Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = integrated application of chemical and organic fertilizers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Viewed by 337
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

16 pages, 2018 KiB  
Article
Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer
by Jian Zhang, Yaoyao Li, Jiawei Yuan, Lu Wang, Guoying Wei and Zhejun Liang
Plants 2025, 14(15), 2275; https://doi.org/10.3390/plants14152275 - 24 Jul 2025
Viewed by 349
Abstract
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer [...] Read more.
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer (CK), conventional N (NC0, 180 kg N/ha), sole organic fertilizer (CN0, 3000 kg/ha), and reduced-N + organic fertilizer (CN1: 90 kg N/ha + 3000 kg/ha; CN2: 135 kg N/ha + 3000 kg/ha; and CN3: 180 kg N/ha + 3000 kg/ha). We analyzed yield components, soil nutrients, urease and invertase activities, and bacterial community structure (16S rRNA sequencing). The key results are as follows: CN1 achieved the highest yield (9764.87 kg/ha), which was 46.8% higher than CK. CN2 maintained comparable yields while delivering higher enzyme activities and microbial abundance, positioning this strategy as suitable for soil remediation. Co-application enriched two beneficial phyla, Proteobacteria and Planctomycetota (19% in CN2), with Proteobacteria positively correlating with urease activity and alkali-hydrolyzable N (p < 0.05), while Verrucomicrobiota negatively correlated with urease activity. In conclusion, 25–50% N reduction with an organic fertilizer (3000 kg/ha) synergistically enhances yield, soil enzymes, and beneficial microbiota, supporting sustainable high-yield agriculture with improved soil fertility. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 393
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

15 pages, 1006 KiB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 573
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

19 pages, 2401 KiB  
Article
Variety-Dependent Yield and Physiological Responses to Combined Inorganic and Organic Sources of Nitrogen in Wheat
by Eva Herlinawati, Xiaoxiao Lei, Maoling Yang, Changlu Hu, Xueyun Yang and Shulan Zhang
Agronomy 2025, 15(7), 1679; https://doi.org/10.3390/agronomy15071679 - 10 Jul 2025
Viewed by 356
Abstract
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic [...] Read more.
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic fertilizers on wheat biomass allocation, root growth, water-soluble carbohydrates (WSCs) translocation, leaf senescence, N uptake, and their relationship with yield and NUE. We established a 2-year factorial field experiment with five nutrient treatments with ratios of inorganic: organic fertilizers from 0 to 1, and three varieties—two new: Weilong169 and Zhongmai578; and one reference: Xiaoyan22. The yield ranged from 3469 to 8095 kg ha−1, and it generally declined in response to a higher proportion of organic fertilizer. The NUE increased when there was a higher proportion of organic fertilizer. Weilong169 exhibited higher NUE than Zhongmai578, and both new cultivars outperformed the reference variety in the N harvest index. The yield correlated with leaf senescence traits and harvest index, and NUE was associated with WSC translocation and N uptake. The combination of fertilizers with a low portion of organic maintained yield and improved NUE; Weilong169 had the highest yield, NUE, and N harvest index. A low portion of organic manure substitution for chemical fertilizer suited all varieties. A new variety with a higher yield, N harvest index, and NUE highlights the importance of N traits in breeding programs. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 699
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 1455 KiB  
Article
Integrated Assessment of Yield, Nitrogen Use Efficiency, and Environmental Impact of Biochar and Organic Fertilizer in Cherry Tomato Production
by Zhaojie Li, Shuxin Zhang, Farooq Shah, Li Xiong and Wei Wu
Agronomy 2025, 15(7), 1623; https://doi.org/10.3390/agronomy15071623 - 3 Jul 2025
Viewed by 486
Abstract
Chemical nitrogen (N) fertilizer application has substantially boosted crop yield over the past few decades. However, an excessive N supply often comes at the expense of soil health and the long-term sustainability of agricultural ecosystems. To avoid these concerns, both biochar and organic [...] Read more.
Chemical nitrogen (N) fertilizer application has substantially boosted crop yield over the past few decades. However, an excessive N supply often comes at the expense of soil health and the long-term sustainability of agricultural ecosystems. To avoid these concerns, both biochar and organic fertilizers offer the potential to improve soil fertility while reducing reliance on chemical N fertilizer. However, the impact of these amendments on N use efficiency (NUE) and potential environmental risk in cherry tomatoes remains unclear. To fill the void, a two-year field experiment was conducted to evaluate the effects of biochar and organic fertilizer in combination with chemical N fertilizer on cherry tomato fruit yield, N uptake, NUE, and potential environmental risk. The results showed that compared with the CK (without biochar and organic fertilizer), biochar application had no significant effect on cherry tomato yield and NUE. In contrast, compared to CK, organic fertilizer increased the fruit yield, partial factor productivity of applied N, N agronomic efficiency, and N recovery efficiency by 21.4%, 18.4%, 18.5%, and 25.1%, respectively, averaged across both cropping seasons. In addition, increasing N fertilizer application alongside organic fertilizer further enhanced cherry tomato yield, but it compromised NUE and increased potential environmental risks related to global warming and terrestrial acidification. A comprehensive evaluation using Z-score analysis, integrating yield performance, NUE, and environmental risk, identified the combined application of organic fertilizer and 160 kg N ha−1 as the most promising fertilizer management practice for the sustainable production of cherry tomatoes. These findings provide a valuable reference for optimizing fertilizer management in cherry tomato production, especially in tropical regions where achieving a balance between sustainability and productivity is crucial. Full article
Show Figures

Figure 1

13 pages, 1827 KiB  
Article
Exploring the Impact of Different Fertilization Practices and Regional Climate Variables on Cabbage (Brassica oleracea L. Var. Capitata) Yield
by Ping-Fu Hou and Yao-Tsung Chang
Sustainability 2025, 17(13), 6086; https://doi.org/10.3390/su17136086 - 2 Jul 2025
Viewed by 407
Abstract
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 [...] Read more.
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 on well-maintained soils that were established in 1988, the study examined two crop rotation systems (R1 and R2) and three fertilization treatments: chemical fertilizer, integrated fertilizer, and organic fertilizer. Despite the consistent annual application of fertilizers, the regression analysis revealed a significant decline in cabbage yields across all six treatment combinations, mainly due to reduced weights of single cabbages. To identify contributing factors, the yield data were analyzed alongside weather and soil data, collected over more than a decade. A Pearson correlation analysis showed that increased sunshine duration, solar radiation, and higher relative humidity were significantly negatively correlated with cabbage yields in both the R1 and R2 rotation systems. Additionally, the regression tree analysis indicated that solar radiation exceeding 16.917 MJ m−2 per day was associated with lower yields. A further analysis of the total nitrogen accumulation revealed increasing nitrogen concentrations in the outer leaves of cabbages during this period, potentially contributing to the reduced head yields. These findings highlight that fertilization had a minimal influence on yield, even in well-established soils. Mitigating the effects of weather variables is, therefore, critical to reducing their adverse impact on crop yields. Full article
(This article belongs to the Special Issue Achieving Sustainable Agriculture Practices and Crop Production)
Show Figures

Figure 1

18 pages, 2337 KiB  
Article
Effects of Partial Organic Fertilizer Substitution on Grain Yield, Nitrogen Use Efficiency, and Physiological Traits of Rice in Northeastern China
by Shimeng Guo, Yimeng Li, Zhouzhou Wu, Jiaxin Liu, Chao Liang, Yue Wang, Shu Wang, Chanchan Zhou, Junfeng Liu and Jingyi Mu
Agronomy 2025, 15(7), 1576; https://doi.org/10.3390/agronomy15071576 - 27 Jun 2025
Viewed by 346
Abstract
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how [...] Read more.
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how partial substitution of chemical fertilizer by organic fertilizer affects rice yield, physiological traits, and nitrogen use efficiency, we conducted a two-year field trial in 2021 and 2022, and used two rice cultivars, Shendao47 (SD47) and Shendao505 (SD505), which were grown in the field with five fertilization treatments: (1) CK (zero N application); (2) CF (100% chemical fertilizer); (3) OR10 (10% organic fertilizer + 90% chemical fertilizer); (4) OR20 (20% organic fertilizer + 80% chemical fertilizer); and (5) OR30 (30% organic fertilizer + 70% chemical fertilizer). The results show that the partial organic substitution (OR) treatments improved the yield by 1–10% for two cultivars by increasing effective panicles and grain filling. The increase in grain filling was related to the photosynthetic parameters, including LAI, chlorophyll content, and net photosynthetic rate during the grain-filling stage. The photosynthetic parameters of OR treatments were higher than those of CF treatment. Additionally, with the increase in organic fertilizer application rates, the grain yield, agronomic N use efficiency, partial factor productivity of applied N, and physiological N use efficiency increased at first and then decreased, peaking in OR20 treatment. Conclusively, the 20% organic fertilizer with 80% chemical fertilizer is a promising option for higher yield and improved N utilization for both cultivars. This study provides a sustainable nutrient management strategy to improve crop yield with high nutrient use efficiency. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 3381 KiB  
Article
Reducing Mineral Fertilizer Can Improve the Soil Quality and Increase the Wheat Yield and Nutrient Utilization Efficiency: The Fertilizing Effect of Organic–Inorganic Compound Fertilizers
by Ping Bo, Qingyang He, Yubin Lan, Jiankun Li, Haiteng Liu, Xinlong Li and Huizheng Wang
Agriculture 2025, 15(12), 1294; https://doi.org/10.3390/agriculture15121294 - 16 Jun 2025
Cited by 1 | Viewed by 733
Abstract
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality [...] Read more.
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality and crop performance require further investigation. To address this, a two-year field experiment was conducted to examine the effects of varying ratios of organic fertilizer substitution on wheat growth, grain yield, nutrient uptake, and soil quality. The results showed that the application of a 100% organic fertilizer combined with a 90% chemical fertilizer significantly increased the wheat biomass and grain yield. In terms of the nutrient uptake efficiency, the aboveground uptake of nitrogen (N), phosphorus (P), and potassium (K) increased significantly by 29.2%, 29.0%, and 56.5%, respectively. The nutrient use efficiency was also improved, with increases of 30.4% for N, 21.1% for P, and 47.7% for K. The partial factor productivity, total nutrient uptake, and the translocation efficiency of N, P, and K were all significantly enhanced. The soil quality was also markedly improved, with increases in both the soil organic matter and nutrient content. In conclusion, substituting chemical fertilizers with organic fertilizers improves the soil moisture and organic matter content, thereby enhancing the total uptake and translocation efficiency of nitrogen, phosphorus, and potassium. This leads to increased nutrient content in wheat grains, resulting in higher yields and improved grain quality. Moreover, this study provides practical guidance for wheat production and supports policy objectives related to sustainable agriculture, reduced chemical fertilizer use, and improved food security. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 1973 KiB  
Review
Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan
by Kiwamu Ishikura, Nobuhiko Fueki and Katsuhisa Niwa
Agriculture 2025, 15(11), 1192; https://doi.org/10.3390/agriculture15111192 - 30 May 2025
Viewed by 1210
Abstract
Soil health has become increasingly important in recent years. The Hokkaido government initiated its original administrative strategy referred to as “Clean Agriculture” in 1991, before the concept of soil health and soil quality evolved in the 1990s. Also, Clean Agriculture has been integrated [...] Read more.
Soil health has become increasingly important in recent years. The Hokkaido government initiated its original administrative strategy referred to as “Clean Agriculture” in 1991, before the concept of soil health and soil quality evolved in the 1990s. Also, Clean Agriculture has been integrated with remote sensing techniques for spatial application in arable fields. In this review paper, we summarized the scientific progress in Clean Agriculture and the management of soil health using remote sensing. One of the main pillars of Clean Agriculture is the minimal usage of chemical fertilizers and agrochemicals to increase soil fertility through the proper application of organic matter. The other two pillars are the sustainment and enhancement of the natural recycling function in agriculture and the enhancement of a stable production safe and high-quality agricultural products taking into account environmental harmony. These agronomic practices can increase soil fertility, maintain water quality, mitigate climate change, and maintain human health, and are similar to those in North America and the EU. Moreover, soil nitrogen fertility evaluated by autoclaved nitrogen (AC-N) can be estimated in large-scale fields and areas via remote sensing, which can facilitate variable nitrogen fertilization using variable-rate planters or broadcasters. Furthermore, systems comprising the growth sensor and variable-rate broadcaster can determine the additional nitrogen fertilization rates for winter wheat on the fields, which enhances soil health over relatively large areas. Further research is needed to expand the spatial utility of various Clean Agriculture techniques using multiperiod satellite images. Full article
(This article belongs to the Special Issue Feature Review in Agricultural Soils—Intensification of Soil Health)
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Research on the Synergistic Mechanism of Maize–Soybean Rotation and Bio-Organic Fertiliser in Cold Regions
by Zijian Wang, Hao Tian, Nan Sun, Haocheng Wang, Songyan Tang, Shengjie Chen, Xuebing Wang, Shiwei Ren, Xiangyuan Zuo and Xingbo Zhao
Agronomy 2025, 15(5), 1256; https://doi.org/10.3390/agronomy15051256 - 21 May 2025
Viewed by 784
Abstract
Aiming to address a series of problems caused by inefficient nitrogen fixation in soybean within the maize–soybean rotation system under cold-region conditions in Heilongjiang Province, China—such as reduced crop yields, declining soil fertility, and increased dependence on chemical fertilisers—this study investigated the partial [...] Read more.
Aiming to address a series of problems caused by inefficient nitrogen fixation in soybean within the maize–soybean rotation system under cold-region conditions in Heilongjiang Province, China—such as reduced crop yields, declining soil fertility, and increased dependence on chemical fertilisers—this study investigated the partial substitution of chemical nitrogen fertilisers with bio-organic fertilisers at replacement rates of 10%, 20%, and 30% during soybean cultivation. The treatments included bio-organic fertilisers (OB1, OB2, OB3), inactivated bio-organic fertilisers (O1, O2, O3), Bacillus subtilis (B1, B2, B3), and a control (CK) with the conventional application of chemical fertilisers. In the rotational maize cropping phase, a 50% nitrogen reduction was applied. The results showed that replacing 20% of soybean nitrogen fertiliser with bio-organic fertiliser (OB2 treatment) yielded the most significant increase in productivity and economic return. Compared with CK, the OB2 treatment increased soybean yield by 26.56%, maize yield by 26.69%, and nitrogen fertiliser use efficiency by 3–5%. According to the GRA-TOPSIS model, the OB2 treatment demonstrated the greatest capacity to improve quality and efficiency in the maize–soybean rotation system. At the soybean maturity stage, the OB2 treatment increased soil total organic carbon, available phosphorus, and soil protease activity by 25.36%, 22.20%, and 87.50%, respectively, compared with CK. At maize maturity, soil ammonium nitrogen and soil protease activity increased by 80.24% and 62.47%, respectively. Bio-organic fertilisers combine the benefits of organic fertiliser substrates with those of functional microorganisms. Correlation, cluster, and interaction analyses revealed that the synergistic mechanisms between maize–soybean rotation and bio-organic fertilisers in cold regions are primarily reflected in improved soil quality, enhanced nutrient cycling efficiency, increased nitrogen fixation in soybean root nodules, stimulated microbial activity, and greater resilience to environmental stress. Sustainable agricultural production in cold regions can be achieved through the integrated functioning of these system components. This study provides a theoretical basis for enhancing yield and efficiency in maize–soybean rotation systems under cold climatic conditions. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

19 pages, 3204 KiB  
Article
Metagenomics Reveals the Effects of Organic Material Co-Application on Phosphorus Cycling Functional Genes and Bioavailable Phosphorus
by Wei Wang, Yue Jiang, Shanshan Cai, Yumei Li, Lei Sun and Juanjuan Qu
Agronomy 2025, 15(5), 1187; https://doi.org/10.3390/agronomy15051187 - 14 May 2025
Viewed by 775
Abstract
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application [...] Read more.
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application with two organic materials on soil properties and functions. Four treatments were established: (1) chemical fertilizer alone (SC, consisting of urea, ammonium phosphate, and potassium sulfate), (2) chemical fertilizer with corn-straw-derived biochar (SCB), (3) chemical fertilizer with composted manure-based organic fertilizer (SCF), and (4) chemical fertilizer with both biochar and organic fertilizer (SCBF). This study focused on changes in soil properties, bioavailable phosphorus, phosphorus cycling functional genes, and related microbial communities. Compared to SC, the combined application of organic materials significantly increased available phosphorus (AP), alkaline hydrolysis nitrogen (AN), and available potassium (AK), with the SCBF exhibiting the highest increases of 78.76%, 47.47%, and 336.61%, respectively. However, applying organic materials reduced alkaline phosphatase (ALP) and acid phosphatase (ACP) activities, except for the increase in ACP in SCBF. Additionally, bioavailable phosphorus increased by up to 157.00% in SCBF. Adding organic materials significantly decreased organic phosphorus mineralization genes (phoA, phoD, phnP) and phosphate degradation genes (ppk2), while increasing inorganic phosphorus solubilization genes (pqqC, gcd), which subsequently increased CaCl2-P and Citrate-P contents in SCB and in SCBF. In summary, organic material application significantly enhances phosphorus bioavailability by improving soil physicochemical properties and phosphorus-related gene abundance. These findings provide new insights into sustainable soil fertility management and highlight the potential of integrating organic materials with chemical fertilizers to improve soil nutrient availability, thereby contributing to increased soybean yield. Moreover, this study advances our understanding of the underlying mechanisms driving phosphorus cycling under combined fertilization strategies, offering a scientific basis for optimizing fertilization practices in agroecosystems. Full article
(This article belongs to the Special Issue Effects of Arable Farming Measures on Soil Quality—2nd Edition)
Show Figures

Figure 1

15 pages, 3098 KiB  
Article
Effectiveness of Natural Products—Artemisia dubia and Manure Digestate—On Winter Wheat Cultivation
by Ausra Baksinskaite, Modupe Olufemi Doyeni, Jurate Ramanauskienė, Dalia Feizienė and Vita Tilvikiene
Plants 2025, 14(10), 1411; https://doi.org/10.3390/plants14101411 - 8 May 2025
Viewed by 561
Abstract
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant [...] Read more.
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant growth, and suppress diseases. However, their overall effectiveness remains limited, hence the need for further research to enhance their agricultural performance. This study aims to explore the potential application of two natural sources (manure digestate and crop Artemisia dubia) for crop fertilization and protection. During the growing season, winter wheat was fertilized twice (21–25 BBCH and 30–35 BBCH) with synthetic, organic (pig manure digestate), and combined synthetic–organic fertilizers. Artemisia dubia biomass was incorporated before sowing and planted in strips. The soil chemical composition, crop overwintering, weediness, and diseases were assessed after two years of the respective treatments. The results showed that the organic carbon content increased by 1–5% after fertilizing winter wheat with pig manure digestate and combining fertilizers (organic and synthetic). Additionally, fertilizer or pesticide use had a significant effect on the soil pH process. Combining synthetic and organic fertilizers increased the amount of mobile phosphorus in the soil by 38%. In conclusion, combining synthetic fertilizers with organic fertilizers is the most effective approach to maintain healthy soil conditions and prevent damage to sprouts in the soil. Overall, our findings offer more opportunities for organic and sustainable agricultural processes by integrating pig manure digestate and Artemisia dubia biomass as a natural approach to minimizing synthetic fertilizer and pesticide use. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

38 pages, 3222 KiB  
Review
Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review
by Denis-Constantin Țopa, Sorin Căpșună, Anca-Elena Calistru and Costică Ailincăi
Agriculture 2025, 15(9), 998; https://doi.org/10.3390/agriculture15090998 - 5 May 2025
Cited by 3 | Viewed by 8869
Abstract
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel [...] Read more.
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel strategies to restore and sustain soil functionality. This review examined sustainable practices to enhance soil health and improve crop quality in modern agricultural systems. Preserving soil’s physical, chemical, and biological characteristics is essential for its health, achievable through various agronomic strategies. Practices such as crop rotation, cover cropping, no-till or carbon farming, conservation agriculture (CA), and the use of organic amendments were explored for their ability to restore the soil structure, increase organic matter, and promote biodiversity. These initiatives seek to preserve and enhance soil ecosystems by aligning agricultural practices with ecological principles, ensuring long-term productivity and environmental stability. Enhancing soil health will improve soil functions, supporting the concept that increasing the soil organic carbon (SOC) is necessary. This study determined that conservation tillage is more advantageous for soil health than conventional tillage, a topic that is still controversial among scientists and farmers, and that various tillage systems exhibit distinct interactions. These strategies, through the integrated management of the interaction of plant, soil, microbial, and human activities, would enhance soil health. Full article
Show Figures

Figure 1

Back to TopTop