Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = inorganic layered crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4627 KiB  
Review
Advancements and Strategies in CsPbI2Br Perovskite Solar Cells for Enhanced Efficiency and Stability
by Fanbei Sun, Tingting Hou, Kexuan Xie, Xinghua Zhu, Dingyu Yang and Xin Liu
Nanomaterials 2025, 15(7), 483; https://doi.org/10.3390/nano15070483 - 24 Mar 2025
Viewed by 1250
Abstract
In recent years, inorganic perovskite solar cells (IPSCs), especially those based on CsPbI2Br, have attracted considerable attention owing to their exceptional thermal stability and a well-balanced combination of light absorption and phase stability. This review provides an extensive overview of the [...] Read more.
In recent years, inorganic perovskite solar cells (IPSCs), especially those based on CsPbI2Br, have attracted considerable attention owing to their exceptional thermal stability and a well-balanced combination of light absorption and phase stability. This review provides an extensive overview of the latest progress in CsPbI2Br PSCs, focusing on film deposition techniques, crystallization control, interface engineering, and charge transport layers (CTLs). High-efficiency CsPbI2Br PSCs can be achieved through the optimization of these key aspects. Various strategies, such as solvent engineering, component/additive engineering, and interface optimization, have been explored to enhance the quality of CsPbI2Br films and improve device performance. Despite significant progress, challenges remain, including the need for even higher quality films, a deeper understanding of interface energetics, and the exploration of novel CTLs. Additionally, long-term stability continues to be a critical concern. Future research should focus on refining film preparation methods, developing sophisticated interfacial layers, exploring compatible charge transport materials, and ensuring device durability through encapsulation and moisture-resistant materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

16 pages, 6437 KiB  
Article
Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties
by Nicoleta Craciun, Elena Melnic, Anatolii V. Siminel, Natalia V. Costriucova, Diana Chisca and Marina S. Fonari
Inorganics 2025, 13(3), 90; https://doi.org/10.3390/inorganics13030090 - 18 Mar 2025
Viewed by 570
Abstract
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The [...] Read more.
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The coordination arrays with the ddpm chromophore included {[Cd(OH)(H2O)(ddpm)2](BF4)}n (1) as a one-dimensional (1D) coordination garland chain, {[Cd(NO3)(ddpm)2](H2O)(NO3)}n (2) as a two-dimensional (2D) coordination layer, and [Cd(bpy)2(ddpm)2](ddpm)(NO3)2 (3) as a supramolecular complex. The products with the ddpe chromophore were identified as {[Cd(phen)2(ddpe)](ClO4)2}n (4) in the form of a linear coordination chain and [Cd(phen)3](ClO4)2(ddpe)0.5(CH3CN)0.5 (5) as a supramolecular complex. The extension of coordination arrays in 1, 2, and 4 was achieved via dianiline ligands as bidentate linkers and additionally via bridging of nitrate anions in 2. The diversification of products became possible due to usage of 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) as co-ligands forming the terminal corner fragments [Cd(bpy)2]2+, [Cd(phen)2]2+, and [Cd(phen)3]2+ in 35, respectively. The assembling of coordination entities occurred via the interplay of hydrogen bonds with the participation of amino groups, water molecules, and inorganic anions. Two dianilines were powerful luminophores in the crystalline phase, while the photoluminescence in 15 was considerably weaker than in the pure ddpm and ddpe luminophores and redistributed along the spectrum. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

24 pages, 13065 KiB  
Review
Crystal Chemistry and Structural Complexity of the Uranyl Vanadate Minerals and Synthetic Compounds
by Ivan V. Kuporev, Sophia A. Kalashnikova and Vladislav V. Gurzhiy
Crystals 2025, 15(1), 43; https://doi.org/10.3390/cryst15010043 - 30 Dec 2024
Cited by 1 | Viewed by 1105
Abstract
This paper reviews perhaps one of the most enigmatic groups of secondary uranium minerals. The number of uranyl vanadate mineral species does not reach even 20, and they do not display a large range of structural diversity, but those natural phases form rather [...] Read more.
This paper reviews perhaps one of the most enigmatic groups of secondary uranium minerals. The number of uranyl vanadate mineral species does not reach even 20, and they do not display a large range of structural diversity, but those natural phases form rather massive deposits that can be mined as uranium ores. The number of synthetic uranyl vanadates is three times higher than natural phases, and most of them were obtained using hydrothermal and solid-state techniques. Diversity is also evident in their structural parts. The majority of synthetic compounds, both pure inorganic or organically templated, have their structures based upon mineral-like substructural units of francevillite, uranophane, U3O8, and other common topological types, and not even one compound among 57 studied was obtained from simple aqueous solutions at room temperature. This allows us to assume that even under natural conditions, elevated temperatures are required for the formation of isotypic uranyl vanadate minerals, especially in the case of industrially developed thick strata. The structural complexity parameters for natural uranyl vanadates directly depend on the unit cell volume. Keeping in mind that all minerals possess layered structural architecture, it means that structural complexity increases with the increase in the interlayer spacing, which, in turn, depends on the size of cations or water–cationic complexes arranged in the interlayer space. This tendency similarly works for organic molecules, which are incorporated into the uranyl vanadate frameworks. It can also be concluded that the architecture of the uranyl vanadate substructural units defines the complexity of the entire crystal structure. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

16 pages, 8245 KiB  
Article
System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment
by Yonghyun Shin, Jaewuk Koo and Sangho Lee
Membranes 2024, 14(12), 252; https://doi.org/10.3390/membranes14120252 - 28 Nov 2024
Viewed by 1361
Abstract
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO4), [...] Read more.
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO4), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling. Using real seawater and RO brine as feed sources, the scaling behavior was examined under various operational conditions, such as temperature and feed concentration. Optical Coherence Tomography (OCT) was utilized to monitor the real-time development of fouling layers, offering valuable insights into surface crystal formation processes. A System Dynamics Model (SDM) was created based on the experimental data to predict flux decline trends with precision. The model correlated well with experimental observations, highlighting key factors that drive scaling severity. This integrated approach deepens our understanding of scaling dynamics and provides actionable strategies to mitigate fouling in MD systems, thereby enhancing the efficiency and stability of MD desalination operations. Ultimately, this study underscores the potential of combining OCT with system dynamics modeling as a powerful approach for visualizing and validating scaling processes, offering a practical framework for optimizing MD performance and contributing to more sustainable desalination practices. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

13 pages, 2973 KiB  
Article
Liquid Crystal Ordering in Densely Packed Colloidal Suspensions of Highly Anisotropic Monolayer Nanosheets
by Yue Shi, Min Shuai, Yongqiang Shen, Dong Chen, Joseph E. Maclennan, Zhengdong Cheng and Noel A. Clark
Crystals 2024, 14(11), 963; https://doi.org/10.3390/cryst14110963 - 6 Nov 2024
Viewed by 1071
Abstract
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the [...] Read more.
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the form of an emulsion of condensed, liquid-crystalline droplets, which anneal to form lens-shaped tactoids. These tactoids provide an opportunity to study the liquid crystal ordering of inorganic nanosheets in the limit of large shape anisotropy (diameter/thickness~400) and high packing fraction (volume fraction 70%). The internal liquid crystal structure of the tactoids remains nematic even under conditions that would usually favor ordering into lamellar smectics. Local lamellar ordering is suggested by short-range, smectic-like layer correlations, but a full transition into a smectic phase appears to be inhibited by the nanosheet edges, which act as a perturbative population of dislocation loops in the system of layers. Under conditions of thermal equilibrium, the nanoplates organize positionally to enable bend deformation of the director, a hallmark of the nematic phase and its principal distinction from the smectic, where bend must be expelled. Full article
Show Figures

Figure 1

20 pages, 2240 KiB  
Review
The Role of Optimal Electron Transfer Layers for Highly Efficient Perovskite Solar Cells—A Systematic Review
by Ramkumar Vanaraj, Vajjiravel Murugesan and Balamurugan Rathinam
Micromachines 2024, 15(7), 859; https://doi.org/10.3390/mi15070859 - 30 Jun 2024
Cited by 6 | Viewed by 2726
Abstract
Perovskite solar cells (PSCs), which are constructed using organic–inorganic combination resources, represent an upcoming technology that offers a competitor to silicon-based solar cells. Electron transport materials (ETMs), which are essential to PSCs, are attracting a lot of interest. In this section, we begin [...] Read more.
Perovskite solar cells (PSCs), which are constructed using organic–inorganic combination resources, represent an upcoming technology that offers a competitor to silicon-based solar cells. Electron transport materials (ETMs), which are essential to PSCs, are attracting a lot of interest. In this section, we begin by discussing the development of the PSC framework, which would form the foundation for the requirements of the ETM. Because of their exceptional electronic characteristics and low manufacturing costs, perovskite solar cells (PSCs) have emerged as a promising proposal for future generations of thin-film solar energy. However, PSCs with a compact layer (CL) exhibit subpar long-term reliability and efficacy. The quality of the substrate beneath a layer of perovskite has a major impact on how quickly it grows. Therefore, there has been interest in substrate modification using electron transfer layers to create very stable and efficient PSCs. This paper examines the systemic alteration of electron transport layers (ETLs) based on electron transfer layers that are employed in PSCs. Also covered are the functions of ETLs in the creation of reliable and efficient PSCs. Achieving larger-sized particles, greater crystallization, and a more homogenous morphology within perovskite films, all of which are correlated with a more stable PSC performance, will be guided by this review when they are developed further. To increase PSCs’ sustainability and enable them to produce clean energy at levels previously unheard of, the difficulties and potential paths for future research with compact ETLs are also discussed. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

29 pages, 3055 KiB  
Review
Liquid Nanoclay: Synthesis and Applications to Transform an Arid Desert into Fertile Land
by Kamel A. Abd-Elsalam, Mirza Abid Mehmood, Muhammad Ashfaq, Toka E. Abdelkhalek, Rawan K. Hassan and Mythili Ravichandran
Soil Syst. 2024, 8(3), 73; https://doi.org/10.3390/soilsystems8030073 - 27 Jun 2024
Cited by 2 | Viewed by 5238
Abstract
Nanoclay, a processed clay, is utilized in numerous high-performance cement nanocomposites. This clay consists of minerals such as kaolinite, illite, chlorite, and smectite, which are the primary components of raw clay materials formed in the presence of water. In addition to silica, alumina, [...] Read more.
Nanoclay, a processed clay, is utilized in numerous high-performance cement nanocomposites. This clay consists of minerals such as kaolinite, illite, chlorite, and smectite, which are the primary components of raw clay materials formed in the presence of water. In addition to silica, alumina, and water, it also contains various concentrations of inorganic ions like Mg2+, Na+, and Ca2+. These are categorized as hydrous phyllosilicates and can be located either in interlayer spaces or on the planetary surface. Clay minerals are distinguished by their two-dimensional sheets and tetrahedral (SiO4) and octahedral (Al2O3) crystal structures. Different clay minerals are classified based on the presence of tetrahedral and octahedral layers in their structure. These include kaolinite, which has a 1:1 ratio of tetrahedral to octahedral layers, the smectite group of clay minerals and chlorite with a 2:1 ratio. Clay minerals are unique due to their small size, distinct crystal structure, and properties such as high cation exchange capacity, adsorption capacity, specific surface area, and swelling behavior. These characteristics are discussed in this review. The use of nanoclays as nanocarriers for fertilizers boasts a diverse array of materials available in both anionic and cationic variations. Layered double hydroxides (LDH) possess a distinctive capacity for exchanging anions, making them suitable for facilitating the transport of borate, phosphate, and nitrate ions. Liquid nanoclays are used extensively in agriculture, specifically as fertilizers, insecticides, herbicides, and nutrients. These novel nanomaterials have numerous benefits, including improved nutrient use, controlled nutrient release, targeted nutrient delivery, and increased agricultural productivity. Arid regions face distinct challenges like limited water availability, poor soil quality, and reduced productivity. The addition of liquid nanoclay to sandy soil offers a range of benefits that contribute to improved soil quality and environmental sustainability. Liquid nanoclay is being proposed for water management in arid regions, which will necessitate a detailed examination of soil, water availability, and hydrological conditions. Small-scale trial initiatives, engagement with local governments, and regular monitoring are required to fully comprehend its benefits and drawbacks. These developments would increase the practicality and effectiveness of using liquid nanoclay in desert agriculture. Full article
Show Figures

Graphical abstract

13 pages, 4141 KiB  
Article
Optically Active Oxygen Defects in Titanium Dioxide Doped with Inorganic Acid Ions
by Bin Xu, Xuehui Duan, Tao Zhou, Jinliang Hao, Haotian Qin, Youcai Zhao, Wei Ye and Jianglin Cao
Nanomaterials 2024, 14(12), 1020; https://doi.org/10.3390/nano14121020 - 13 Jun 2024
Cited by 2 | Viewed by 1219
Abstract
Doping inorganic acid ions represents a promising pathway to improving the photocatalytic activity of TiO2, and oxygen vacancy has been regarded as the determinant factor for photocatalytic activity. A series of samples doped with Cl, NO3, [...] Read more.
Doping inorganic acid ions represents a promising pathway to improving the photocatalytic activity of TiO2, and oxygen vacancy has been regarded as the determinant factor for photocatalytic activity. A series of samples doped with Cl, NO3, and SO42− was prepared via a simple sol–gel method. Two different oxygen vacancies in the crystal layer of NO3/TiO2 and Cl/TiO2 were found, and those are [Ti3+]-V0-[Ti3+] and [Ti3+]-Cl, respectively. The photocurrent of NO3/TiO2 with [Ti3+]-V0-[Ti3+] is significantly greater than that of Cl/TiO2 with [Ti3+]-Cl. The least oxygen vacancy is in the gel layer of SO42−/TiO2, and the negligible photocurrent is due to difficulty in forming a stable sol. Furthermore, the process conditions for the application of TiO2 were investigated in this work. The optimal process parameters are to adjust the solution to pH = 3 during sol–gel preparation, to adopt 550 °C as the calcination temperature, and to use an alkaline electrolyte, while the rest of the preparation conditions remain unchanged. This work reveals a new avenue for designing efficient photocatalysts for air pollutant degradation. Full article
(This article belongs to the Topic Surface Chemistry of Catalysis)
Show Figures

Figure 1

14 pages, 6243 KiB  
Article
Comparative Analysis of the Ultrastructure, Bubble Pores, and Composition of Eggshells of Dwarf Layer-White and Guinea Fowl
by Yi-Tong Wang, Yi-Fan Chen, Jun-Jie Zhang, Quan Zhang, Xiao-Yu Zhao, Rong-Yan Zhou, Hui Chen and De-He Wang
Animals 2024, 14(10), 1496; https://doi.org/10.3390/ani14101496 - 17 May 2024
Cited by 1 | Viewed by 1646
Abstract
The decrease in eggshell quality seriously affects production efficiency. Guinea fowl (GF) eggs possess strong eggshells because of their unique crystal structure, and few systematic studies have compared laying hen and GF eggs. Sixty eggs were collected from both 40-week-old Dwarf Layer-White (DWL-White) [...] Read more.
The decrease in eggshell quality seriously affects production efficiency. Guinea fowl (GF) eggs possess strong eggshells because of their unique crystal structure, and few systematic studies have compared laying hen and GF eggs. Sixty eggs were collected from both 40-week-old Dwarf Layer-White (DWL-White) laying hens and GF, and the eggshell quality, ultrastructure, bubble pores, and composition were measured. The results showed that the DWL-White eggs had a higher egg weight and a lower eggshell strength, strength per unit weight, thickness, and ratio than the GF eggs (p < 0.01). There were differences in the mammillary layer thickness ratio, the effective layer thickness ratio, the quantity of bubble pores (QBPs), the ratio of the sum of the area of bubble pores to the area of the eggshell in each image (ARBE), and the average area of bubble pores (AABPs) between the DWL-White and GF eggs (p < 0.01). The composition analysis demonstrated that there were differences in the organic matter, inorganic matter, calcium, and phosphorus between the DWL-White and GF eggs (p < 0.01). There were positive associations between the mammillary knob number in the image and the QBPs and ARBE and a negative correlation with the AABPs in the DWL-White eggs (p < 0.01). This study observed distinctions that offer new insights into enhancing eggshell quality. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

12 pages, 2562 KiB  
Article
Synthesis and Thermal Decomposition of High-Entropy Layered Rare Earth Hydroxychlorides
by Maria A. Teplonogova, Anfisa A. Kozlova, Alexey D. Yapryntsev, Alexander E. Baranchikov and Vladimir K. Ivanov
Molecules 2024, 29(7), 1634; https://doi.org/10.3390/molecules29071634 - 5 Apr 2024
Cited by 4 | Viewed by 1790
Abstract
The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy [...] Read more.
The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy layered rare earth hydroxychlorides, namely, (Sm,Eu,Gd,Y,Er)2(OH)5Cl, (Eu,Gd,Tb,Y,Er)2(OH)5Cl, (Eu,Gd,Dy,Y,Er)2(OH)5Cl, and (Eu,Gd,Y,Er,Yb)2(OH)5Cl, using a homogeneous hydrolysis technique under hydrothermal conditions. Elemental mapping proved the even distribution of rare earth elements, while luminescence spectroscopy confirmed efficient energy transfer between europium and other rare earth cations, thus providing additional evidence of the homogeneous distribution of rare earth elements within the crystal lattice. The average rare earth cation radii correlated linearly with the unit cell parameters (0.868 < R2 < 0.982) of the high-entropy layered rare earth hydroxychlorides. The thermal stability of the high-entropy layered rare earth hydroxychlorides was similar to that of individual hydroxychlorides and their binary solid solutions. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

17 pages, 5962 KiB  
Article
Characteristics of Natural Ti-Bearing Nanoparticles in Groundwater within Karst Areas of Northern China
by Lei Zuo, Changsuo Li, Peng Zhang, Yaqin Wang, Shuai Gao, Bin Sun and Rui Liu
Water 2024, 16(5), 650; https://doi.org/10.3390/w16050650 - 22 Feb 2024
Cited by 2 | Viewed by 1612
Abstract
Karst areas are widespread in China and can be divided into southern karst and northern karst based on the geographical boundary of Qinling Mountains and Huaihe River. In northern karst regions, karst springs are the predominant landform. Previous studies on karst springs have [...] Read more.
Karst areas are widespread in China and can be divided into southern karst and northern karst based on the geographical boundary of Qinling Mountains and Huaihe River. In northern karst regions, karst springs are the predominant landform. Previous studies on karst springs have predominantly focused on macroscopic perspectives, such as water chemistry characteristics, with less attention given to the microscopic characteristics of springs. Therefore, this study focused on the Jinan Baotu Spring area, representative of a typical northern karst region, and investigated the natural nanoparticles present in different aquifers at various depths from a microscopic point of view. Through the observation of nanoparticle tracking analyzer (NTA), numerous nanoparticles were identified in the groundwater samples. The particle size range of the particles contained in groundwater is mainly concentrated in the range of 150–500 nm, and the particle concentration is mainly concentrated in the range of 1.5–5.0 × 105 Particles/L. The microstructure, chemical composition, and element distribution of these nanoparticles were analyzed using TEM-EDS techniques. The results unveiled the presence of Ti-bearing nanoparticles in various groundwater layers, including both crystalline and amorphous states, as well as nanoparticles exhibiting the coexistence of crystal and amorphous structures. By comparing the measured lattice spacing with PDF cards, the crystalline Ti-bearing nanoparticles were identified as rutile, brookite, anatase, ilmenite, pseudorutile, and ulvospinel. Furthermore, the main components of the amorphous Ti-bearing nanoparticles predominantly consisted of Ti or a mixture of Ti and Fe. EDS analysis further indicated that the Ti-bearing nanoparticles carried additional metal elements, such as Zn, Ca, Mn, Mo, Cr, and Ni, suggesting their potential role as carriers of metal elements during groundwater transportation. This discovery provided new insights into the migration of metal elements in groundwater and underscores the capacity of nanoparticles to enhance the mobility of inorganic substances within the water environment. Notably, brookite was detected in three different areas, including the direct discharge area, indirect recharge area, and discharge area, which may indicate that some special natural nanoparticles could serve as natural mineral tracer particles in the process of groundwater migration. Full article
Show Figures

Figure 1

12 pages, 1655 KiB  
Article
Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4
by Emily D. Williams, Keith M. Taddei, Kulugammana G. S. Ranmohotti, Narendirakumar Narayanan, Thomas Heitmann, Joseph W. Kolis and Liurukara D. Sanjeewa
Magnetism 2024, 4(1), 35-46; https://doi.org/10.3390/magnetism4010003 - 13 Feb 2024
Viewed by 2290
Abstract
Novel quantum materials offer the opportunity to expand next-generation computers, high-precision sensors, and new energy technologies. Among the most important factors influencing the development of quantum materials research is the ability of inorganic and materials chemists to grow high-quality single crystals. Here, the [...] Read more.
Novel quantum materials offer the opportunity to expand next-generation computers, high-precision sensors, and new energy technologies. Among the most important factors influencing the development of quantum materials research is the ability of inorganic and materials chemists to grow high-quality single crystals. Here, the synthesis, structure characterization and magnetic properties of Na2Cu3(SeO3)4 are reported. It exhibits a novel two-dimensional (2D) structure with isolated layers of Cu nets. Single crystals of Na2Cu3(SeO3)4 were grown using a low-temperature hydrothermal method. Single-crystal X-ray diffraction reveals that Na2Cu3(SeO3)4 crystallizes in the monoclinic crystal system and has space group symmetry of P21/n (No.14) with a unit cell of a = 8.1704(4) Å, b = 5.1659(2) Å, c = 14.7406(6) Å, β = 100.86(2), V = 611.01(5) Å3 and Z = 2. Na2Cu3(SeO3)4 comprises a 2D Cu-O-Cu lattice containing two unique copper sites, a CuO6 octahedra and a CuO5 square pyramid. The SeO3 groups bridge the 2D Cu-O-Cu layers isolating the neighboring Cu-O-Cu layers, thereby enhancing their 2D nature. Magnetic properties were determined by measuring the magnetic susceptibility of an array of randomly oriented single crystals of Na2Cu3(SeO3)4. The temperature-dependent magnetic measurement shows an antiferromagnetic transition at TN = 4 K. These results suggest the fruitfulness of hydrothermal synthesis in achieving novel quantum materials and encourage future work on the chemistry of transition metal selenite. Full article
Show Figures

Figure 1

11 pages, 1370 KiB  
Communication
Photoluminescent Layered Crystal Consisting of Anderson-Type Polyoxometalate and Surfactant toward a Potential Inorganic–Organic Hybrid Laser
by Ayaka Mihara, Tatsuhiro Kojima, Yoriko Suda, Kyoka Maezawa, Toshiyuki Sumi, Naoyuki Mizoe, Ami Watanabe, Hironori Iwamatsu, Yoshiki Oda, Yosuke Okamura and Takeru Ito
Int. J. Mol. Sci. 2024, 25(1), 345; https://doi.org/10.3390/ijms25010345 - 26 Dec 2023
Cited by 2 | Viewed by 1644
Abstract
The hybridization of inorganic and organic components is a promising strategy to build functional materials. Among several functions, luminescence is an important function which should be considered for practical usage. Inorganic–organic hybrid luminescent materials have been investigated as phosphors, sensors, and lasers. Organic [...] Read more.
The hybridization of inorganic and organic components is a promising strategy to build functional materials. Among several functions, luminescence is an important function which should be considered for practical usage. Inorganic–organic hybrid luminescent materials have been investigated as phosphors, sensors, and lasers. Organic luminescent centers such as dye molecules have often been hybridized with inorganic matrices. Polyoxometalate anions (POMs) are effective inorganic luminescent centers due to their luminescent properties and structural designability. However, most luminescent POM components are limited to lanthanide-based POMs. In this report, a photoluminescent inorganic–organic hybrid crystal based on a non-lanthanide POM was successfully synthesized as a single crystal. Anderson-type hexamolybdochromate ([CrMo6O18(OH)6]3−, CrMo6) anion exhibiting emission derived from Cr3+ was utilized with n-dodecylammonium ([C12H25NH3]+, C12NH3) surfactant cation to obtain a photoluminescent hybrid crystal. The grown single crystal of C12NH3-CrMo6 comprised a distinct layered structure consisting of inorganic CrMo6 layers and interdigitated C12NH3 layers. In the CrMo6 layers, the CrMo6 anions were associated with water molecules by hydrogen bonding to form a densely packed two-dimensional network. Steady-state and time-resolved photoluminescence spectroscopy revealed that the C12NH3-CrMo6 hybrid crystal exhibited characteristic emission from the CrMo6 anion. Preliminary lasing properties were also observed for C12NH3-CrMo6, which shows the possibility of using the C12NH3-CrMo6 hybrid crystal as an inorganic–organic hybrid laser. Full article
(This article belongs to the Special Issue Physical Inorganic Chemistry in 2024)
Show Figures

Figure 1

23 pages, 4264 KiB  
Article
On the Chemical Composition and Hygroscopicity of Aerosols Deposited on the Insulators of Italian Power Lines
by Irene Gini, Alessandra Balzarini, Guido Pirovano, Anna Maria Toppetti, Lucio Fialdini, Paolo Omodeo, Giovanni Pirovano, Massimo Marzinotto, Alessandro Mancini, Niccolò Losi, Amedeo Manuel Cefalì, Andrea Doldi, Ezio Bolzacchini and Luca Ferrero
Appl. Sci. 2023, 13(23), 12788; https://doi.org/10.3390/app132312788 - 29 Nov 2023
Viewed by 1284
Abstract
The reliability of the national power grid is a key issue in modern society. Atmospheric aerosols are the main cause of the reduction in the performance of insulators and the increase in the possibility of flashovers, resulting in power line failures. Under high [...] Read more.
The reliability of the national power grid is a key issue in modern society. Atmospheric aerosols are the main cause of the reduction in the performance of insulators and the increase in the possibility of flashovers, resulting in power line failures. Under high ambient humidity, the water-soluble compounds of atmospheric aerosols collected on the insulators’ surface can dissociate in ions and form a conductive layer, which may lead to flashover events. With a view to investigating the processes that drive these phenomena, the chemical composition of aerosol deposits on insulators in Italy was determined by ion chromatography analysis and thermos-optical and X-ray techniques. In addition, a synthetic aerosol with the same analyzed chemical composition was generated in a laboratory and deposited on PTFE filters and glass specimens allowing us to determine the deliquescence and crystallization relative humidity and the conductive effect in an aerosol exposure chamber. The results evidenced the presence of a hazardous inorganic ion layer, which generates a sharp phase transition of the aerosol deposit as a function of the ambient relative humidity; this layer poses a dangerous threat to the reliability of the power grid, increasing the probability of flashover events where the conductive layer facilitates the flow of electrical current across the insulator surface, potentially causing power outages or damage to the power lines. Full article
Show Figures

Figure 1

38 pages, 8249 KiB  
Review
Atomic Layer Deposition of Antibacterial Nanocoatings: A Review
by Denis Nazarov, Lada Kozlova, Elizaveta Rogacheva, Ludmila Kraeva and Maxim Maximov
Antibiotics 2023, 12(12), 1656; https://doi.org/10.3390/antibiotics12121656 - 24 Nov 2023
Cited by 12 | Viewed by 3211
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, [...] Read more.
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings. Full article
(This article belongs to the Special Issue Development and Biomedical Application of Antibacterial Coatings)
Show Figures

Figure 1

Back to TopTop