Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,017)

Search Parameters:
Keywords = infrastructure support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 5094 KiB  
Article
Thinking Green: A Place Lab Approach to Citizen Engagement and Indicators for Nature-Based Solutions in a Case Study from Katowice
by Katarzyna Samborska-Goik, Anna Starzewska-Sikorska and Patrycja Obłój
Sustainability 2025, 17(15), 6857; https://doi.org/10.3390/su17156857 - 28 Jul 2025
Abstract
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This [...] Read more.
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This paper presents the findings of surveys conducted within the Place Lab in Katowice, Poland, an initiative developed as part of an international project and used as a participatory tool for co-creating and implementing green infrastructure. The project applies both place-based and people-centred approaches to support European cities in their transition towards regenerative urbanism. Place Lab activities encourage collaboration between local authorities and residents, enhancing awareness and fostering participation in environmental initiatives. The survey data collected during the project allowed for the evaluation of changes in public attitudes and levels of engagement and for the identification of broader societal phenomena that may influence the implementation of nature-based solutions. The findings revealed, for instance, that more women were interested in supporting the project, that residents tended to be sceptical of governmental actions on climate change, and that views were divided on the trade-off between urban infrastructure such as parking and roads and the presence of green areas. Furthermore, questions of responsibility, awareness, and long-term commitment were frequently raised. Building on the survey results and the existing literature, the study proposes a set of indicators to assess the contribution of citizen participation to the adoption of nature-based solutions. While the effectiveness of nature-based solutions in mitigating climate change impacts can be assessed relatively directly, evaluating civic engagement is more complex. Nevertheless, when conducted transparently and interpreted by experts, indicator-based assessment can offer valuable insights. This study introduces a novel perspective by considering not only drivers of engagement but also the obstacles. The proposed indicators provide a foundation for evaluating community readiness and commitment to nature-based approaches and may be adapted for application in other urban settings and in future research on climate resilience strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
21 pages, 15647 KiB  
Article
Research on Oriented Object Detection in Aerial Images Based on Architecture Search with Decoupled Detection Heads
by Yuzhe Kang, Bohao Zheng and Wei Shen
Appl. Sci. 2025, 15(15), 8370; https://doi.org/10.3390/app15158370 - 28 Jul 2025
Abstract
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to [...] Read more.
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to these characteristics and problems, we improved the feature extraction network Inception-ResNet using the Fast Architecture Search (FAS) module and proposed a one-stage anchor-free rotation object detector. The structure of the object detector is simple and only consists of convolution layers, which reduces the number of model parameters. At the same time, the label sampling strategy in the training process is optimized to resolve the problem of insufficient sampling. Finally, a decoupled object detection head is used to separate the bounding box regression task from the object classification task. The experimental results show that the proposed method achieves mean average precision (mAP) of 82.6%, 79.5%, and 89.1% on the DOTA1.0, DOTA1.5, and HRSC2016 datasets, respectively, and the detection speed reaches 24.4 FPS, which can meet the needs of real-time detection. Full article
(This article belongs to the Special Issue Innovative Applications of Artificial Intelligence in Engineering)
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

18 pages, 2270 KiB  
Article
Will Road Infrastructure Become the New Engine of Urban Growth? A Consideration of the Economic Externalities
by Cheng Xue, Yiying Chao, Shangwei Xie and Kebiao Yuan
Sustainability 2025, 17(15), 6813; https://doi.org/10.3390/su17156813 - 27 Jul 2025
Abstract
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains [...] Read more.
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains in justifying whether such investments yield significant economic returns. Drawing on the theory of economic externalities, this study investigates the causal relationship between highway development and regional economic growth, and assesses whether highway construction leads to an acceleration in growth rates. Utilizing panel data from 14 Chinese cities spanning 2000 to 2014, the synthetic control method (SCM) is employed to evaluate the economic externalities of highway investment. The results indicate a positive impact on surrounding industries. Furthermore, a growth rate forecasting analysis based on Back-Propagation Neural Networks (BPNNs) is conducted using industrial enterprise data from 2005 to 2014. The growth rate in the treated city is 1.144%, which is close to the real number 1.117%, higher than the number for the weighted control group, which is 1.000%. The findings suggest that the growth rate of total industrial output improved significantly, confirming the existence of positive spillover effects. This not only enriches the empirical literature on transport infrastructure but also provides targeted enlightenment for the sustainable development of urban economy in terms of policy guidance. Full article
Show Figures

Figure 1

28 pages, 17529 KiB  
Article
Intelligent Functional Clustering and Spatial Interactions of Urban Freight System: A Data-Driven Framework for Decoding Heavy-Duty Truck Behavioral Heterogeneity
by Ruixu Pan, Quan Yuan, Chen Liu, Jiaming Cao and Xingyu Liang
Appl. Sci. 2025, 15(15), 8337; https://doi.org/10.3390/app15158337 - 26 Jul 2025
Viewed by 56
Abstract
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, [...] Read more.
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, frequency, etc., but there is a lack of in-depth analyses of the spatial interaction between freight travel and freight functional clustering, which restricts a systematic understanding of freight systems. Against this backdrop, this study develops a data-driven framework to analyze HDT behavioral heterogeneity and its spatial interactions with a freight functional zone in Shanghai. Leveraging the high-frequency trajectory data of nearly 160,000 HDTs across seven types, we construct a set of regional indicators and employ hierarchical clustering, dividing the city into six freight functional zones. Combined with the HDTs’ application scenarios, functional characteristics, and trip distributions, we further analyze the spatial interaction between the HDTs and clustered zones. The results show that HDT travel patterns are not merely responses to freight demand but complex reflections of urban industrial structures, infrastructure networks, and policy environments. By embedding vehicle behaviors within their spatial and functional contexts, this study reveals a layered freight system in which each HDT type plays a distinct role in supporting economic activities. This research provides a new perspective for deeply understanding the formation mechanisms of HDT trip distributions and offers critical evidence for promoting targeted freight management strategies. Full article
(This article belongs to the Special Issue Intelligent Logistics and Supply Chain Systems)
Show Figures

Figure 1

37 pages, 1524 KiB  
Article
Unveiling the Interplay of Climate Vulnerability and Social Capital: Insights from West Bengal, India
by Sayari Misra, Md Saidul Islam and Suchismita Roy
Climate 2025, 13(8), 160; https://doi.org/10.3390/cli13080160 - 26 Jul 2025
Viewed by 36
Abstract
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a [...] Read more.
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a low-climate-prone village in the land-locked district of Paschim Bardhaman, West Bengal, India, with no extreme climate events. A total of 85 participants (44 in Brajaballavpur, 41 in Jemua) were selected through purposive sampling. Using a comparative qualitative research design grounded in ethnographic fieldwork, data were collected through household interviews, Participatory Rural Appraisals (PRAs), Focus Group Discussions (FGDs), and Key Informant Interviews (KIIs), and analyzed manually using inductive thematic analysis. Findings reveal that bonding and bridging social capital were more prominent in Brajaballavpur, where dense horizontal ties supported collective action during extreme weather events. Conversely, linking social capital was more visible in Jemua, where participants more frequently accessed formal institutions such as the Gram Panchayat, local NGOs, and government functionaries that facilitated grievance redressal and information access, but these networks were concentrated among more politically connected individuals. The study concludes that climate vulnerability shapes the type, strength, and strategic use of social capital in village communities. While bonding and bridging ties are crucial in high-risk contexts, linking capital plays a critical role in enabling long-term social structures in lower-risk settings. The study contributes to both academic literature and policy design by offering a relational and place-based understanding of climate vulnerability and social capital. Full article
(This article belongs to the Special Issue Sustainable Development Pathways and Climate Actions)
Show Figures

Figure 1

22 pages, 1156 KiB  
Article
An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access Control
by Gangzheng Zhao, Weijie Tan and Changgen Peng
Electronics 2025, 14(15), 2988; https://doi.org/10.3390/electronics14152988 - 26 Jul 2025
Viewed by 76
Abstract
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges [...] Read more.
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges in privacy leakage risks. Existing academic research indicates current proxy re-encryption schemes remain insufficient for cloud access control scenarios characterized by diversified user requirements and personalized permission management, thus failing to fulfill the security needs of emerging computing paradigms. To resolve these issues, a revocable attribute-based proxy re-encryption scheme supporting policy-hiding is proposed. Data owners encrypt data and upload it to the blockchain while concealing attribute values within attribute-based encryption access policies, effectively preventing sensitive information leaks and achieving fine-grained secure data sharing. Simultaneously, proxy re-encryption technology enables verifiable outsourcing of complex computations. Furthermore, the SM3 (SM3 Cryptographic Hash Algorithm) hash function is embedded in user private key generation, and key updates are executed using fresh random factors to revoke malicious users. Ultimately, the scheme proves indistinguishability under chosen-plaintext attacks for specific access structures in the standard model. Experimental simulations confirm that compared with existing schemes, this solution delivers higher execution efficiency in both encryption/decryption and revocation phases. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

18 pages, 529 KiB  
Article
Perspectives on Mail-Based Fecal Testing for Colorectal Cancer Screening in Bulgaria: A Survey of Gastroenterologists
by Kostadin Yordanov Dimitrov, Vladislav Velchev, Nely Danailova, Elena Staneva, Teodor Koparanov, Trifon Diankov, Teodora Gencheva, Bozhidar Valkov, Eleonora Hristova-Atanasova, Georgi Iskrov and Rumen Stefanov
Gastroenterol. Insights 2025, 16(3), 25; https://doi.org/10.3390/gastroent16030025 - 26 Jul 2025
Viewed by 130
Abstract
Background: Bulgaria carries a high burden of colorectal cancer (CRC) but, at the start of this study, lacked a nationwide organized screening program. Understanding specialist views (particularly on mail-based fecal testing) is essential for effective policy development. Objective: The objective is to assess [...] Read more.
Background: Bulgaria carries a high burden of colorectal cancer (CRC) but, at the start of this study, lacked a nationwide organized screening program. Understanding specialist views (particularly on mail-based fecal testing) is essential for effective policy development. Objective: The objective is to assess the attitudes towards, practices of, and perceived barriers to CRC screening among Bulgarian gastroenterologists, with a focus on the feasibility of mail-based fecal occult blood testing (FOBT). Methods: A cross-sectional survey of 38 gastroenterologists examined clinical use of FOBT, screening method preferences, and perceived systemic and patient-level barriers to CRC screening. Results: Among respondents, 57.89% reported using FOBT in clinical practice, and 71.05% indicated they would undergo the test themselves and recommend it to relatives. Colonoscopy was the preferred diagnostic tool for 84.21% of participants; however, the existing literature raises concerns about its feasibility for large-scale population screening. Key systemic barriers, rated on a 5-point Likert scale, included financial constraints (mean = 3.08), inadequate infrastructure (2.89), and healthcare workforce shortages (2.71). Patient-level barriers were led by low health literacy (4.13), lack of motivation (3.95), and procedural fears (3.26). A majority (84.38%) believed that mail-based FOBT would increase screening uptake, and 57.89% supported annual distribution of test kits. Nearly all respondents (97.37%) favored initiating screening at age 50. Conclusions: This study highlights strong support among Bulgarian gastroenterologists for a national CRC screening program, with particular endorsement of mail-based FOBT. Despite acknowledged systemic and population-level barriers, the findings suggest that such an approach could increase screening coverage, promote early detection, and support the strategic rollout of Bulgaria’s emerging cancer control initiatives. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

20 pages, 1034 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 116
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
37 pages, 11546 KiB  
Review
Advances in Interferometric Synthetic Aperture Radar Technology and Systems and Recent Advances in Chinese SAR Missions
by Qingjun Zhang, Huangjiang Fan, Yuxiao Qin and Yashi Zhou
Sensors 2025, 25(15), 4616; https://doi.org/10.3390/s25154616 - 25 Jul 2025
Viewed by 226
Abstract
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories [...] Read more.
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories and techniques have continued to develop. They have been applied significantly in various fields, such as in the generation of global topography maps, monitoring of ground deformation, marine observations, and disaster reduction efforts. This article classifies InSAR into repeated-pass interference and single-pass interference. Repeated-pass interference mainly includes D-InSAR, PS-InSAR and SBAS-InSAR. Single-pass interference mainly includes CT-InSAR and AT-InSAR. Recently, China has made significant progress in the field of SAR satellite development, successfully launching several satellites equipped with interferometric measurement capabilities. These advancements have driven the evolution of spaceborne InSAR systems from single-frequency to multi-frequency, from low Earth orbit to higher orbits, and from single-platform to multi-platform configurations. These advancements have supported high precision and high-temporal-resolution land observation, and promoted the broader application of InSAR technology in disaster early warning, ecological monitoring, and infrastructure safety. Full article
Show Figures

Figure 1

30 pages, 2623 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 78
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

33 pages, 629 KiB  
Article
Beyond the Guestroom: Financial and Promotional Dimensions of Eco-Friendly Rural Hospitality in Agricultural Landscapes
by Aleksandra Vujko, Dušan Mandić, Aleksa Panić, Maja Obradović, Ana Obradović, Ilija Savić and Ivana Brdar
Agriculture 2025, 15(15), 1610; https://doi.org/10.3390/agriculture15151610 - 25 Jul 2025
Viewed by 99
Abstract
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from [...] Read more.
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from 393 farm-based accommodation stakeholders, this research identifies sustainable entrepreneurship as comprising six interconnected dimensions: Economic Resilience and Diversification, Sociocultural Integration, Environmental and Regional Commitment, Market Visibility and Strategic Communication, Quality Assurance and Institutional Support, and Perceived Value and Branding. This multidimensional and hierarchically structured framework reflects the complex yet coherent nature of sustainability-driven entrepreneurship in cooperative tourism networks. The findings confirm the multidimensional nature of sustainable entrepreneurship and support the hypothesized structural relationships. The UaB network is presented as a transferable model that demonstrates how cooperative frameworks can enhance sustainability, regional identity, and rural revitalization, offering valuable insights and practical guidance for rural regions in the Western Balkans, where economic challenges, depopulation, and underdeveloped tourism infrastructure prevail. By illustrating a successful cooperative approach rooted in sustainability and regional identity, this study contributes to policy-making aimed at fostering resilient, culturally rich, and environmentally responsible rural tourism entrepreneurship in transitioning contexts. Full article
Show Figures

Figure 1

17 pages, 655 KiB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Viewed by 173
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
Show Figures

Figure 1

21 pages, 1296 KiB  
Article
Integrating the IoT and New Energy to Promote a Sustainable Low-Carbon Economy
by Yan Chen, Yuqi Hou and Jiayi Lyu
Sustainability 2025, 17(15), 6755; https://doi.org/10.3390/su17156755 - 24 Jul 2025
Viewed by 208
Abstract
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic [...] Read more.
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic interrelationship between China’s IoT index (IoT) and the New Energy Index (NEI). Quantitative analysis reveals significant time-varying characteristics and bidirectional causal complexity in the interaction between the IoT and new energy. The IoT has a dual-edged impact on the development of new sources of energy. In the long run, the IoT plays a dominant role in incentivizing new energy, helping to enhance its stability and economic value. However, during stages characterized by technological bottlenecks or resource competition, the high energy consumption of IoT infrastructure may suppress the investment returns of new energy. Simultaneously, new energy has both positive and negative impacts on the IoT. On the one hand, new energy provides low-cost, sustainable power to support the IoT, driving the construction of the IoT ecosystem. On the other hand, it may threaten the continuity of IoT power supply, and the complexity of standardization and regulation in the sector may constrain the development of the IoT. This study provides a fresh perspective on promoting the integration of digital technology and green energy, uncovering nonlinear trade-offs between innovation-driven growth and carbon reduction goals, and offering policy insights for cross-sectoral collaboration to achieve sustainability. Full article
(This article belongs to the Special Issue Advances in Low-Carbon Economy Towards Sustainability)
Show Figures

Figure 1

20 pages, 2319 KiB  
Article
Sustainability Synergies Between Water Governance and Agrotourism Development in the Semi-Arid Climate: A Case Study of Esmeraldas Province, Ecuador
by Eliana Ivanova Cuero Espinoza, Qudus Adeyi, Mirza Junaid Ahmad, Hwa-Seok Hwang and Kyung-Sook Choi
Water 2025, 17(15), 2215; https://doi.org/10.3390/w17152215 - 24 Jul 2025
Viewed by 149
Abstract
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water [...] Read more.
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water governance can support agrotourism development in Esmeraldas Province, Ecuador. This study combined policy gaps analysis, stakeholder surveys (policymakers, farmers, community leaders, and tourism operators), and water availability using the Standardized Precipitation Evapotranspiration Index (SPEI) from 1980 to 2022. The results revealed a lack of policy regulation and water infrastructure as the major governance gaps that need more intervention. The survey respondents indicated that water is mainly used for domestic and economic activities and the conservation of natural ecosystems. The SPEI revealed a significant drought trend falling below −3, with severe drought years coinciding with many crop losses and a fall in tourism. This study highlights the interconnection between water governance and agrotourism in Esmeraldas, Ecuador, proposing a strategic framework that incorporates adaptive governance principles and inclusive participation mechanisms, emphasizing targeted capacity building to strengthen water management practices and enhance the Sustainable Development Goals for agrotourism resilience. Full article
(This article belongs to the Special Issue Water: Economic, Social and Environmental Analysis)
Show Figures

Figure 1

Back to TopTop