All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review
Abstract
:1. Introduction
1.1. Conventional LWIR Lens Materials
1.2. Advantages and Challenges of LWIR Metalenses
2. Theoretical Background of Metalenses
2.1. Basic Theory
2.2. Design Parameter of Meta-Atoms
3. Chromatic LWIR Metalenses
4. Achromatic LWIR Metalenses
5. High NA
6. Wide Field of View
7. Advanced Functional LWIR Metalenses
7.1. Polarization Control
7.2. Multifocal LWIR Metalenses
7.3. Zoom Functionality
7.4. Reconfigurable LWIR Metalenses
8. Challenges
9. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollmer, M.; Mollmann, K.-P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Budzier, H.; Gerlach, G. Thermal Infrared Sensors: Theory, Optimisation and Practice; John Wiley & Sons: Singapore, 2011. [Google Scholar]
- Kimata, M. Uncooled infrared focal plane arrays. IEEJ Trans. Electr. Electron. Eng. 2017, 13, 4–12. [Google Scholar] [CrossRef]
- Wood, R.A. High-Performance Infrared Thermal Imaging with Monolithic Silicon Focal Planes Operating at Room Temperature. In International Electron Devices Meeting (IEDM); IEEE: Baltimore, MD, USA, 1993; pp. 175–177. [Google Scholar]
- Ogawa, S.; Okada, K.; Fukushima, N.; Kimata, M. Wavelength selective uncooled infrared sensor by plasmonics. Appl. Phys. Lett. 2012, 100, 021111. [Google Scholar] [CrossRef]
- Belcher, J.F.; Hanson, C.M.; Beratan, H.R.; Udayakumar, K.R.; Soch, K.L. Uncooled monolithic ferroelectric IRFPA technology. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, San Diego, CA, USA, 19–24 July 1998; Volume 3436, pp. 611–622. [Google Scholar]
- Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154. [Google Scholar] [CrossRef]
- Kopytko, M.; Rogalski, A. New insights into the ultimate performance of HgCdTe photodiodes. Sens. Actuators A 2022, 339, 113511. [Google Scholar] [CrossRef]
- Alshahrani, D.O.; Kesaria, M.; Anyebe, E.A.; Srivastava, V.; Huffaker, D.L. Emerging Type-II Superlattices of InAs/InAsSb and InAs/GaSb for Mid-Wavelength Infrared Photodetectors. Adv. Photonics Res. 2021, 3, 2100094. [Google Scholar] [CrossRef]
- Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. High-performance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102. [Google Scholar] [CrossRef]
- Ogawa, S. Graphene-based infrared sensors. JSAP Rev. 2024, 2024, 240209. [Google Scholar]
- Gu, Z.; Gao, Y.; Zhou, K.; Ge, J.; Xu, C.; Xu, L.; Rahmani, M.; Jiang, R.; Chen, Y.; Liu, Z.; et al. Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses. Opto-Electron. Sci. 2024, 3, 240017. [Google Scholar] [CrossRef]
- Fischer, R.E. Lens design for the infrared. In Infrared Optical Design and Fabrication: A Critical Review; SPIE: San Jose, CA, USA, 1991; Volume 10260, p. 1026003. [Google Scholar]
- Wolfe, W.L. Optical materials for the infrared. In Infrared Optical Design and Fabrication: A Critical Review; SPIE: San Jose, CA, USA, 1991; Volume 10260, p. 102600A. [Google Scholar]
- Edwards, D.F.; Ochoa, E. Infrared refractive index of silicon. Appl. Opt. 1980, 19, 4130–4131. [Google Scholar] [CrossRef]
- Bass, M. Handbook of Optics: Volume IV—Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2010; pp. 4.52–4.55. [Google Scholar]
- Icenogle, H.W.; Platt, B.C.; Wolfe, W.L. Refractive indexes and temperature coefficients of germanium and silicon. Appl. Opt. 1976, 15, 2348–2351. [Google Scholar] [CrossRef]
- Matsushita, Y.; Sato, F.; Masuda, N.; Kimata, M. Infrared lens units using chalcogenide glass with high transmission properties. Opt. Eng. 2023, 62, 087104. [Google Scholar]
- Kadono, K.; Kitamura, N. Recent progress in chalcogenide glasses applicable to infrared optical elements manufactured by molding technology. J. Ceram. Soc. Jpn. 2022, 130, 584–589. [Google Scholar] [CrossRef]
- Malitson, I.H. A Redetermination of Some Optical Properties of Calcium Fluoride. Appl. Opt. 1963, 2, 1103–1107. [Google Scholar] [CrossRef]
- Polyanskiy, M.N. Refractiveindex.info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar] [CrossRef]
- Hahn, D. Calcium Fluoride and Barium Fluoride Crystals in Optics. Opt. Photon. 2014, 9, 45–48. [Google Scholar] [CrossRef]
- Ladison, J.L.; Price, J.J.; Helfinstine, J.D.; Rosch, W.R. Hardness, elastic modulus, and fracture toughness bulk properties in Corning calcium fluoride. In Optical Microlithography XVIII; SPIE: San Jose, CA, USA, 2005; Volume 5754, pp. 1329–1338. [Google Scholar]
- Malitson, I.H. Refractive Properties of Barium Fluoride. J. Opt. Soc. Am. 1964, 54, 628–632. [Google Scholar] [CrossRef]
- Luo, X. Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems. ACS Photonics 2018, 5, 4724–4738. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Y.; Zheng, M.; Chen, H.; Zang, Y.; Duan, H.; Li, Q.; Qiu, M.; Hu, Y. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Xiao, X.; Chen, J.; Hu, S.; Zhu, S. Revolutionary meta-imaging: From superlens to metalens. Photonics Insights 2023, 2, R01. [Google Scholar] [CrossRef]
- Yang, F.; Shalaginov, M.Y.; Lin, H.-I.; An, S.; Agarwal, A.; Zhang, H.; Rivero-Baleine, C.; Gu, T.; Hu, J. Wide field-of-view metalens: A tutorial. Adv. Photonics 2023, 5, 033001. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, J.; Zhou, X.; Chen, C.; Guo, T.; Yan, Q.; Zhang, Y.; Wu, C. Metalens in Improving Imaging Quality: Advancements, Challenges, and Prospects for Future Display. Laser Photonics Rev. 2024, 18, 2300731. [Google Scholar] [CrossRef]
- Banerji, S.; Meem, M.; Majumder, A.; Vasquez, F.G.; Sensale-Rodriguez, B.; Menon, R. Imaging with flat optics: Metalenses or diffractive lenses? Optica 2019, 6, 805–810. [Google Scholar] [CrossRef]
- Engelberg, J.; Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 2020, 11, 1991. [Google Scholar] [CrossRef]
- Ogawa, S.; Kimata, M. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials. Materials 2017, 10, 493. [Google Scholar] [CrossRef]
- Yilmaz, N.; Nalbant, H.C.; Balli, F.; Eren, A.; Yelboğa, T.; Sözak, A. Germanium and silicon-based nanohole LWIR metalens design and fabrication. J. Nanophot. 2023, 17, 016006. [Google Scholar] [CrossRef]
- Kalvach, A.; Szabó, Z. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B 2016, 33, A66–A71. [Google Scholar] [CrossRef]
- Chen, X.; Huang, L.; Muhlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Qiu, C.W.; Zhang, S.; Zentgraf, T. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 2012, 3, 1198. [Google Scholar] [CrossRef]
- Wang, R.; Ansari, M.A.; Ahmed, H.; Li, Y.; Cai, W.; Liu, Y.; Li, S.; Liu, J.; Li, L.; Chen, X. Compact multi-foci metalens spectrometer. Light Sci. Appl. 2023, 12, 103. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.; Li, R.; Zhang, J.; Li, Y.; Liu, Y.; Wang, X.; Qu, S. Plasmonics metalens independent from the incident polarizations. Opt. Express 2015, 23, 16782–16791. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.; Shalem, G.; Prior, Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 2016, 7, 10367. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, J.; Zheng, H.; An, S.; Lin, H.; Zheng, B.; Du, Q.; Yin, G.; Michon, J.; Zhang, Y.; et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 2018, 9, 1481. [Google Scholar] [CrossRef] [PubMed]
- Kivshar, Y. The Rise of Mie-tronics. Nano Lett. 2022, 22, 3513–3515. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Xu, W.; Liu, Y.; Liu, C.; Wang, Y.; Yu, Z.; Zhu, D.; Yu, L.; Ye, H. Mechanisms of 2pi phase control in dielectric metasurface and transmission enhancement effect. Opt. Express 2019, 27, 23186–23196. [Google Scholar] [CrossRef]
- Chen, B.H.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Lee, I.C.; Chen, J.W.; Chen, Y.H.; Lan, Y.C.; Kuan, C.H.; et al. GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. Nano Lett. 2017, 17, 6345–6352. [Google Scholar] [CrossRef]
- Bomzon, Z.; Kleiner, V.; Hasman, E. Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 2001, 26, 1424–1426. [Google Scholar] [CrossRef]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 2002, 27, 1141–1143. [Google Scholar] [CrossRef]
- Song, N.; Xu, N.; Shan, D.; Zhao, Y.; Gao, J.; Tang, Y.; Sun, Q.; Chen, X.; Wang, Y.; Feng, X. Broadband Achromatic Metasurfaces for Longwave Infrared Applications. Nanomaterials 2021, 11, 2760. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Khorasaninejad, M.; Shi, Z.; Sanjeev, V.; Capasso, F. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging. Nano Lett. 2017, 17, 3188–3194. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, M.; Yang, C.; Yu, L.; Yan, F.; Xu, T. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Appl. Phys. Lett. 2018, 113, 201104. [Google Scholar] [CrossRef]
- Huang, L.; Coppens, Z.; Hallman, K.; Han, Z.; Böhringer, K.F.; Akozbek, N.; Raman, A.; Majumdar, A. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens. Opt. Mater. Express 2021, 11, 2907–2914. [Google Scholar] [CrossRef]
- Hanaoka, M.; Ogawa, S.; Iwakawa, M.; Fukushima, S.; Masaaki, S. Metalens for 80 × 60 SOI diode uncooled IRFPA. In Proceedings of the SPIE Defense + Commercial Sensing, National Harbor, MD, USA, 21–25 April 2024; Volume 13046, p. 130461V. [Google Scholar]
- Hanaoka, M.; Fukushima, S.; Masaaki, S.; Ogawa, S. Si-based LWIR metalens for 80 × 60 pixel uncooled IRFPA. In Proceedings of the SPIE Defense + Commercial Sensing, Orlando, FL, USA, 13–17 April 2025; Volume 134690H, p. 134690H. [Google Scholar]
- Hou, M.; Chen, Y.; Li, J.; Yi, F. Single 5-centimeter-aperture metalens enabled intelligent lightweight mid-infrared thermographic camera. Sci. Adv. 2024, 10, eado4847. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 2016, 3, 628–633. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef]
- Presutti, F.; Monticone, F. Focusing on bandwidth: Achromatic metalens limits. Optica 2020, 7, 624–631. [Google Scholar] [CrossRef]
- Tucker, R.S.; Pei-Cheng, K.; Chang-Hasnain, C.J. Slow-light optical buffers: Capabilities and fundamental limitations. J. Light. Tech. 2005, 23, 4046–4066. [Google Scholar] [CrossRef]
- Avayu, O.; Almeida, E.; Prior, Y.; Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 2017, 8, 14992. [Google Scholar] [CrossRef]
- Tang, F.; Ye, X.; Li, Q.; Wang, Y.; Yu, H.; Wu, W.; Li, B.; Zheng, W. Dielectric metalenses at long-wave infrared wavelengths: Multiplexing and spectroscope. Results Phys. 2020, 18, 103215. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, S.; Xu, T.; Wei, K.; Zhang, Y.; Cui, H. Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging. Opt. Express 2022, 30, 28882–28891. [Google Scholar] [CrossRef]
- Shan, D.; Xu, N.; Gao, J.; Song, N.; Liu, H.; Tang, Y.; Feng, X.; Wang, Y.; Zhao, Y.; Chen, X.; et al. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching. Opt. Express 2022, 30, 13616–13629. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Xu, N.; Gao, J.; Jiang, X.; Shan, D.; Tang, Y.; Sun, Q.; Liu, H.; Chen, X. Broadband Achromatic and Polarization Insensitive Focused Optical Vortex Generator Based on Metasurface Consisting of Anisotropic Nanostructures. Front. Phys. 2022, 10, 846718. [Google Scholar] [CrossRef]
- Xia, C.; Liu, M.; Wang, J.; Wang, Y.; Zhang, S.; Lin, P.; Xu, T. A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Appl. Phys. Lett. 2022, 121, 161701. [Google Scholar] [CrossRef]
- Zhao, L.-R.; Jiang, X.-Q.; Li, C.-X.; Gong, S.-X.; Yu, W.-X. High-NA and broadband achromatic metalens for sub-diffraction focusing of long-wavelength infrared waves. Results Phys. 2023, 46, 106308. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, S.; Dong, Y.; Jia, L.; Zhong, Q.; Gu, Y.; Hu, T. Broadband Achromatic Metalens in the Long-Wave Infrared Regime. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsu, W.-L.; Zeng, Q.-C.; Yu, C.-Y.; Chen, P.-D.; Chen, C.-C.; Lin, Y.-H.; Chen, F.-Z.; Wang, C.-M. Broadband achromatic thermal metalens with a wide field of view based on wafer-level monolithic processes. Appl. Phys. Lett. 2024, 125, 051702. [Google Scholar] [CrossRef]
- Hu, T.; Wen, L.; Li, H.; Wang, S.; Xia, R.; Mei, Z.; Yang, Z.; Zhao, M. Aberration-corrected hybrid metalens for longwave infrared thermal imaging. Nanophotonics 2024, 13, 3059–3066. [Google Scholar] [CrossRef]
- Huang, L.; Han, Z.; Wirth-Singh, A.; Saragadam, V.; Mukherjee, S.; Froch, J.E.; Tanguy, Q.A.A.; Rollag, J.; Gibson, R.; Hendrickson, J.R.; et al. Broadband thermal imaging using meta-optics. Nat. Commun. 2024, 15, 1662. [Google Scholar] [CrossRef]
- Yue, S.; Liu, Y.; Wang, R.; Hou, Y.; Shi, H.; Feng, Y.; Wen, Z.; Zhang, Z. All-silicon polarization-independent broadband achromatic metalens designed for the mid-wave and long-wave infrared. Opt. Express 2023, 31, 44340–44352. [Google Scholar] [CrossRef]
- Paniagua-Dominguez, R.; Yu, Y.F.; Khaidarov, E.; Choi, S.; Leong, V.; Bakker, R.M.; Liang, X.; Fu, Y.H.; Valuckas, V.; Krivitsky, L.A.; et al. A Metalens with a Near-Unity Numerical Aperture. Nano Lett. 2018, 18, 2124–2132. [Google Scholar] [CrossRef]
- Lin, H.-I.; Geldmeier, J.; Baleine, E.; Yang, F.; An, S.; Pan, Y.; Rivero-Baleine, C.; Gu, T.; Hu, J. Wide-Field-of-View, Large-Area Long-Wave Infrared Silicon Metalenses. ACS Photonics 2024, 11, 1943–1949. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Yang, F.; Su, P.; Lyzwa, D.; Agarwal, A.M.; Zhang, H.; Hu, J.; Gu, T. Single-Element Diffraction-Limited Fisheye Metalens. Nano Lett. 2020, 20, 7429–7437. [Google Scholar] [CrossRef] [PubMed]
- Groever, B.; Chen, W.T.; Capasso, F. Meta-Lens Doublet in the Visible Region. Nano Lett. 2017, 17, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Yuffa, A.J.; Videen, G.; Hu, S. Effects of surface materials on polarimetric-thermal measurements: Applications to face recognition. Appl. Opt. 2016, 55, 5226–5233. [Google Scholar] [CrossRef]
- Wang, T.; Sohoni, M.M.; Wright, L.G.; Stein, M.M.; Ma, S.-Y.; Onodera, T.; Anderson, M.G.; McMahon, P.L. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 2023, 17, 408–415. [Google Scholar] [CrossRef]
- Yuan, S.; Ma, C.; Fetaya, E.; Mueller, T.; Naveh, D.; Zhang, F.; Xia, F. Geometric deep optical sensing. Science 2023, 379, eade1220. [Google Scholar] [CrossRef]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef]
- Kruse, A.W.; Alenin, A.S.; Tyo, J.S. Review of visualization methods for passive polarization imaging. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Hagen, N. Review of thermal infrared polarimetry, part 2: Experiment. Opt. Eng. 2022, 61, 080901. [Google Scholar] [CrossRef]
- Venkatesulu, E.; Shaw, J.A. Measuring the spectral response of a division-of-focal-plane polarization imager using a grating monochromator. Appl. Opt. 2022, 61, 2364–2370. [Google Scholar] [CrossRef]
- Ogawa, S.; Masuda, K.; Takagawa, Y.; Kimata, M. Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber. Opt. Eng. 2014, 53, 107110. [Google Scholar] [CrossRef]
- Ogawa, S.; Takagawa, Y.; Kimata, M. Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers. Sens. Actuators A 2018, 269, 563–568. [Google Scholar] [CrossRef]
- Yan, C.; Li, X.; Pu, M.; Ma, X.; Zhang, F.; Gao, P.; Liu, K.; Luo, X. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett. 2019, 114, 161904. [Google Scholar] [CrossRef]
- Ishizuka, N.; Li, J.; Fuji, W.; Ikezawa, S.; Iwami, K. Linear polarization-separating metalens at long-wavelength infrared. Opt. Express 2023, 31, 23372–23381. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, P.; Hou, H.; Li, Y.; Li, B.; Yi, Y.; Xu, L.; Meng, T.; Geng, Z.; Chen, M.K.; et al. Colorimetric Thermography by a Long-Infrared Dual-Band Metalens. Adv. Sci. 2025, 12, e2408683. [Google Scholar] [CrossRef]
- Hanaoka, M.; Fukushima, S.; Masaaki, S.; Ogawa, S. Multi-foci all-dielectric metalens for long-wavelength infrared. In Proceedings of the SPIE Defense + Commercial Sensing, Orlando, FL, USA, 13–17 April 2025; Volume 13469, p. 134691W. [Google Scholar]
- Guo, Q.; Shi, Z.; Huang, Y.W.; Alexander, E.; Qiu, C.W.; Capasso, F.; Zickler, T. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci. USA 2019, 116, 22959–22965. [Google Scholar] [CrossRef]
- Ogawa, S.; Komoda, J.; Masuda, K.; Kimata, M. Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber. Opt. Eng. 2013, 52, 127104. [Google Scholar] [CrossRef]
- Ogawa, S.; Takagawa, Y.; Kimata, M. Fano resonance in asymmetric-period two-dimensional plasmonic absorbers for dual-band uncooled infrared sensors. Opt. Eng. 2016, 55, 117105. [Google Scholar] [CrossRef]
- Wirth-Singh, A.; Jimenez, A.M.; Choi, M.; Fröch, J.E.; Johnson, R.; Le Teichmann, T.; Coppens, Z.; Majumdar, A. Meta-optics triplet for zoom imaging at mid-wave infrared. Appl. Phys. Lett. 2024, 125, 211705. [Google Scholar] [CrossRef]
- Iwami, K.; Ogawa, C.; Nagase, T.; Ikezawa, S. Demonstration of focal length tuning by rotational varifocal moiré metalens in an ir-A wavelength. Opt. Express 2020, 28, 35602–35614. [Google Scholar] [CrossRef]
- Ogawa, C.; Nakamura, S.; Aso, T.; Ikezawa, S.; Iwami, K. Rotational varifocal moire metalens made of single-crystal silicon meta-atoms for visible wavelengths. Nanophotonics 2022, 11, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chu, C.H.; Vyas, S.; Kuo, H.Y.; Chia, Y.H.; Chen, M.K.; Shi, X.; Tanaka, T.; Misawa, H.; Huang, Y.Y.; et al. Varifocal Metalens for Optical Sectioning Fluorescence Microscopy. Nano Lett. 2021, 21, 5133–5142. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.S.; Chu, C.H.; Huang, S.H.; Su, H.P.; Tanaka, T.; Wu, P.C. Varifocal Metalenses: Harnessing Polarization-Dependent Superposition for Continuous Focal Length Control. Nano Lett. 2023, 23, 10432–10440. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seong, J.; Yang, Y.; Moon, S.-W.; Badloe, T.; Rho, J. Tunable metasurfaces towards versatile metalenses and metaholograms: A review. Adv. Photonics 2022, 4, 024001. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Y.; Xiao, S.; Nong, J.; He, H.; Lu, Y.; Huang, X.; He, X.; Zhang, Z.; Huang, S.; et al. Flexible switchable mid-infrared metalens optical tweezer based on VO2. Opt. Express 2024, 32, 42732–42749. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Zhang, Y.; Yang, F.; Su, P.; Liberman, V.; Chou, J.B.; Roberts, C.M.; Kang, M.; Rios, C.; et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 2021, 12, 1225. [Google Scholar] [CrossRef]
- Afridi, A.; Canet-Ferrer, J.; Philippet, L.; Osmond, J.; Berto, P.; Quidant, R. Electrically Driven Varifocal Silicon Metalens. ACS Photonics 2018, 5, 4497–4503. [Google Scholar] [CrossRef]
- Seo, B.W.; Nam, G.H.; Yang, H.; Jung, S.; Park, J.; Kang, I.-S.; Kim, D.Y.; Cho, H.D.; Lee, J.-K. A graphene-based IR Fresnel lens formed on a multiple-internal-reflection substrate. Carbon 2025, 232, 119811. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Duan, R.; Fu, J.; Ovesen, M.; Lai, S.C.E.; Yeo, T.E.; Chee, J.Y.; Chen, Y.; Teo, S.L.; et al. Linear Electro-Optic Effect in 2D Ferroelectric for Electrically Tunable Metalens. Adv. Mater. 2024, 36, e2401838. [Google Scholar] [CrossRef]
- Xu, C.; Heller, E.; Bos, J.; Scarmozzino, R.; Bahl, M.; Hu, L.-C.; Achuthan, N.; Soskind, Y.; Busse, L.E. Fully automated inverse design solution for metalenses/metasurfaces. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 28 January−3 February 2023; Volume 12428, p. 1242802. [Google Scholar]
- Zang, G.; Ren, J.; Shi, Y.; Peng, D.; Zheng, P.; Zheng, K.; Liu, Z.; Wang, Z.; Cheng, X.; Liu, A.Q.; et al. Inverse Design of Aberration-Corrected Hybrid Metalenses for Large Field of View Thermal Imaging Across the Entire Longwave Infrared Atmospheric Window. ACS Nano 2024, 18, 33653–33663. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Moon, S.; Shin, K.; Nam, S.W.; Park, Y.; Kang, D.; Jeon, G.; Lee, K.I.; Yoon, D.H.; et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 2025, 24, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photon. 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Seo, W.; Lee, D.; Yoon, Y.; Chang, S.; You, J.; Lee, B.; Kim, S.; Sood, A.K.; Wijewarnasuriya, P.; D’Souza, A.I. Meta-surface lens and deep learning process toward practical LWIR imaging devices. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 20−25 August 2023; Volume 12687, p. 1268709. [Google Scholar]
- Inui, K.; Motome, Y. Inverse Hamiltonian design by automatic differentiation. Commun. Phys. 2023, 6, 37. [Google Scholar] [CrossRef]
- Zhelyeznyakov, M.; Fröch, J.; Wirth-Singh, A.; Noh, J.; Rho, J.; Brunton, S.; Majumdar, A. Large area optimization of meta-lens via data-free machine learning. Comms. Eng. 2023, 2, 60. [Google Scholar] [CrossRef]
- Li, R.-k.; Wei, J.-y.; Wang, L.; Ma, Y.-g.; Li, Y.-h. Restoration of infrared metalens images with deep learning. Opt. Commun. 2024, 552, 130069. [Google Scholar] [CrossRef]
- Seo, J.; Jo, J.; Kim, J.; Kang, J.; Kang, C.; Moon, S.-W.; Lee, E.; Hong, J.; Rho, J.; Chung, H. Deep-learning-driven end-to-end metalens imaging. Adv. Photonics 2024, 6, 066002. [Google Scholar] [CrossRef]
- Hsu, W.L.; Huang, C.F.; Tan, C.C.; Liu, N.Y.; Chu, C.H.; Huang, P.S.; Wu, P.C.; Yiin, S.J.; Tanaka, T.; Weng, C.J.; et al. High-Resolution Metalens Imaging with Sequential Artificial Intelligence Models. Nano Lett. 2023, 23, 11614–11620. [Google Scholar] [CrossRef]
- Ogawa, S.; Tomoda, K.; Noda, S. Effects of structural fluctuations on three-dimensional photonic crystals operating at near-infrared wavelengths. J. Appl. Phys. 2002, 91, 513–515. [Google Scholar] [CrossRef]
- Zhang, S.; Soibel, A.; Keo, S.A.; Wilson, D.; Rafol, S.B.; Ting, D.Z.; She, A.; Gunapala, S.D.; Capasso, F. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 2018, 113, 111104. [Google Scholar] [CrossRef]
- Wenger, T.; Muller, R.; Hill, C.J.; Fisher, A.; Ting, D.Z.; Wilson, D.; Gunapala, S.D.; Soibel, A. Infrared nBn detectors monolithically integrated with metasurface-based optical concentrators. Appl. Phys. Lett. 2022, 121, 181109. [Google Scholar] [CrossRef]
- Lien, M.R.; Wang, N.; Wenger, T.; Wang, H.; Gunapala, S.D.; Povinelli, M.L. An All-Silicon Metalens Integrated with a Mid-Wave Infrared Black Phosphorus Photodiode. Adv. Opt. Mater. 2023, 12, 2301952. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, Y.; Luo, Z.; Zhang, P.; Zhao, Y. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors. Opt. Lasers Eng. 2022, 150, 106849. [Google Scholar] [CrossRef]
- Gu, Z.; Ma, Q.; Gao, X.; You, J.W.; Cui, T.J. Direct electromagnetic information processing with planar diffractive neural network. Sci. Adv. 2024, 10, eado3937. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Gu, Z.; Ma, Q.; Chen, B.J.; Shum, K.M.; Cui, W.Y.; You, J.W.; Cui, T.J.; Chan, C.H. Terahertz spoof plasmonic neural network for diffractive information recognition and processing. Nat. Commun. 2024, 15, 6686. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Wang, X.; Zhang, Y. All dielectric metasurface based diffractive neural networks for 1-bit adder. Nanophotonics 2024, 13, 1449–1458. [Google Scholar] [CrossRef]
Materials | Refractive Index at ~10 μm | Dispersion (υ8–12) 1 | Density (g/cm3) | Thermal Expansion Coefficient (10−6/K) | dn/dT (10−6/K) | Knoop Hardness (kgf/mm2) |
---|---|---|---|---|---|---|
Ge | 4.0032 [13] | 1700 [14] | 5.854 [14] | 6 [14] | 396 [14] | 176 [14] |
Si | 3.4179 [13] | 1863 [15] | 2.33 [16] | 2.6 [16] | 160 [17] | 1000 [14] |
chalcogenide | 2.4–2.8 [18] | 30–175 [18] | 4.40 [19] | 17 [19] | 20–103 [18] | 109 [14] |
ZnS | 2.2005 [13] | 23 [14] | 4.09 [14] | 7 [14] | 46 [14] | 178 [14] |
ZnSe | 2.4065 [13] | 58 [14] | 5.27 [14] | 7 [14] | 57 [14] | 137 [14] |
CaF2 | 1.3082 [20] | 94.99 [21] | 3.179 [14] | 18.5 [22] | −5.6 [20] | −160 [23] |
BaF2 | 1.40133 [24] | 81.61 [21] | 4.83 [14] | 18.1 [22] | −15.45 [24] | 82 [14] |
Materials | Processing | Environmental Resistance | Toxicity | Cost |
---|---|---|---|---|
Ge | cutting and polishing | high | nontoxic | high |
Si | cutting and polishing | high | nontoxic | low |
chalcogenide | press molding | medium | nontoxic 1 | low |
ZnS | press molding | medium | nontoxic 1 | low |
ZnSe | cutting and polishing | medium | toxic | medium |
CaF2 | cutting and polishing | high | nontoxic | low |
BaF2 | cutting and polishing | low | toxic | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, S.; Hanaoka, M.; Iwakawa, M.; Fukushima, S.; Shimatani, M. All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review. Sensors 2025, 25, 3781. https://doi.org/10.3390/s25123781
Ogawa S, Hanaoka M, Iwakawa M, Fukushima S, Shimatani M. All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review. Sensors. 2025; 25(12):3781. https://doi.org/10.3390/s25123781
Chicago/Turabian StyleOgawa, Shinpei, Misaki Hanaoka, Manabu Iwakawa, Shoichiro Fukushima, and Masaaki Shimatani. 2025. "All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review" Sensors 25, no. 12: 3781. https://doi.org/10.3390/s25123781
APA StyleOgawa, S., Hanaoka, M., Iwakawa, M., Fukushima, S., & Shimatani, M. (2025). All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review. Sensors, 25(12), 3781. https://doi.org/10.3390/s25123781