-treatment for ELA-associated hypotension and improving maternal hemodynamics. Methods: This was a prospective randomized controlled trial design involving healthy pregnant individuals receiving ELA. Participants were randomized into two groups: Group CM (conventional monitoring with NIBP) and Group HPI (continuous noninvasive blood pressure monitoring). In Group HPI, hypotension treatment was guided by HPI output; in Group CM, treatment was based on NIBP readings. Feasibility, appropriateness, and acceptability outcomes were assessed among subjects and their bedside nurse using the Acceptability of Intervention Measure (AIM), Intervention Appropriateness Measure (IAM), and Feasibility of Intervention Measure (FIM) instruments. The primary efficacy outcome was time-to-treatment of hypotension, defined as the duration between onset of hypotension and administration of a vasopressor or fluid therapy. This outcome was chosen to evaluate the clinical responsiveness enabled by HPI monitoring. Hypotension is defined as a mean arterial pressure (MAP) < 65 mmHg for more than 1 min in Group CM and an HPI threshold < 75 for more than 1 min in Group HPI. Secondary outcomes included total time in hypotension, vasopressor doses, and hemodynamic parameters. Results: There were 30 patients (Group HPI, n = 16; Group CM, n = 14) included in the final analysis. Subjects and clinicians alike rated the acceptability, appropriateness, and feasibility of the continuous monitoring device highly, with median scores ≥ 4 across all domains, indicating favorable perceptions of the intervention. The cumulative probability of time-to-treatment of hypotension was lower by 75 min after ELA initiation in Group HPI (65%) than Group CM (71%), although this difference was not statistically significant (log-rank p = 0.66). Mixed models indicated trends that Group HPI had higher cardiac output (β = 0.58, 95% confidence interval −0.18 to 1.34, p = 0.13) and lower systemic vascular resistance (β = −97.22, 95% confidence interval −200.84 to 6.40, p = 0.07) throughout the monitoring period. No differences were found in total vasopressor use or intravenous fluid administration. Conclusions: Continuous monitoring and precision hypotension treatment is feasible, appropriate, and acceptable to both patients and clinicians in a labor and delivery setting. These hypothesis-generating results support that HPI-guided treatment may be associated with hemodynamic trends that warrant further investigation to determine definitive efficacy in labor analgesia contexts. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Graphical abstract

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

26 pages, 10906 KiB  
Article
Explainable Machine Learning for Mapping Rainfall-Induced Landslide Thresholds in Italy
by Xiangyu Shao, Wenjun Yan, Chaoying Yan, Wen Zhao, Yixuan Wang, Xia Shi, Hongchang Dong, Tianjiang Li, Junpo Yu, Peng Zuo, Zeyu Zhou and Jiming Jin
Appl. Sci. 2025, 15(14), 7937; https://doi.org/10.3390/app15147937 (registering DOI) - 16 Jul 2025
Abstract
Reliable rainfall thresholds are critical for effective early warning and mitigating the risks of rainfall-induced landslides. Traditional statistical models have limitations in multi-variable modeling, while machine learning models face interpretability challenges. Explainable machine learning methods can address these challenges, but they are rarely [...] Read more.
Reliable rainfall thresholds are critical for effective early warning and mitigating the risks of rainfall-induced landslides. Traditional statistical models have limitations in multi-variable modeling, while machine learning models face interpretability challenges. Explainable machine learning methods can address these challenges, but they are rarely applied to rainfall threshold modeling. In this study, we compared the performance of an empirical statistical model and machine learning models for predicting rainfall-induced landslides in Italy. Based on the optimal model, we visualized refined rainfall thresholds at three probability levels and employed SHAP (Shapley Additive Explanations) to enhance model explainability by quantifying the contribution of each input variable to the predictions. The results demonstrated that the XGBoost model achieved a good performance (AUC = 0.917 ± 0.026) with well-balanced sensitivity (0.792 ± 0.075) and specificity (0.812 ± 0.033) in landslide susceptibility modeling. Hydrological factors, particularly total rainfall, were identified as the dominant triggering mechanisms, with SHAP analysis confirming their substantially greater contribution compared to environmental factors in rainfall threshold modeling. The developed visualized threshold maps revealed distinct spatial variations in landslide-triggering rainfall thresholds across Italy, characterized by lower thresholds in gentle slope areas with moderate annual precipitation and higher thresholds in steep slope and mid-to-low-elevation regions, while these regional differences decreased under high-probability scenarios. This study offered a modeling approach for regional rainfall threshold assessment by integrating multi-variable modeling with explainable methods, contributing to the development of landslide early warning systems. Full article
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

36 pages, 3524 KiB  
Review
Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis
by Zhen Liu, Langyue Deng, Fenghong Wang, Wei Xiong, Tzuhui Wu, Peter Demian and Mohamed Osmani
Systems 2025, 13(7), 595; https://doi.org/10.3390/systems13070595 - 16 Jul 2025
Abstract
At present, the construction industry has not yet fully optimized the integration of the potential of big data. Past studies signaled the potential benefits of integrating building information management (BIM) and big data in the field of sustainable building management (SBM). However, these [...] Read more.
At present, the construction industry has not yet fully optimized the integration of the potential of big data. Past studies signaled the potential benefits of integrating building information management (BIM) and big data in the field of sustainable building management (SBM). However, these studies have a monotonous perspective in identifying the development of BIM and big data applications in SBM. Therefore, this paper aims to explore BIM and big data from various perspectives in the field of SBM to identify the aspects where additional efforts are required and provide insights into future directions, and it adopts a mixed method of quantitative and qualitative analysis, including bibliometric analysis and knowledge mapping, providing a macro-overview of the research status and development trends of BIM and big data integration for SBM from multiple bibliometric perspectives. The results indicate the following: (1) the current studies on BIM and big data integration (BBi)-aided SBM mainly focused on data integration and interoperability for collaboration, development of information technologies and emerging technologies, data analysis and presentation, and green building and sustainability assessment; (2) the longitudinal analysis of three time-slice phases (2010–2014, 2015–2018, and 2019–2024) over the past 15 years indicates that the studies on BBi-aided SBM have been expanded from the application of BIM in construction projects to the integration and interoperability of BIM with information technology, the integration of virtual models with physical buildings, and sustainable management throughout the building life cycle stages; and (3) key research gaps and emerging directions include data integration and model interoperability across the building life cycle, model transferability in the application of technology, and a comprehensive sustainability assessment framework based on the whole building life cycle stages. Full article
(This article belongs to the Special Issue Advancing Project Management Through Digital Transformation)
Show Figures

Figure 1

21 pages, 1415 KiB  
Review
Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
by Su-Ok Hwang, Byeong-Hun Han, Hyo-Gyeom Kim and Baik-Ho Kim
Hydrobiology 2025, 4(3), 19; https://doi.org/10.3390/hydrobiology4030019 - 16 Jul 2025
Abstract
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system [...] Read more.
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system was applied to four representative river basins—the Mississippi, Amazon, Yangtze, and Danube—demonstrating enhanced predictive accuracy (up to 94%), spatial pollution mapping precision (85–95%), and species detection sensitivity (+18–30%) compared to conventional methods. Furthermore, the framework reduces operational costs by up to 40%, highlighting its potential for cost-effective deployment in low-resource regions. Despite its strengths, challenges persist in the areas of regulatory acceptance, data standardization, and digital infrastructure. We recommend legal recognition of AI and eDNA indicators, investment in explainable AI (XAI), and global data harmonization initiatives. The integrated AI-GIS-eDNA framework offers a scalable and policy-relevant tool for adaptive freshwater governance in the Anthropocene. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

28 pages, 8203 KiB  
Article
Sustainable Development of Central and Northern Euboea (Evia) Through the Protection and Revealing of the Area’s Cultural and Environmental Reserve
by Kyriakos Lampropoulos, Anastasia Vythoulka, George Petrakos, Vasiliki (Betty) Charalampopoulou, Anastasia A. Kioussi and Antonia Moropoulou
Land 2025, 14(7), 1467; https://doi.org/10.3390/land14071467 - 15 Jul 2025
Viewed by 151
Abstract
This study explores a strategic framework for the sustainable development of Northern and Central Euboea (Evia), Greece, through the preservation and promotion of cultural and environmental assets. This research aims to redirect tourism flows from overdeveloped coastal zones to underutilized inland areas by [...] Read more.
This study explores a strategic framework for the sustainable development of Northern and Central Euboea (Evia), Greece, through the preservation and promotion of cultural and environmental assets. This research aims to redirect tourism flows from overdeveloped coastal zones to underutilized inland areas by leveraging local heritage and natural resources. The methodology was developed within the context of the AEI research project and combines bibliographic research, stakeholder consultation, GIS analysis, and socioeconomic assessment. Based on this framework, a series of thematic cultural routes and agritourism initiatives were designed to enhance regional attractiveness and resilience. The study proposes the utilization of ICT tools such as GIS-based mapping, a digital development platform, and an online tourism portal to document, manage, and promote key assets. The socioeconomic impact of the proposed interventions was evaluated using an input–output model, revealing that each EUR 1 million invested in the region is expected to generate EUR 650,000 in local GDP and create 14 new jobs. The results underscore the potential of alternative tourism to stimulate inclusive and sustainable growth, particularly in post-disaster rural regions. This integrated approach can serve as a model for other territories facing similar environmental, economic, and demographic challenges. Full article
Show Figures

Figure 1

40 pages, 14060 KiB  
Article
Integrated Taxonomy Discovers Four New Species of Grypoctonus Speiser, 1928 (Diptera: Asilidae) from China
by Haoyue Zhou, Ding Yang and Xuankun Li
Insects 2025, 16(7), 722; https://doi.org/10.3390/insects16070722 - 15 Jul 2025
Viewed by 77
Abstract
The genus Grypoctonus Speiser, 1928 (Diptera: Asilidae) is a fuzzy-looking assassin fly, and adults have only been observed in autumn and winter. Currently containing four described species, this genus is readily distinguished from other Chinese asilids by the presence of two r-m crossveins. [...] Read more.
The genus Grypoctonus Speiser, 1928 (Diptera: Asilidae) is a fuzzy-looking assassin fly, and adults have only been observed in autumn and winter. Currently containing four described species, this genus is readily distinguished from other Chinese asilids by the presence of two r-m crossveins. Through integrative taxonomic analysis of over 200 specimens from multiple Chinese provinces, we combined morphological assessment with DNA barcoding and four species delimitation methods (ABGD, ASAP, mPTP, and GMYC). Four species are newly described: G. aureus sp. nov., G. sagittatus sp. nov., G. solarius sp. nov., and G. yongshani sp. nov. (the latter described solely from morphological examination of historical specimens). Genetic analyses revealed distinct barcoding gaps, with an interspecific distance of 1.38–7.07% versus an intraspecific distance of no more than 0.92%. We revised the generic diagnosis, provided a distribution map, and a revised key to all known species of Grypoctonus. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

13 pages, 665 KiB  
Review
Emerging Technologies for Injury Identification in Sports Settings: A Systematic Review
by Luke Canavan Dignam, Lisa Ryan, Michael McCann and Ed Daly
Appl. Sci. 2025, 15(14), 7874; https://doi.org/10.3390/app15147874 - 14 Jul 2025
Viewed by 164
Abstract
Sport injury recognition is rapidly evolving with the integration of new emerging technologies. This systematic review aims to identify and evaluate technologies capable of detecting injuries during sports participation. A comprehensive search of PUBMED, Sport Discus, Web of Science, and ScienceDirect was conducted [...] Read more.
Sport injury recognition is rapidly evolving with the integration of new emerging technologies. This systematic review aims to identify and evaluate technologies capable of detecting injuries during sports participation. A comprehensive search of PUBMED, Sport Discus, Web of Science, and ScienceDirect was conducted following the PRISMA 2020 guidelines. The review was registered on PROSPERO (CRD42024608964). Inclusion criteria focused on prospective studies involving athletes of all ages, evaluating tools which are utilised to identify injuries in sports settings. The review included research between 2014 and 2024; retrospective, conceptual, and fatigue-focused studies were excluded. Risk of bias was assessed using the Critical Appraisal Skills Program (CASP) tool. Of 4283 records screened, 70 full-text articles were assessed, with 21 studies meeting the final inclusion criteria. The technologies were grouped into advanced imaging (Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DFI), and Quantitative Susceptibility Mapping (QSM), with biomarkers (i.e., Neurofilament Light (NfL), Tau protein, Glial Fibrillary Acidic Protein (GFAP), Salivary MicroRNAs, and Immunoglobulin A (IgA), and sideline assessments (i.e., the King–Devick test, KD-Eye Tracking, modified Balance Error Scoring System (mBESS), DETECT, ImPACT structured video analysis, and Instrumented Mouth Guards (iMGs)), which demonstrated feasibility for immediate sideline identification of injury. Future research should improve methodological rigour through larger, diverse samples and controlled designs, with real-world testing environments. Following this guidance, the application of emerging technologies may assist medical staff, coaches, and national governing bodies in identifying injuries in a sports setting, providing real-time assessment. Full article
(This article belongs to the Special Issue Sports Injuries: Prevention and Rehabilitation)
Show Figures

Figure 1

21 pages, 7366 KiB  
Article
A GIS-Based Safe System Approach for Risk Assessment in the Transportation of Dangerous Goods: A Case Study in Italian Regions
by Angela Maria Tomasoni, Abdellatif Soussi, Enrico Zero and Roberto Sacile
Systems 2025, 13(7), 580; https://doi.org/10.3390/systems13070580 - 14 Jul 2025
Viewed by 172
Abstract
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and [...] Read more.
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and management. Utilizing Geographic Information Systems (GIS), meteorological data, and material-specific information, the research develops a data-driven approach to identify analyze, evaluate, and mitigate risks associated with DGT. The main objectives include monitoring dangerous goods flows to identify critical risk areas, optimizing emergency response using a shared model, and providing targeted training for stakeholders involved in DGT. The study leverages Information and Communication Technologies (ICT) to systematically collect, interpret, and evaluate data, producing detailed risk scenario maps. These maps are instrumental in identifying vulnerable areas, predicting potential accidents, and assessing the effectiveness of risk management strategies. This work introduces an innovative GIS-based risk assessment model that combines static and dynamic data to address various aspects of DGT, including hazard identification, accident prevention, and real-time decision support. The results contribute to enhancing safety protocols and provide actionable insights for policymakers and practitioners aiming to improve the resilience of technological systems for road transport networks handling dangerous goods. Full article
(This article belongs to the Special Issue Application of the Safe System Approach to Transportation)
Show Figures

Figure 1

28 pages, 2371 KiB  
Review
From Metrics to Meaning: Research Trends and AHP-Driven Insights into Financial Performance in Sustainability Transitions
by Ionela Munteanu, Liliana Ionescu-Feleagă, Bogdan Ștefan Ionescu, Elena Condrea and Mauro Romanelli
Sustainability 2025, 17(14), 6437; https://doi.org/10.3390/su17146437 - 14 Jul 2025
Viewed by 198
Abstract
Evaluating performance is a necessary and specific process across all sectors and organizational levels, shaped by context, indicators, and purpose. Considering global sustainability transitions, understanding financial performance entails a deeper perspective on technical accuracy, conceptual clarity, and systemic integration. This study investigates how [...] Read more.
Evaluating performance is a necessary and specific process across all sectors and organizational levels, shaped by context, indicators, and purpose. Considering global sustainability transitions, understanding financial performance entails a deeper perspective on technical accuracy, conceptual clarity, and systemic integration. This study investigates how financial performance is assessed and interpreted in sustainability-focused research, drawing on a bibliometric analysis of 490 articles indexed in the Web of Science from 2007 to 2023. Using SciMAT, we traced thematic evolutions and revealed a fragmented research landscape marked by competing theoretical, methodological, and practical orientations. To address this conceptual dispersion, we applied the Analytic Hierarchy Process (AHP) to evaluate five key alternatives to financial-performance assessment (quantitative measurement, definition-oriented reasoning, theoretical frameworks, experiential comparison, and integration with sustainability and ethics) against three conceptual criteria (philosophical depth, holistic scope, and multidisciplinary relevance). The results highlight a strong preference for holistic and integrative models of financial performance, with quantitative measurement ranking highest in practical terms, followed by experiential and sustainability-driven approaches. These results underscore the need to align financial evaluation more closely with sustainability values, bridging short-term metrics with long-term societal impact. By combining diachronic thematic mapping with structured decision analysis, this study advances a more reflective and forward-looking framework for performance research. It contributes to sustainability research by identifying underexplored epistemological pathways and supporting the development of financial evaluation models that are inclusive, ethically grounded, and aligned with sustainable development goals. Full article
(This article belongs to the Special Issue Recent Advances in Environmental Economics Toward Sustainability)
Show Figures

Figure 1

44 pages, 2807 KiB  
Review
Artificial Intelligence in Dermatology: A Review of Methods, Clinical Applications, and Perspectives
by Agnieszka M. Zbrzezny and Tomasz Krzywicki
Appl. Sci. 2025, 15(14), 7856; https://doi.org/10.3390/app15147856 - 14 Jul 2025
Viewed by 171
Abstract
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models [...] Read more.
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models in dermatology, assess publication trends, compare the most popular neural network architectures and datasets, and identify good practices in creating AI-based applications for dermatological use. A systematic literature review is conducted in accordance with the PRISMA guidelines, utilising Google Scholar, PubMed, Scopus, and Web of Science and employing bibliometric analysis. Since 2016, there has been exponential growth in deep learning research in dermatology, revealing gaps in EU and US regulations and significant differences in model performance across different datasets. The decision-making process in clinical dermatology is analysed, focusing on how AI is augmenting skin imaging techniques such as dermatoscopy and histology. Further demonstration is provided regarding how AI is a valuable tool that supports dermatologists by automatically analysing skin images, enabling faster diagnosis and the more accurate identification of skin lesions. These advances enhance the precision and efficiency of dermatological care, showcasing the potential of AI to revolutionise the speed of diagnosis in modern dermatology, sparking excitement and curiosity. Then, we discuss the regulatory framework for AI in medicine, as well as the ethical issues that may arise. Additionally, this article addresses the critical challenge of ensuring the safety and trustworthiness of AI in dermatology, presenting classic examples of safety issues that can arise during its implementation. The review provides recommendations for regulatory harmonisation, the standardisation of validation metrics, and further research on data explainability and representativeness, which can accelerate the safe implementation of AI in dermatological practice. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Sciences)
Show Figures

Figure 1

29 pages, 1042 KiB  
Article
Mapping Geoethical Awareness and Unveiling Environmental Engagement Profiles of Residents in Hellenic UNESCO Global Geoparks: A Quantitative Survey
by Alexandros Aristotelis Koupatsiaris and Hara Drinia
Heritage 2025, 8(7), 275; https://doi.org/10.3390/heritage8070275 - 13 Jul 2025
Viewed by 245
Abstract
Geoethics emphasizes responsible human interaction with the Earth, promoting ethical practices in the geosciences to ensure sustainability for current and future generations. UNESCO Global Geoparks (UGGps) are designated areas that support sustainable development by integrating geoconservation, geoeducation, and community engagement, thereby raising awareness [...] Read more.
Geoethics emphasizes responsible human interaction with the Earth, promoting ethical practices in the geosciences to ensure sustainability for current and future generations. UNESCO Global Geoparks (UGGps) are designated areas that support sustainable development by integrating geoconservation, geoeducation, and community engagement, thereby raising awareness of geological heritage. This quantitative study employed an online questionnaire (n = 798) to assess geoethical awareness among residents of all nine Hellenic UGGps, with the aim of profiling environmental engagement and perceptions. The results indicate a generally high level of geoethical awareness, with Sitia UGGp exhibiting the highest average mean score (M = 8.98, SD = 1.34), reflecting strong community support and effective outreach efforts. In contrast, Lavreotiki UGGp (M = 8.48, SD = 1.15) and Psiloritis UGGp (M = 8.33, SD = 1.36) scored lower in areas such as community engagement and geotourism, suggesting opportunities for targeted improvement. Regional differences suggest that management, visibility, and local context significantly influence public perceptions. Cluster analysis identified four respondent profiles: (a) highly engaged environmental stewards (28.7%), (b) supportive but selective advocates (40.5%), (c) moderately indifferent participants (26.9%), and (d) disengaged or critical respondents (3.9%). Demographic factors such as age, residence, prior visits to Hellenic UGGps, and education significantly differentiated these groups. Mapping geoethical awareness provides a valuable tool for assessing societal benefits and enhancing the governance of UGGps. Overall, the findings underscore the need to shift from an anthropocentric to a more geocentric worldview that prioritizes the well-being of both humanity and Earth’s systems. Full article
(This article belongs to the Section Geoheritage and Geo-Conservation)
Show Figures

Figure 1

33 pages, 11613 KiB  
Article
Assessing and Mapping Forest Fire Vulnerability in Romania Using Maximum Entropy and eXtreme Gradient Boosting
by Adrian Lorenț, Marius Petrila, Bogdan Apostol, Florin Capalb, Șerban Chivulescu, Cătălin Șamșodan, Cristiana Marcu and Ovidiu Badea
Forests 2025, 16(7), 1156; https://doi.org/10.3390/f16071156 - 13 Jul 2025
Viewed by 309
Abstract
Understanding and mapping forest fire vulnerability is essential for informed landscape management and disaster risk reduction, especially in the context of increasing anthropogenic and climatic pressures. This study aims to model and spatially predict forest fire vulnerability across Romania using two machine learning [...] Read more.
Understanding and mapping forest fire vulnerability is essential for informed landscape management and disaster risk reduction, especially in the context of increasing anthropogenic and climatic pressures. This study aims to model and spatially predict forest fire vulnerability across Romania using two machine learning algorithms: MaxEnt and XGBoost. We integrated forest fire occurrence data from 2006 to 2024 with a suite of climatic, topographic, ecological, and anthropogenic predictors at a 250 m spatial resolution. MaxEnt, based on presence-only data, achieved moderate predictive performance (AUC = 0.758), while XGBoost, trained on presence–absence data, delivered higher classification accuracy (AUC = 0.988). Both models revealed that the impact of environmental variables on forest fire occurrence is complex and heterogeneous, with the most influential predictors being the Fire Weather Index, forest fuel type, elevation, and distance to human proximity features. The resulting vulnerability and uncertainty maps revealed hotspots in Sub-Carpathian and lowland regions, especially in Mehedinți, Gorj, Dolj, and Olt counties. These patterns reflect historical fire data and highlight the role of transitional agro-forested landscapes. This study delivers a replicable, data-driven approach to wildfire risk modelling, supporting proactive management and emphasising the importance of integrating vulnerability assessments into planning and climate adaptation strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

Back to TopTop