Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,429)

Search Parameters:
Keywords = inhibitor profiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1330 KiB  
Article
The Preventive Effects of GLP-1 Receptor Agonists and SGLT2 Inhibitors on Cancer Metastasis: A Network Meta-Analysis of 67 Randomized Controlled Trials
by Chih-Wei Hsu, Bing-Syuan Zeng, Chih-Sung Liang, Bing-Yan Zeng, Chao-Ming Hung, Brendon Stubbs, Yen-Wen Chen, Wei-Te Lei, Jiann-Jy Chen, Po-Huang Chen, Kuan-Pin Su, Tien-Yu Chen and Ping-Tao Tseng
Int. J. Mol. Sci. 2025, 26(17), 8202; https://doi.org/10.3390/ijms26178202 (registering DOI) - 23 Aug 2025
Abstract
Metastatic cancer, characterized by poor survival outcomes and grim prognosis, represents the final stage of malignancy. The current evidence regarding the prophylactic effects of glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter 2 (SGLT2) inhibitors on metastatic cancer remains largely unexamined. With a [...] Read more.
Metastatic cancer, characterized by poor survival outcomes and grim prognosis, represents the final stage of malignancy. The current evidence regarding the prophylactic effects of glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter 2 (SGLT2) inhibitors on metastatic cancer remains largely unexamined. With a confirmatory approach based on the Cochrane recommendation, we conducted a frequentist-based network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating such medications. The primary outcome was the incidence of metastatic cancer, while secondary outcomes included safety profiles assessed through dropout rates. The findings were reaffirmed by sensitivity analysis with a Bayesian-based NMA. This NMA of 207,606 participants from 67 RCTs revealed that only efpeglenatide demonstrated a statistically significant reduction in metastatic cancer events compared to controls (odds ratio = 0.26, 95% confidence intervals = 0.09 to 0.70, p = 0.010, number needed to treat = 188.4). Efpeglenatide’s efficacy was not confined to specific cancer types. Safety profiles were comparable across all treatments. These findings indicate that efpeglenatide may possess a broad, systemic preventive effect against metastatic cancers, potentially operating through mechanisms that are not restricted to individual organ systems. Further research is warranted to elucidate the molecular pathways underlying its anti-metastatic properties and to explore its role in preventive oncology. Full article
Show Figures

Figure 1

17 pages, 1129 KiB  
Article
In Vivo Characterization of ONL1204, a Small Peptide Inhibitor of the Fas Receptor, as a Potential Neuroprotective Therapy for Geographic Atrophy and Dry Age-Related Macular Degeneration
by Andrew J. Kocab, Marisol Cano, Marianna Bacellar-Galdino, Jeffrey A. Jamison, William J. Brock, David N. Zacks and James T. Handa
Biomedicines 2025, 13(9), 2052; https://doi.org/10.3390/biomedicines13092052 - 22 Aug 2025
Abstract
Background: Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the developed world, and the approved products for geographic atrophy (GA), a late-stage form of dry AMD, have shown limited efficacy and require frequent administration. Therefore, longer-lasting therapies [...] Read more.
Background: Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the developed world, and the approved products for geographic atrophy (GA), a late-stage form of dry AMD, have shown limited efficacy and require frequent administration. Therefore, longer-lasting therapies with improved efficacy would be a welcome addition to AMD treatment. One potential therapeutic is ONL1204, a small peptide inhibitor of the Fas receptor that has prevented cell death and inflammation in retinal disease models. This study characterizes the pharmacokinetics (PK) and durability of protection conferred by ONL1204. Methods: Ocular pharmacokinetic profiles were generated over 3 months in rabbit and minipig following a single intravitreal (IVT) injection of ONL1204 at multiple doses. Ocular pharmacodynamics were evaluated in two models: a rabbit model using a single IVT injection of ONL1204 with a delayed sodium iodate challenge coupled with fluorescein angiography to quantify RPE loss, and a chronic mouse model that reflects key features of dry AMD disease pathology to assess the efficacy of repeat IVT administrations of ONL1204. Results: ONL1204 had prolonged residence in the ocular tissues of rabbit and minipig, with a vitreous humor half-life of over 100 days. ONL1204 demonstrated significant protection of the retinal pigment epithelium (RPE) in the rabbit sodium iodate model. In the chronic mouse model, two administrations of ONL1204 preserved RPE morphology, reduced caspase-8 activity, and decreased inflammation. Conclusions: These data represent key characteristics of ONL1204, highlighting its clinical potential as a therapeutic for chronic retinal diseases, including GA. Full article
(This article belongs to the Special Issue Advances in Therapeutics for Retinal Degeneration)
19 pages, 788 KiB  
Review
Letrozole at the Crossroads of Efficacy and Fetal Safety in Ovulation Induction: A Narrative Review
by Aris Kaltsas, Anna Efthimiou, Christos Roidos, Vasileios Tzikoulis, Ioannis Georgiou, Alexandros Sotiriadis, Athanasios Zachariou, Michael Chrisofos, Nikolaos Sofikitis and Fotios Dimitriadis
Biomedicines 2025, 13(9), 2051; https://doi.org/10.3390/biomedicines13092051 - 22 Aug 2025
Abstract
Letrozole, a third-generation aromatase inhibitor initially developed for breast cancer, has become the preferred first-line agent for ovulation induction (OI), particularly in women with polycystic ovary syndrome (PCOS). This narrative review critically evaluates the efficacy, safety, and clinical applications of letrozole across diverse [...] Read more.
Letrozole, a third-generation aromatase inhibitor initially developed for breast cancer, has become the preferred first-line agent for ovulation induction (OI), particularly in women with polycystic ovary syndrome (PCOS). This narrative review critically evaluates the efficacy, safety, and clinical applications of letrozole across diverse infertility contexts. Compared to clomiphene citrate, letrozole is associated with higher ovulation and live birth rates, a lower risk of multiple gestation, and a more favorable endometrial environment. Its pharmacokinetics—marked by transient estrogen suppression and a short half-life—limit embryonic exposure, supporting its favorable safety profile. Emerging data from large, randomized trials and meta-analyses demonstrate no increase in congenital anomalies, miscarriage, or adverse perinatal outcomes in letrozole-conceived pregnancies. Moreover, maternal side effects are generally mild, and the risk of ovarian hyperstimulation syndrome is low. Letrozole has also shown utility in mild stimulation protocols, fertility preservation for estrogen-sensitive malignancies, and clomiphene-resistant PCOS. Key clinical strategies—such as early-cycle initiation, lowest effective dosing, and individualized monitoring—optimize therapeutic outcomes while minimizing potential risks. While long-term offspring data remain limited and mechanistic concerns persist, current evidence robustly supports letrozole as a safe and effective option for OI, balancing reproductive success with maternal–fetal safety across a range of infertility indications. Full article
(This article belongs to the Special Issue Maternal-Fetal and Neonatal Medicine)
29 pages, 4800 KiB  
Article
Claudin-1 Contributes to Gastrointestinal Stromal Tumors (GIST) Resistance to Imatinib Mesylate (IM) via Regulation of FGFR-Signaling
by Sergei Boichuk, Firyuza Bikinieva, Pavel Dunaev, Aigul Galembikova, Ekaterina Mikheeva, Elena Valeeva, Shinjit Mani, Natalia Khromova, Pavel Kopnin, Leyla Shigapova, Ruslan Deviatiarov, Elena Shagimardanova, Sergey Ryzhkin and Alexey Sabirov
Int. J. Mol. Sci. 2025, 26(17), 8138; https://doi.org/10.3390/ijms26178138 - 22 Aug 2025
Abstract
We previously demonstrated that the activation of FGFR signaling in GIST may be a mechanism of GIST resistance to imatinib mesylate (IM). We show here that IM-resistant GIST cells lacking secondary KIT mutations overexpress claudin-1 on both transcriptional and translational levels. In contrast, [...] Read more.
We previously demonstrated that the activation of FGFR signaling in GIST may be a mechanism of GIST resistance to imatinib mesylate (IM). We show here that IM-resistant GIST cells lacking secondary KIT mutations overexpress claudin-1 on both transcriptional and translational levels. In contrast, a knockdown of CLDN1 or inhibition of its activity by PDS-0330 effectively restored GIST’s sensitivity to IM both in vitro and in vivo. This was evidenced by the increased expression of apoptotic markers (e.g., cleaved PARP and caspase-3) and the decreased proliferation rate of IM-resistant GIST T-1R cells treated with a combination of IM and PDS-0330 (or siRNA CLDN1). In concordance with these findings, a significant synergy was observed between IM and PDS-0330 in GIST T-1R cells. Importantly, decreased tumor size and weight were observed in IM-resistant GIST xenografts treated with a combination of IM and PDS-0330. Furthermore, the combined treatment of IM-resistant tumors induced an increase in intratumoral apoptosis and other changes, as defined by the histopathologic response rate. Based on the co-immunoprecipitation and immunofluorescence microscopy data, we also demonstrated the strong interaction pattern between CLDN1 and FGFR2. Of note, the inhibition or knockdown of CLDN1 effectively decreased the phosphorylation of FGFR2 and FRS-2, a well-known FGFR adaptor protein, thereby illustrating CLDN1’s ability to regulate FGFR-signaling and thereby promote FGFR-mediated survival in KIT-inhibited GIST. Consequently, CLDN1 inhibition in GIST effectively disrupted the FGFR-mediated pathway and re-sensitized tumor cells to IM. In concordance with these data, molecular profiling of CLDN1-inhibited GIST T-1R cells illustrated a significant decrease in the majority of FGFR transcripts, including FGFR2, 3, and 4. Additionally, several FGFR ligands (e.g., FGF14, -19, and -23) were also down-regulated in PDS-0330-treated GIST. Notably, exogenous FGF-2 increased CLDN1 expression in a time-dependent manner. In contrast, pan-FGFR inhibitors effectively reduced CLDN1 levels in IM-resistant GIST T-1R cells, thereby illustrating a cross-talk between CLDN1- and FGFR-mediated pathways in IM-resistant GIST. Based on subcellular fractionation and immunofluorescence microscopy data, we also observed partial relocalization of CLDN1 into the cytoplasm in IM-resistant GIST. Notably, PDS-0330 effectively abrogated this relocalization, suggesting that changes in CLDN1 subcellular distribution might also impact GIST resistance to IM. Lastly, based on our small cohort clinical study (n = 24), we observed the increased expression of CLDN1 in most “high-risk” primary GIST known to be associated with poor prognosis and aggressive behavior, thereby illustrating the prognostic value of increased CLDN1 expression in GIST and providing a further rationale to evaluate the effectiveness of CLDN1 inhibition for GIST therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 981 KiB  
Review
Advancing Medulloblastoma Therapy in Pediatrics: Integrative Molecular Classification and Emerging Treatments
by David T. Kim, Michaela Uloho-Okundaye, Stephen C. Frederico, Santosh Guru, Min J. Kim and Steven D. Chang
Brain Sci. 2025, 15(8), 896; https://doi.org/10.3390/brainsci15080896 - 21 Aug 2025
Abstract
Medulloblastoma (MB), the most common malignant pediatric brain tumor, has undergone reclassification from a histologically defined disease to a genetically stratified spectrum of distinct subgroups: WNT, SHH, Group 3, and Group 4. Advances in molecular profiling, as captured in the 2021 WHO CNS5 [...] Read more.
Medulloblastoma (MB), the most common malignant pediatric brain tumor, has undergone reclassification from a histologically defined disease to a genetically stratified spectrum of distinct subgroups: WNT, SHH, Group 3, and Group 4. Advances in molecular profiling, as captured in the 2021 WHO CNS5 classification, have shown meaningful heterogeneity in terms of tumor biology, prognosis, and therapeutic response. However, translating these insights into precise, less toxic treatments remains an ongoing challenge. This review synthesizes current knowledge on MB subgroup biology, treatment strategies, and emerging therapies such as subgroup-specific inhibitors, immunotherapies, and novel chemotherapeutic regimens. This review also explores risk-adapted approaches while addressing global disparities in access to diagnostics and care. As the field moves toward individualized medicine, closing the gap between molecular understanding and equitable implementation will be crucial to improving outcomes and quality of life for children with medulloblastoma worldwide. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Figure 1

14 pages, 964 KiB  
Review
Optic Pathway Glioma: Current Treatment Approaches and Ongoing Clinical Trials
by Osama Elzaafarany, Sarah Elhomosany, Alexandra Rincones, Vincent Dlugi and Sepideh Mokhtari
Brain Sci. 2025, 15(8), 894; https://doi.org/10.3390/brainsci15080894 - 21 Aug 2025
Abstract
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a [...] Read more.
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a multidisciplinary, patient-specific approach aimed at tumor control while preserving long-term quality of life. Strategies vary based on clinical presentation, ranging from observation in asymptomatic cases to chemotherapy for progressive or symptomatic tumors. Surgical and radiation options are limited due to potential risks and complications. In recent years, advances in molecular characterization have guided the development of targeted therapies, particularly MEK inhibitors, which demonstrate encouraging efficacy and reduced toxicity profiles. In parallel, investigational therapies including immunotherapy and precision medicine-based approaches are under clinical evaluation. This review provides a synthesis of current standard practices, emerging targeted treatments, and ongoing clinical trials, drawing on relevant literature and expert consensus to inform clinicians and families about available therapeutic options. Literature discussed in this review was identified through a non-systematic search of published articles, clinical trial registries, and authoritative guidelines, with selection based on relevance, clinical significance, and contribution to understanding current and emerging management strategies for OPG. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Figure 1

15 pages, 11641 KiB  
Article
Cell-Free DNA Based Next-Generation Sequencing Does Not Differentiate Between Oligoprogression and Systemic Progression in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors—An Explorative Study
by Pim Rozendal, Hanneke Kievit, Paul van der Leest, Idris Bahce, Michiel Pegtel, Harry J. M. Groen, Léon C. van Kempen, T. Jeroen N. Hiltermann and Ed Schuuring
Int. J. Mol. Sci. 2025, 26(16), 8087; https://doi.org/10.3390/ijms26168087 - 21 Aug 2025
Abstract
Immune checkpoint inhibitors (ICIs) are a key treatment for advanced non-small cell lung cancer (NSCLC), but most patients will ultimately experience disease progression due to acquired resistance to ICI. Clinically, it is relevant to differentiate between systemic progression (SP) and oligoprogression (OP). Following [...] Read more.
Immune checkpoint inhibitors (ICIs) are a key treatment for advanced non-small cell lung cancer (NSCLC), but most patients will ultimately experience disease progression due to acquired resistance to ICI. Clinically, it is relevant to differentiate between systemic progression (SP) and oligoprogression (OP). Following SP, ICI treatment is usually discontinued, while in OP, patients are preferably treated with local ablative treatment with continuation of the ICI treatment. However, with progressive disease, it remains difficult to differentiate between true OP or SP. Circulating tumor DNA (ctDNA) analysis provides an accurate real-time reflection of the tumor burden. It remains elusive if ctDNA abundance and/or dynamics can discriminate between OP and SP. Therefore, the aim of this exploratory cohort study is to evaluate whether the sequential molecular tumor profiling of ctDNA is suitable for discriminating between true OP and SP in advanced NSCLC. Patients with stage III/IV NSCLC showing progression after ≥3 months of ICI were included. OP was defined retrospectively by RECIST response ≥ 6 months after local treatment and continued ICIs. Serial plasma samples were analyzed using the AVENIO ctDNA Expanded NGS assay targeting 77 cancer-related genes. Twenty patients (6 OP, 14 SP) were included. Somatic alterations were detected in 16 patients (median 4 mutations). No significant differences in baseline ctDNA levels, changes at progression, or mutation patterns were observed between OP and SP. Although ctDNA levels generally decreased early after the start of ICI treatment, and were increased at disease progression, mutational profiles of the 77 genes using the AVENIO Expanded ctDNA panel did not distinguish OP from SP. Full article
Show Figures

Figure 1

17 pages, 1404 KiB  
Article
Design, Synthesis and Herbicidal Activity of 5-(1-Amino-4-phenoxybutylidene)barbituric Acid Derivatives Containing an Enamino Diketone Motif
by Ke Chen, Shumin Wang, Shuyue Fu, Yuxiao Zhang, Wei Gao, Jin Liu, Rui Liu and Kang Lei
Molecules 2025, 30(16), 3445; https://doi.org/10.3390/molecules30163445 - 21 Aug 2025
Viewed by 1
Abstract
In continuation of our efforts to identify novel herbicide lead compounds, twenty new 5-(1-amino-4-phenoxybutylidene)barbituric acid derivatives containing an enamino diketone motif were synthesized and evaluated for their herbicidal activities. The greenhouse bioassay results indicated that several of the target compounds, including BA-1, [...] Read more.
In continuation of our efforts to identify novel herbicide lead compounds, twenty new 5-(1-amino-4-phenoxybutylidene)barbituric acid derivatives containing an enamino diketone motif were synthesized and evaluated for their herbicidal activities. The greenhouse bioassay results indicated that several of the target compounds, including BA-1, BA-2, BA-5, BA-18, and BA-20, exhibited notable post-emergence herbicidal activity, with sum inhibition rates exceeding 70% at a dosage of 150 g ha−1, which was superior to that of the commercial herbicide flumiclorac-pentyl (FP). The structure–activity relationship analysis demonstrated that the steric and electronic effects of the R group, as well as the lipophilicity of the target compounds, significantly influenced herbicidal activity. Among these, BA-1 was identified as a promising herbicide lead compound due to its high total herbicidal efficacy, broad-spectrum activity, and favorable crop safety profile. Molecular simulation studies indicated that BA-1 binds effectively to Nicotiana tabacum protoporphyrinogen IX oxidase (NtPPO), suggesting its potential as a novel PPO inhibitor. This study highlights BA-1 as a promising lead compound for the development of novel PPO-inhibiting herbicides. Full article
Show Figures

Figure 1

13 pages, 2090 KiB  
Case Report
Immune Checkpoint Inhibitor-Induced Ocular Toxicity: A Case of Pembrolizumab-Associated Corneal Ulceration and Evisceration
by Mario Caldarelli, Donatella Brisinda, Giuseppe De Matteis, Francesco De Vito, Gloria Gambini, Rossella Cianci and Giovanni Gambassi
Reports 2025, 8(3), 154; https://doi.org/10.3390/reports8030154 - 21 Aug 2025
Viewed by 4
Abstract
Background and Clinical Significance: Immune checkpoint inhibitors (ICIs) ushered in a new era in cancer treatment, but alongside their efficacy is an adverse event profile that involves the immune system as a whole and may impact several organs. Case Presentation: We present the [...] Read more.
Background and Clinical Significance: Immune checkpoint inhibitors (ICIs) ushered in a new era in cancer treatment, but alongside their efficacy is an adverse event profile that involves the immune system as a whole and may impact several organs. Case Presentation: We present the case of a 68-year-old woman with a diagnosis of cervical cancer treated with pembrolizumab who developed progressively steroid-refractory chronic diarrhea and ensuing visual problems. Topical antibiotics failed to heal a corneal ulcer in the left eye, necessitating evisceration. Imaging showed intestinal pneumatosis without ischemia, and there was immediate clinical improvement after initiation of corticosteroid therapy. This clinical picture—steroid-dependent colitis and immune-mediated uveitis associated with secondary bacterial infection—was coded as an immune-related adverse event (irAE) resulting from ICI treatment. Because of the prompt and complete regression of the symptoms upon corticosteroid therapy, this was considered as a criterion for the final diagnosis. Conclusions: The case highlights the complexity and potential severity of irAEs that need to be appropriately identified and promptly managed by multidisciplinary teams. Full article
Show Figures

Figure 1

30 pages, 3697 KiB  
Article
Characteristics of Intestinal Barrier State and Immunoglobulin-Bound Fraction of Stool Microbiota in Advanced Melanoma Patients Undergoing Anti-PD-1 Therapy
by Bernadeta Drymel, Katarzyna Tomela, Łukasz Galus, Agnieszka Olejnik-Schmidt, Jacek Mackiewicz, Mariusz Kaczmarek, Andrzej Mackiewicz and Marcin Schmidt
Int. J. Mol. Sci. 2025, 26(16), 8063; https://doi.org/10.3390/ijms26168063 - 20 Aug 2025
Viewed by 125
Abstract
The gut microbiota is recognized as one of the extrinsic factors that modulate the clinical outcomes of immune checkpoint inhibitors (ICIs), such as inhibitors targeting programmed cell death protein 1 (PD-1), in cancer patients. However, the link between intestinal barrier, which mutually interacts [...] Read more.
The gut microbiota is recognized as one of the extrinsic factors that modulate the clinical outcomes of immune checkpoint inhibitors (ICIs), such as inhibitors targeting programmed cell death protein 1 (PD-1), in cancer patients. However, the link between intestinal barrier, which mutually interacts with the gut microbiota, and therapeutic effects has not been extensively studied so far. Therefore, the primary goal of this study was to investigate the relationship between intestinal barrier functionality and clinical outcomes of anti-PD-1 therapy in patients with advanced melanoma. Fecal samples were collected from 64 patients before and during anti-PD-1 therapy. The levels of zonulin, calprotectin, and secretory immunoglobulin A (SIgA), which reflect intestinal permeability, inflammation, and immunity, respectively, were measured in fecal samples (n = 115) using an Enzyme-Linked Immunosorbent Assay (ELISA). Moreover, the composition of the immunoglobulin (Ig)-bound (n = 108) and total stool microbiota (n = 117) was determined by the V3–V4 region of 16S rRNA gene sequencing. ELISA indicated a higher baseline concentration of fecal SIgA in patients with favorable clinical outcomes than those with unfavorable ones. Moreover, high baseline concentrations of intestinal barrier state biomarkers correlated with survival outcomes. In the cases of fecal zonulin and fecal SIgA, there was a positive correlation, while in the case of fecal calprotectin, there was a negative correlation. Furthermore, there were differences in the microbial profiles of the Ig-bound stool microbiota between patients with favorable and unfavorable clinical outcomes and their changes during treatment. Collectively, these findings indicate an association between intestinal barrier functionality and clinical outcomes of anti-PD-1 therapy in advanced melanoma patients. Full article
Show Figures

Figure 1

21 pages, 1385 KiB  
Review
Mistletoe in Cancer Cell Biology: Recent Advances
by Chang-Eui Hong and Su-Yun Lyu
Curr. Issues Mol. Biol. 2025, 47(8), 672; https://doi.org/10.3390/cimb47080672 - 20 Aug 2025
Viewed by 215
Abstract
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties, [...] Read more.
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties, and clinical applications. We conducted a comprehensive analysis of controlled studies, mechanistic investigations, and real-world evidence published between 2020 and 2025. The discovery of mistletoe-induced immunogenic cell death (ICD) represents a paradigm shift in understanding its anticancer effects. Mistletoe extracts trigger endoplasmic reticulum stress, leading to calreticulin exposure in 18–51% of cancer cells and a 7-fold increase in adenosine triphosphate (ATP) release. Three-dimensional culture models revealed enhanced macrophage reprogramming effects, with a 15.8% increase in pro-inflammatory interleukin (IL)-6 and a 26.4% reduction in immunosuppressive IL-10. Real-world evidence from over 400 non-small-cell lung cancer patients shows that combining mistletoe with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors doubles median overall survival (6.8 to 13.8 months), with biomarker-selected populations experiencing up to a 91.2% reduction in death risk. The Johns Hopkins Phase I trial established intravenous administration safety at 600 mg three times weekly. Advanced analytical approaches including metabolomics, chronobiology, and machine learning are enabling precision medicine applications. These findings position mistletoe as a scientifically validated component of integrative oncology, bridging traditional medicine with evidence-based cancer care. Future research should focus on ferroptosis mechanisms, single-cell immune profiling, and standardized clinical protocols. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment: 2nd Edition)
Show Figures

Figure 1

7 pages, 847 KiB  
Case Report
Treatment of Resistant TPM3::ALK + Fusion Protein Metastatic Inflammatory Myofibroblastic Tumor with ALK Targeting and Immune Checkpoint Inhibitor Combined Therapy
by Leonardo Simonelli, Sebastian James Khairkhahan, Francesco Alessandrino, Elizabeth Anne Montgomery and Gina D’Amato
Precis. Oncol. 2025, 1(1), 1; https://doi.org/10.3390/precisoncol1010001 - 20 Aug 2025
Viewed by 142
Abstract
Background and Clinical Significance: Inflammatory myofibroblastic tumors (IMTs) are rare neoplasms with low metastatic potential but a high recurrence rate. Approximately 60–80% of IMTs harbor anaplastic lymphoma kinase (ALK) gene rearrangements, making ALK inhibitors (ALKis) a key therapeutic option. However, resistance to ALKis [...] Read more.
Background and Clinical Significance: Inflammatory myofibroblastic tumors (IMTs) are rare neoplasms with low metastatic potential but a high recurrence rate. Approximately 60–80% of IMTs harbor anaplastic lymphoma kinase (ALK) gene rearrangements, making ALK inhibitors (ALKis) a key therapeutic option. However, resistance to ALKis remains a significant clinical challenge, necessitating alternative treatment strategies. Case Presentation: We report the case of a 23-year-old woman diagnosed with a metastatic TPM3::ALK fusion-positive IMT, initially managed with crizotinib and ceritinib. Disease progression prompted a switch to alectinib, followed by lorlatinib in combination with immune checkpoint inhibitors (nivolumab + ipilimumab). The patient tolerated this regimen well, with manageable side effects, and has remained progression-free for over three years, demonstrating the potential efficacy of ALK-ICI combination therapy. Conclusions: This case highlights the rapid development of resistance to first- and second-generation ALKis and the emerging role of immune checkpoint inhibitors (ICIs) in IMT treatment. PD-L1 expression in ALK-positive IMTs suggests an immune escape mechanism, supporting combination ALK-ICI therapy as a viable approach. The successful long-term disease control achieved in this case underscores the importance of molecular profiling in guiding personalized treatment strategies for IMT. This report contributes to the growing body of evidence supporting precision medicine and immunotherapy in rare sarcomas. Full article
Show Figures

Figure 1

38 pages, 2700 KiB  
Review
From Microbial Switches to Metabolic Sensors: Rewiring the Gut–Brain Kynurenine Circuit
by Masaru Tanaka and László Vécsei
Biomedicines 2025, 13(8), 2020; https://doi.org/10.3390/biomedicines13082020 - 19 Aug 2025
Viewed by 208
Abstract
The kynurenine (KYN) metabolic pathway sits at the crossroads of immunity, metabolism, and neurobiology, yet its clinical translation remains fragmented. Emerging spatial omics, wearable chronobiology, and synthetic microbiota studies reveal that tryptophan (Trp) metabolism is regulated by distinct cellular “checkpoints” along the gut–brain [...] Read more.
The kynurenine (KYN) metabolic pathway sits at the crossroads of immunity, metabolism, and neurobiology, yet its clinical translation remains fragmented. Emerging spatial omics, wearable chronobiology, and synthetic microbiota studies reveal that tryptophan (Trp) metabolism is regulated by distinct cellular “checkpoints” along the gut–brain axis, finely modulated by sex differences, circadian rhythms, and microbiome composition. However, current interventions tackle single levers in isolation, leaving a key gap in the precision control of Trp’s fate. To address this, we drew upon an extensive body of the primary literature and databases, mapping enzyme expression across tissues at single-cell resolution and linking these profiles to clinical trials investigating dual indoleamine 2,3-dioxygenase 1 (IDO1)/tryptophan 2,3-dioxygenase (TDO) inhibitors, engineered probiotics, and chrono-modulated dosing strategies. We then developed decision-tree algorithms that rank therapeutic combinations against biomarker feedback loops derived from real-time saliva, plasma, and stool metabolomics. This synthesis pinpoints microglial and endothelial KYN hotspots, quantifies sex-specific chronotherapeutic windows, and identifies engineered Bifidobacterium consortia and dual inhibitors as synergistic nodes capable of reducing immunosuppressive KYN while preserving neuroprotective kynurenic acid. Here, we highlight a framework that couples lifestyle levers, bio-engineered microbes, and adaptive pharmaco-regimens into closed-loop “smart protocols.” By charting these intersections, this study offers a roadmap for biomarker-guided, multidisciplinary interventions that could recalibrate KYN metabolic activity across cancer, mood, neurodegeneration, and metabolic disorders, appealing to clinicians, bioengineers, and systems biologists alike. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

20 pages, 984 KiB  
Review
Maternal HIV Infection and Antiretroviral Therapy in Pregnancy: Implications for Vertical Transmission, Fetal Safety, and Long-Term Infant Outcomes
by Tudor Fleșeriu, Lorena Elena Meliț, Cristina Oana Mărginean, Adrian Vlad Pop and Anca-Meda Văsieșiu
Pathogens 2025, 14(8), 818; https://doi.org/10.3390/pathogens14080818 - 19 Aug 2025
Viewed by 338
Abstract
HIV mother-to-child transmission (MTCT) continues to pose a significant public health challenge, especially in regions with limited resources, although the worldwide distribution of antiretroviral therapy (ART) has drastically lowered the risk of vertical transmission to even below 1% in some regions. There are [...] Read more.
HIV mother-to-child transmission (MTCT) continues to pose a significant public health challenge, especially in regions with limited resources, although the worldwide distribution of antiretroviral therapy (ART) has drastically lowered the risk of vertical transmission to even below 1% in some regions. There are still uncertainties regarding the safety of some ART regimens during pregnancy and their longer-term effects on infants who are perinatally exposed to HIV but remain uninfected. This review explores current evidence regarding the interplay between maternal HIV infection, ART during pregnancy, and both maternal and pediatric outcomes. Particular attention is given to the risk/benefit ratio surrounding different drug classes, with integrase inhibitors seeming promising choices in MTCT due to their rapid viral suppression and favorable safety profiles. Meanwhile, regimens containing protease inhibitors or nucleoside reverse transcriptase inhibitors have been linked to some adverse outcomes such as low birth weight, growth restriction, and potential mitochondrial or metabolic disturbances. Although ART remains central in preventing MTCT, a deeper understanding of its effects on fetal development and postnatal health is needed, and it should be thoroughly monitored through future research and longitudinal surveillance. Full article
Show Figures

Figure 1

19 pages, 1400 KiB  
Systematic Review
Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions
by Giovanni Pennisi, Federico Valeri, Benedetta Burattini, Placido Bruzzaniti, Carmelo Lucio Sturiale, Andrea Talacchi, Fabio Papacci, Alessandro Olivi and Giuseppe Maria Della Pepa
Cancers 2025, 17(16), 2687; https://doi.org/10.3390/cancers17162687 - 18 Aug 2025
Viewed by 350
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by an immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance and disease progression. Background: Tumor-associated macrophages (TAMs), comprising both resident microglia and bone marrow–derived macrophages, play a central role in supporting tumor growth, [...] Read more.
Glioblastoma (GBM) is an aggressive brain tumor characterized by an immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance and disease progression. Background: Tumor-associated macrophages (TAMs), comprising both resident microglia and bone marrow–derived macrophages, play a central role in supporting tumor growth, angiogenesis, and immune evasion. Most TAMs adopt an M2-like immunosuppressive phenotype, making them a promising target for immunomodulatory strategies in GBM. Method: According to PRISMA guidelines, we conducted a systematic literature review and recruited eligible studies focused on therapeutic approaches targeting TAMs in GBM, emphasizing mechanisms of action, efficacy, and challenges. Data extraction focused on therapeutic classes, outcomes, and TAM-related biomarkers. Results: We identified 30 studies meeting the inclusion criteria. These therapies are categorized into three main strategies: inhibition of TAM recruitment, enhancement of TAM-mediated phagocytosis, and reprogramming of TAMs. Combination strategies, including TAM-targeting with checkpoint inhibitors, nanoparticles, and oncolytic viruses, show synergistic effects in preclinical models. Conclusions: Targeting TAMs represents a multifaceted strategy for GBM treatment. Current evidence underscores the need for combination approaches integrating TAM modulation with existing standard-of-care therapies. Clinical translation remains limited due to challenges such as TAM heterogeneity, plasticity, immunosuppressive therapies, and restricted drug delivery across the blood–brain barrier. Future directions should highlight personalized treatments based on detailed TME profiling. Combining TAM-targeted therapies with agents modulating metabolic or immune pathways, and leveraging advanced delivery systems and spatial transcriptomics may improve efficacy. Full article
Show Figures

Figure 1

Back to TopTop