Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = infrared polarization imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2797 KiB  
Review
All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review
by Shinpei Ogawa, Misaki Hanaoka, Manabu Iwakawa, Shoichiro Fukushima and Masaaki Shimatani
Sensors 2025, 25(12), 3781; https://doi.org/10.3390/s25123781 - 17 Jun 2025
Viewed by 692
Abstract
Infrared imaging has gained considerable attention across diverse fields, including security, surveillance, and environmental monitoring. The need to minimize size, weight, power, and cost (SWaP-C) poses challenges for conventional optical systems like refractive lenses. Metalenses with subwavelength surface patterns have emerged as promising [...] Read more.
Infrared imaging has gained considerable attention across diverse fields, including security, surveillance, and environmental monitoring. The need to minimize size, weight, power, and cost (SWaP-C) poses challenges for conventional optical systems like refractive lenses. Metalenses with subwavelength surface patterns have emerged as promising solutions to address these limitations. This review provides a comprehensive analysis of all-dielectric metalenses for long-wavelength infrared (LWIR) imaging applications, a critical spectral region for human detection and analytical applications (such as gas analysis). We examine the limitations of conventional infrared (IR) lens materials and highlight the performance advantages of LWIR metalenses. Key design principles, including chromatic and achromatic lens configurations, are discussed alongside their imaging performance. Additionally, we review advanced functionalities such as polarization control, multifocal capabilities, zoom, and reconfigurability. Theoretical performance limits and trade-offs are analyzed to provide insights into design optimization. We identify future challenges related to advanced design methods and fabrication techniques. LWIR metalenses can be expected to overcome the shortcomings of conventional LWIR lenses owing to meta-optics technologies, to achieve SWaP-C and advanced functionalities that cannot be achieved by conventional LWIR lenses. This review will guide researchers in academia and industry to develop LWIR metalenses to advance IR imaging technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

12 pages, 3151 KiB  
Article
Photocurrent Generation and Collection in a WSe2-Based Composite Detector
by Yulin Zhu, Sheng Ni, Fengyi Zhu, Zhenzhi Hu, Changyi Pan, Xuhao Fan, Yuhang Ma, Shian Mi, Changlong Liu, Weiwei Tang, Guanhai Li and Xiaoshuang Chen
Coatings 2025, 15(6), 672; https://doi.org/10.3390/coatings15060672 - 31 May 2025
Viewed by 577
Abstract
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking [...] Read more.
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking spatial factors (e.g., photocurrent generation/collection) with interfacial band alignment. Here, we employ scanning photocurrent microscopy to spatially resolve the processes of photocurrent generation and collection in WSe2-based composite structures. Photocurrent polarity and magnitude at interface reflects interfacial band alignment and potential gradients at metal–WSe2 and WSe2–In2Se3 junctions. Strong electric fields at metal–WSe2 interfaces drive more efficient electron–hole separation and yield higher photocurrents, compared with WSe2–In2Se3 interfaces. The photodetector exhibits broadband detection capabilities from visible to infrared light, achieving a high responsivity of 17.7 A/W and an excellent detectivity of 3.7 × 1012 Jones, as well as fast response times of <113 µs. Furthermore, object imaging with a resolution better than 0.5 mm was successfully demonstrated, highlighting the potential of this photoresponse for practical imaging applications. This work reveals that photocurrent is distributed with a clear dependence on device configuration, offering a new avenue for optimizing 2D material-based photoelectric devices. Full article
Show Figures

Figure 1

18 pages, 9900 KiB  
Article
Doping Characteristics and Band Engineering of InSe for Advanced Photodetectors: A DFT Study
by Wenkai Zhang, Yafei Ning, Hu Li, Chaoqian Xu, Yong Wang and Yuhan Xia
Nanomaterials 2025, 15(10), 720; https://doi.org/10.3390/nano15100720 - 10 May 2025
Viewed by 515
Abstract
Two-dimensional materials have emerged as core components for next-generation optoelectronic devices due to their quantum confinement effects and tunable electronic properties. Indium selenide (InSe) demonstrates breakthrough photoelectric performance, with its remarkable light-responsive characteristics spanning from visible to near-infrared regions, offering application potential in [...] Read more.
Two-dimensional materials have emerged as core components for next-generation optoelectronic devices due to their quantum confinement effects and tunable electronic properties. Indium selenide (InSe) demonstrates breakthrough photoelectric performance, with its remarkable light-responsive characteristics spanning from visible to near-infrared regions, offering application potential in high-speed imaging, optical communication, and biosensing. This study investigates the doping characteristics of InSe using first-principles calculations, focusing on the doping and adsorption behaviors of Argentum (Ag) and Bismuth (Bi) atoms in InSe and their effects on its electronic structure. The research reveals that Ag atoms preferentially adsorb at interlayer vacancies with a binding energy of −2.19 eV, forming polar covalent bonds. This reduces the band gap from the intrinsic 1.51 eV to 0.29–1.16 eV and induces an indirect-to-direct band gap transition. Bi atoms doped at the center of three Se atoms exhibit a binding energy of −2.06 eV, narrowing the band gap to 0.19 eV through strong ionic bonding, while inducing metallic transition at inter-In sites. The introduced intermediate energy levels significantly reduce electron transition barriers (by up to 60%) and enhance carrier separation efficiency. This study links doping sites, electronic structures, and photoelectric properties through computational simulations, offering a theoretical framework for designing high-performance InSe-based photodetectors. It opens new avenues for narrow-bandgap near-infrared detection and carrier transport optimization. Full article
Show Figures

Figure 1

12 pages, 3214 KiB  
Article
High Absorption Broadband Ultra-Long Infrared Absorption Device Based on Nanoring–Nanowire Metasurface Structure
by Jiao Wang, Hua Yang, Zao Yi, Junqiao Wang, Shubo Cheng, Boxun Li and Pinghui Wu
Photonics 2025, 12(5), 451; https://doi.org/10.3390/photonics12050451 - 6 May 2025
Cited by 15 | Viewed by 588
Abstract
Long-wave infrared (LWIR) broadband absorption is of great significance in science and technology. The electromagnetic field energy is absorbed by the metamaterials material, leading to the enhanced light absorption, from which the Metal–Dielectric–Metal (MDM) structure is designed. FDTD simulation calculation indicate that the [...] Read more.
Long-wave infrared (LWIR) broadband absorption is of great significance in science and technology. The electromagnetic field energy is absorbed by the metamaterials material, leading to the enhanced light absorption, from which the Metal–Dielectric–Metal (MDM) structure is designed. FDTD simulation calculation indicate that the bandwidth within which the absorber absorption ratio greater than 90% is 11.04 μm, and the average absorption rate (9.10~20.14 μm) is 93.6%, which can be accounted for by the impedance matching theory. Upon the matching of the impedance of the metamaterial absorber with the impedance of the incident light, the light reflection is reduced to a minimum, and increase the absorption ratio. Meanwhile, the good incidence angle unsensitivity due to the metasurface structural symmetry and the characteristics of the electromagnetic field distribution at different incidence angles. Due to the form regularity of the nanoring–nanowire metasurface structure, the light acts similar in different polarization directions, and the surface plasmon resonance plays a key role. Using FDTD electromagnetic field analysis to visualize the electric field and magnetic field strength distribution within the absorber, the electromagnetic field at the interface in the nanoring–nanowire metasurface structure, promote the surface plasmon resonance and interaction with damaged materials, and improve the light absorption efficiency. Moreover, the different microstructures and the electrical and optical properties of different top materials affect the light absorption. Meanwhile, adjusting the absorption layer thickness and periodic geometry parameters will also change the absorption spectrum. The absorber has high practical value in thermal electronic devices, infrared imaging, and thermal detection. Full article
(This article belongs to the Special Issue Thermal Radiation and Micro-/Nanophotonics)
Show Figures

Figure 1

9 pages, 1596 KiB  
Article
Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
by Shenglan Wu, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong and Shuang Liu
Nanomaterials 2025, 15(9), 678; https://doi.org/10.3390/nano15090678 - 29 Apr 2025
Viewed by 479
Abstract
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance [...] Read more.
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance of the absorber reaches the peak values of 0.87 and 1.0 in the target bands (3–5 μm and 8–14 μm), while maintaining a low absorptance of about 0.2 in the non-working bands of 5–8 μm, with excellent spectral selectivity. By analyzing the Poynting vector and loss distribution, the synergistic mechanism of the ultra-thin metal localized enhancement effect, impedance matching, and intrinsic absorption of the material is revealed. This structure exhibits good polarization-insensitive characteristics and angle robustness within a large incident angle range, showing strong adaptability to complex optical field environments. Moreover, the proposed planarized structure design is compatible with standard fabrication processes and has good scalability, which can be applied to other electromagnetic wave bands. This research provides new design ideas and technical solutions for advanced optoelectronic applications such as radiation cooling, infrared stealth, and thermal radiation regulation. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

10 pages, 4624 KiB  
Article
Broadband and Wide Field-of-View Refractive and Meta-Optics Hybrid Imaging System for Mid-Wave Infrared
by Bo Liu, Yunqiang Zhang, Zhu Li, Bingyan Wei, Xuetao Gan and Xin Xie
Nanomaterials 2025, 15(7), 566; https://doi.org/10.3390/nano15070566 - 7 Apr 2025
Viewed by 539
Abstract
We propose a wide field-of-view (FOV) refractive and meta-optics hybrid imaging system designed for the mid-wave infrared spectrum (3–5 μm) to address the challenge of high-quality imaging in wide FOV applications. The system consists of only three refractive lenses and two metasurfaces (one [...] Read more.
We propose a wide field-of-view (FOV) refractive and meta-optics hybrid imaging system designed for the mid-wave infrared spectrum (3–5 μm) to address the challenge of high-quality imaging in wide FOV applications. The system consists of only three refractive lenses and two metasurfaces (one functioning as a circular polarizer and the other as a phase element), with a total length of 29 mm. Through a detailed analysis of modulation transfer function curves and spot diagrams, the system achieves 178° FOV while maintaining exceptional imaging performance across a temperature range of −40 °C to 60 °C. The system demonstrates the potential for extending applications to other wavelengths and scenarios, thereby contributing to the advancement of high-performance compact optical systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photonics, Plasmonics and Metasurfaces)
Show Figures

Figure 1

31 pages, 24332 KiB  
Article
IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing
by Shizun Sun, Shuo Han, Junwei Xu, Jie Zhao, Ziyu Xu, Lingjie Li, Zhaoming Han and Bo Mo
Sensors 2025, 25(7), 2169; https://doi.org/10.3390/s25072169 - 29 Mar 2025
Viewed by 554
Abstract
In foggy environments, infrared images suffer from reduced contrast, degraded details, and blurred objects, which impair detection accuracy and real-time performance. To tackle these issues, we propose IDDNet, a lightweight infrared object detection network that integrates multi-scale fusion dehazing. IDDNet includes a multi-scale [...] Read more.
In foggy environments, infrared images suffer from reduced contrast, degraded details, and blurred objects, which impair detection accuracy and real-time performance. To tackle these issues, we propose IDDNet, a lightweight infrared object detection network that integrates multi-scale fusion dehazing. IDDNet includes a multi-scale fusion dehazing (MSFD) module, which uses multi-scale feature fusion to eliminate haze interference while preserving key object details. A dedicated dehazing loss function, DhLoss, further improves the dehazing effect. In addition to MSFD, IDDNet incorporates three main components: (1) bidirectional polarized self-attention, (2) a weighted bidirectional feature pyramid network, and (3) multi-scale object detection layers. This architecture ensures high detection accuracy and computational efficiency. A two-stage training strategy optimizes the model’s performance, enhancing its accuracy and robustness in foggy environments. Extensive experiments on public datasets demonstrate that IDDNet achieves 89.4% precision and 83.9% AP, showing its superior accuracy, processing speed, generalization, and robust detection performance. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 7662 KiB  
Article
Pre-Launch Day-Night Band Radiometric Performance of JPSS-3 and -4 VIIRS
by Daniel Link, Thomas Schwarting, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2025, 17(7), 1111; https://doi.org/10.3390/rs17071111 - 21 Mar 2025
Cited by 1 | Viewed by 396
Abstract
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that [...] Read more.
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that end, each instrument underwent a comprehensive sensor-level test campaign at the Raytheon Technologies, El Segundo facility, in both ambient and thermal-vacuum environments. Unique among the 22 VIIRS sensing bands is the day-night band (DNB)—a panchromatic imager that leverages multiple CCD detectors set at different gain levels to make continuous (day and night) radiometric observations of the Earth. The results from the JPSS-3 and JPSS-4 VIIRS DNB pre-launch testing are presented and compared against the design specifications in this paper. Characterization parameters include dark offset, gain, linearity, uniformity, SNR, and uncertainty. Performance relative to past builds is also included where appropriate. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

12 pages, 3236 KiB  
Article
Simulation Study of Readily Manufactured High-Performance Polarization Gratings Based on Cured HSQ Materials
by Jiatong Liu, Jun Xu, Ruiting Hao, Gang Chen, Wen Wang, Pengcheng Sheng, Huizi Li and Yunzhi Wang
Photonics 2025, 12(3), 287; https://doi.org/10.3390/photonics12030287 - 20 Mar 2025
Viewed by 434
Abstract
Polarimetric imaging technology captures both traditional intensity information and multidimensional polarization data, significantly enhancing target–background contrast and boosting detection system recognition. However, monolithic integration of grating polarizers into large-area focal plane arrays faces challenges, including complex fabrication, low extinction ratios, and high rates [...] Read more.
Polarimetric imaging technology captures both traditional intensity information and multidimensional polarization data, significantly enhancing target–background contrast and boosting detection system recognition. However, monolithic integration of grating polarizers into large-area focal plane arrays faces challenges, including complex fabrication, low extinction ratios, and high rates of blind elements. In this article, we present a simulation model for the fabrication of high-performance polarized gratings using electron-beam cured HSQ (Hydrogen Silsesquioxane Polymer) materials technology. By optimizing structural design, a high transmittance of 88–97% and an extinction ratio of ≥55 dB over a wide spectral range of 3–5 µm was achieved. This result offers a new approach to advancing high-performance infrared polarization imaging technology. Full article
Show Figures

Figure 1

23 pages, 10486 KiB  
Article
A Preliminary Assessment of the VIIRS Cloud Top and Base Height Environmental Data Record Reprocessing
by Qian Liu, Xianjun Hao, Cheng-Zhi Zou, Likun Wang, John J. Qu and Banghua Yan
Remote Sens. 2025, 17(6), 1036; https://doi.org/10.3390/rs17061036 - 15 Mar 2025
Viewed by 609
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been continuously providing global environmental data records (EDRs) for more than one decade since its launch in 2011. Recently, the VIIRS EDRs of cloud features have been [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been continuously providing global environmental data records (EDRs) for more than one decade since its launch in 2011. Recently, the VIIRS EDRs of cloud features have been reprocessed using unified and consistent algorithm for selected periods to minimize or remove the inconsistencies due to different versions of retrieval algorithms as well as input VIIRS sensor data records (SDRs) adopted by different periods of operational EDRs. This study conducts the first simultaneous quality and accuracy assessment of reprocessed Cloud Top Height (CTH) and Cloud Base Height (CBH) products against both the operational VIIRS EDRs and corresponding cloud height measurements from the active sensors of NASA’s CloudSat-CALIPSO system. In general, the reprocessed CTH and CBH EDRs show strong similarities and correlations with CloudSat-CALIPSOs, with coefficients of determination (R2) reaching 0.82 and 0.77, respectively. Additionally, the reprocessed VIIRS cloud height products demonstrate significant improvements in retrieving high-altitude clouds and in sensitivity to cloud height dynamics. It outperforms the operational product in capturing very high CTHs exceeding 15 km and exhibits CBH probability patterns more closely aligned with CloudSat-CALIPSO measurements. This preliminary assessment enhances data applicability of remote sensing products for atmospheric and climate research, allowing for more accurate cloud measurements and advancing environmental monitoring efforts. Full article
(This article belongs to the Special Issue Satellite-Based Climate Change and Sustainability Studies)
Show Figures

Figure 1

20 pages, 4769 KiB  
Article
Assessment of MODIS and VIIRS Ice Surface Temperature Products over the Antarctic Ice Sheet
by Chenlie Shi, Ninglian Wang, Yuwei Wu, Quan Zhang, Carleen H. Reijmer and Paul C. J. P. Smeets
Remote Sens. 2025, 17(6), 955; https://doi.org/10.3390/rs17060955 - 7 Mar 2025
Cited by 1 | Viewed by 816
Abstract
The ice surface temperature (IST) derived from thermal infrared remote sensing is crucial for accurately monitoring ice or snow surface temperatures in the polar region. Generally, the remote sensing IST needs to be validated by the in situ IST to ensure its accuracy. [...] Read more.
The ice surface temperature (IST) derived from thermal infrared remote sensing is crucial for accurately monitoring ice or snow surface temperatures in the polar region. Generally, the remote sensing IST needs to be validated by the in situ IST to ensure its accuracy. However, due to the limited availability of in situ IST measurements, previous studies in the validation of remote sensing ISTs are scarce in the Antarctic ice sheet. This study utilizes ISTs from eight broadband radiation stations to assess the accuracy of the latest-released Moderate Resolution Imaging Spectroradiometer (MODIS) IST and Visible Infrared Imager Radiometer Suite (VIIRS) IST products, which were derived from two different algorithms, the Split-Window (SW-based) algorithm and the Temperature–Emissivity Separation (TES-based) algorithm, respectively. This study also explores the sources of uncertainty in the validation process. The results reveal prominent errors when directly validating remote sensing ISTs with the in situ ISTs, which can be attributed to incorrect cloud detection due to the similar spectral characteristics of cloud and snow. Hence, cloud pixels are misclassified as clear pixels in the satellite cloud mask during IST validation, which emphasizes the severe cloud contamination of remote sensing IST products. By using a cloud index (n) to remove the cloud contamination pixels in the remote sensing IST products, the overall uncertainties for the four products are about 2 to 3 K, with the maximum uncertainty (RMSE) reduced by 3.51 K and the bias decreased by 1.26 K. Furthermore, a progressive cold bias in the validation process was observed with decreasing temperature, likely due to atmospheric radiation between the radiometer and the snow surface being neglected in previous studies. Lastly, this study found that the cloud mask errors of satellites are more pronounced during the winter compared to that in summer, highlighting the need for caution when directly using remote sensing IST products, particularly during the polar night. Full article
Show Figures

Figure 1

20 pages, 7366 KiB  
Article
Histogram of Polarization Gradient for Target Tracking in Infrared DoFP Polarization Thermal Imaging
by Jianguo Yang, Dian Sheng, Weiqi Jin and Li Li
Remote Sens. 2025, 17(5), 907; https://doi.org/10.3390/rs17050907 - 4 Mar 2025
Viewed by 680
Abstract
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram [...] Read more.
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram of polarization gradient (HPG) feature descriptor that enables efficient feature representation of polarization mosaic images. First, a polarization distance calculation model based on normalized cross-correlation (NCC) and local variance is constructed, which enhances the robustness of gradient feature extraction through dynamic weight adjustment. Second, a sparse Laplacian filter is introduced to achieve refined gradient feature representation. Subsequently, adaptive polarization channel correlation weights and the second-order gradient are utilized to reconstruct the degree of linear polarization (DoLP). Finally, the gradient and DoLP sign information are ingeniously integrated to enhance the capability of directional expression, thus providing a new theoretical perspective for polarization mosaic image structure analysis. The experimental results obtained using a self-developed long-wave infrared DoFP polarization thermal imaging system demonstrate that, within the same FBACF tracking framework, the proposed HPG feature descriptor significantly outperforms traditional grayscale {8.22%, 2.93%}, histogram of oriented gradient (HOG) {5.86%, 2.41%}, and mosaic gradient histogram (MGH) {27.19%, 18.11%} feature descriptors in terms of precision and success rate. The processing speed of approximately 20 fps meets the requirements for real-time tracking applications, providing a novel technical solution for polarization imaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Target Detection)
Show Figures

Figure 1

35 pages, 27811 KiB  
Article
Machine Learning to Retrieve Gap-Free Land Surface Temperature from Infrared Atmospheric Sounding Interferometer Observations
by Fabio Della Rocca, Pamela Pasquariello, Guido Masiello, Carmine Serio and Italia De Feis
Remote Sens. 2025, 17(4), 694; https://doi.org/10.3390/rs17040694 - 18 Feb 2025
Viewed by 1045
Abstract
Retrieving LST from infrared spectral observations is challenging because it needs separation from emissivity in surface radiation emission, which is feasible only when the state of the surface–atmosphere system is known. Thanks to its high spectral resolution, the Infrared Atmospheric Sounding Interferometer (IASI) [...] Read more.
Retrieving LST from infrared spectral observations is challenging because it needs separation from emissivity in surface radiation emission, which is feasible only when the state of the surface–atmosphere system is known. Thanks to its high spectral resolution, the Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard Metop polar-orbiting satellites is the only sensor that can simultaneously retrieve LST, the emissivity spectrum, and atmospheric composition. Still, it cannot penetrate thick cloud layers, making observations blind to surface emissions under cloudy conditions, with surface and atmospheric parameters being flagged as voids. The present paper aims to discuss a downscaling–fusion methodology to retrieve LST missing values on a spatial field retrieved from spatially scattered IASI observations to yield level 3, regularly gridded data, using as proxy data LST from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) flying on Meteosat Second Generation (MSG) platform, a geostationary instrument, and from the Advanced Very High-Resolution Radiometer (AVHRR) onboard Metop polar-orbiting satellites. We address this problem by using machine learning techniques, i.e., Gradient Boosting, Random Forest, Gaussian Process Regression, Neural Network, and Stacked Regression. We applied the methodology over the Po Valley region, a very heterogeneous area that allows addressing the trained models’ robustness. Overall, the methods significantly enhanced spatial sampling, keeping errors in terms of Root Mean Square Error (RMSE) and bias (Mean Absolute Error, MAE) very low. Although we demonstrate and assess the results primarily using IASI data, the paper is also intended for applications to the IASI follow-on, that is, IASI Next Generation (IASI-NG), and much more to the Infrared Sounder (IRS), which is planned to fly this year, 2025, on the Meteosat Third Generation platform (MTG). Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Graphical abstract

13 pages, 6504 KiB  
Article
Germanium Metasurface for the Polarization-Sensitive Stokes Thermal Imaging at a MWIR 4-Micron Wavelength
by Hosna Sultana
Photonics 2025, 12(2), 137; https://doi.org/10.3390/photonics12020137 - 7 Feb 2025
Viewed by 1275
Abstract
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive [...] Read more.
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive detection by integrating the metasurface of the subwavelength-scale structured interface to control light–matter interactions. To enforce the metasurface-enabled simultaneous detection and parallel analysis of polarization states in a compact footprint for 4-micron wavelength, we designed a high-contrast germanium metasurface with an axially asymmetric triangular nanoantenna with a height 0.525 times the working wavelength. First, we optimized linear polarization separation of a 52-degree angle with about 50% transmission efficiency, holding the meta-element aspect ratio within the 3.5–1.67 range. The transmission modulation in terms of periodicity and lattice resonance for the phase-gradient high-contrast dielectric metasurface in correlation with the scattering cross-section for both 1D and 2D cases has been discussed for reducing the aspect ratio to overcome the nanofabrication challenge. Furthermore, by employing the geometric phase, we achieved 40% and 60% transmission contrasts for the linear and circular polarization states, respectively, and reconstructed the Stokes vectors and output polarization states. Without any spatial multiplexing, this single metasurface unit cell can perform well in the division of focal plane Stokes thermal imaging, with an almost 10-degree field of view, and it has an excellent refractive index and height tolerance for nanofabrication. Full article
Show Figures

Figure 1

32 pages, 14893 KiB  
Article
Remote Mapping of Bedrock for Future Cosmogenic Nuclide Exposure Dating Studies in Unvisited Areas of Antarctica
by Jonathan R. Adams, Philippa J. Mason, Stephen J. Roberts, Dylan H. Rood, John L. Smellie, Keir A. Nichols, John Woodward and Joanne S. Johnson
Remote Sens. 2025, 17(2), 314; https://doi.org/10.3390/rs17020314 - 17 Jan 2025
Viewed by 1224
Abstract
Cosmogenic nuclide exposure dating is an important technique for reconstructing glacial histories. Many of the most commonly applied cosmogenic nuclides are extracted from the mineral quartz, meaning sampling of felsic (silica-rich) rock is often preferred to sampling of mafic (silica-poor) rock for exposure [...] Read more.
Cosmogenic nuclide exposure dating is an important technique for reconstructing glacial histories. Many of the most commonly applied cosmogenic nuclides are extracted from the mineral quartz, meaning sampling of felsic (silica-rich) rock is often preferred to sampling of mafic (silica-poor) rock for exposure dating studies. Fieldwork in remote regions such as Antarctica is subject to time constraints and considerable logistical challenges, making efficient sample recovery critical to successful research efforts. Remote sensing offers an effective way to map the geology of large areas prior to fieldwork and expedite the sampling process. In this study, we assess the viability of multispectral remote sensing to distinguish felsic from mafic rock outcrops at visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelengths using both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and very high-resolution Worldview-3 (WV-3) imagery. We applied a combination of spectral mapping and ground truth from spectral measurements of 17 rock samples from Mount Murphy in the Amundsen Sea sector of West Antarctica. Using this approach, we identified four dominant rock types which we used as a basis for felsic–mafic differentiation: felsic granites and gneisses, and mafic basalts and fragmental hydrovolcanic rocks. Supervised classification results indicate WV-3 performs well at differentiating felsic and mafic rock types and that ASTER, while coarser, could also achieve satisfactory results and be used in concert with more targeted WV-3 image acquisitions. Finally, we present a revised felsic–mafic geological map for Mt Murphy. Overall, our results highlight the potential of spectral mapping for preliminary reconnaissance when planning future cosmogenic nuclide sampling campaigns in remote, unvisited areas of the polar regions. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

Back to TopTop