Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
Abstract
:1. Introduction
2. Design and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wang, J.; Li, X.; Chen, J.; Yu, F.; He, J.; Wang, J.; Zhao, Z.; Li, G.; Chen, X.; et al. Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors 2022, 22, 677. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Upadhyay, A.; Cheng, Y.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Ultra-Wideband Far-Infrared Absorber Based on Anisotropically Etched Doped Silicon. Opt. Lett. 2020, 45, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, X.; Caratenuto, A.; Li, J.; Zhou, S.; Ran, R.; Chen, F.; Wang, Z.; Wan, K.; Xiao, G.; et al. A New Strategy towards Spectral Selectivity: Selective Leaching Alloy to Achieve Selective Plasmonic Solar Absorption and Infrared Suppression. Nano Energy 2022, 92, 106717. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ren, H.; Chen, J.-D.; Hou, H.-Y.; Liu, H.M.; Tian, S.; Chen, W.-S.; Ge, H.-R.; Li, Y.-Q.; Mao, H.; et al. Efficient and Stable Flexible Organic Solar Cells via the Enhanced Optical-Thermal Radiative Transfer. Adv. Funct. Mater. 2023, 33, 2212260. [Google Scholar] [CrossRef]
- Jeon, N.; Hernandez, J.J.; Rosenmann, D.; Gray, S.K.; Martinson, A.B.F.; Foley IV, J.J. Pareto Optimal Spectrally Selective Emitters for Thermophotovoltaics via Weak Absorber Critical Coupling. Adv. Energy Mater. 2018, 8, 1801035. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, J.; Liu, X.; Zhang, H.; Wang, D.; Chen, Z.; Zhang, D.; Fan, T. Bio-Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Adv. Funct. Mater. 2018, 28, 1705309. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Xiao, C.; Fu, L.; Zhou, H.; Fan, T.; Zhang, D. A Bioinspired Bilevel Metamaterial for Multispectral Manipulation toward Visible, Multi-Wavelength Detection Lasers and Mid-Infrared Selective Radiation. Adv. Mater. 2023, 35, 2302844. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral Camouflage for Infrared, Visible, Lasers and Microwave with Radiative Cooling. Nat. Commun. 2021, 12, 1805. [Google Scholar] [CrossRef]
- Ding, D.; He, X.; Liang, S.; Wei, W.; Ding, S. Porous Nanostructured Composite Film for Visible-to-Infrared Camouflage with Thermal Management. ACS Appl. Mater. Interfaces 2022, 14, 24690–24696. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Zhong, Y.; Zhang, L.; Wang, B.; Feng, X.; Xu, H.; Mao, Z. Hierarchical Gradient Structural Porous Metamaterial with Selective Spectral Response for Daytime Passive Radiative Cooling. Adv. Funct. Mater. 2024, 34, 2406393. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Xie, F.; Wu, X.-E.; Zhao, S.; Jiang, Q.; Zhang, S.; Wang, B.; Li, Y.; Gao, D.; et al. A Dual-Selective Thermal Emitter with Enhanced Subambient Radiative Cooling Performance. Nat. Commun. 2024, 15, 815. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhou, Y.; Qin, B.; Qin, R.; Qiu, M.; Li, Q. Night-Time Radiative Warming Using the Atmosphere. Light-Sci. Appl. 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.T.; Han, J.; Li, K.; Guo, C.; Lin, H.; Jia, B. Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond. Nano Energy 2021, 80, 105517. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Li, Z.; Zhang, H.; Yang, Z.; Zhou, H.; Fan, T. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling. Adv. Funct. Mater. 2020, 30, 1907562. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, H.; Qin, B.; Zhu, R.; Zhang, J.; Ghosh, P.; Wang, Z.; Qiu, M.; Li, Q. High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management. Nano-Micro Lett. 2025, 17, 199. [Google Scholar] [CrossRef]
- Sanjay, S.; Mohd, B.; Michael, S.; Christian, M. On-Board Detection of Fast-Moving Targets Using an MWIR Sensor on a Small Satellite. In Proceedings of the Artificial Intelligence and Image and Signal Processing for Remote Sensing, Edinburgh, UK, 16–20 September 2025. [Google Scholar]
- Shaveisi, M.; Aliparast, P.; Ng, S.S. Light Trapping in InAsSb-Based Barrier Photodetectors for Enhanced Mid-Wave Infrared Bio-Medical Sensing: A Study on Jurkat Biomarker Detection. In Proceedings of the 2023 5th Iranian International Conference on Microelectronics (IICM), Tehran, Iran, 25–26 October 2023. [Google Scholar]
- Argirusis, N.; Achilleos, A.; Alizadeh, N.; Argirusis, C.; Sourkouni, G. IR Sensors, Related Materials, and Applications. Sensors 2025, 25, 673. [Google Scholar] [CrossRef]
- Jha, R.K. Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2022, 22, 6–15. [Google Scholar] [CrossRef]
- Padilla, W.J.; Averitt, R.D. Imaging with Metamaterials. Nat. Rev. Phys. 2022, 4, 85–100. [Google Scholar] [CrossRef]
- Patten, E.A.; Goetz, P.M.; Vilela, M.F.; Olsson, K.; Lofgreen, D.D.; Vodicka, J.G.; Johnson, S.M. High-Performance MWIR/LWIR Dual-Band 640 × 480 HgCdTe/Si FPAs. J. Electron. Mater. 2010, 39, 2215–2219. [Google Scholar] [CrossRef]
- Kousis, I.; Pisello, A.L. Toward the Scaling up of Daytime Radiative Coolers: A Review. Adv. Opt. Mater. 2023, 11, 2300123. [Google Scholar] [CrossRef]
- Hossain, M.M.; Gu, M. Radiative Cooling: Principles, Progress, and Potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, H.; Taylor, S.; Liu, S.; Liu, Y.; Wang, R.; Wang, L. Selective Color Metamaterial Absorber Made of Aluminum Nanodisk Arrays by Excitation of Magnetic Polaritons. ES Mater. Manuf. 2022, 17, 63–72. [Google Scholar] [CrossRef]
- Ahmed, W.W.; Cao, H.; Xu, C.; Farhat, M.; Amin, M.; Li, X.; Zhang, X.; Wu, Y. Machine Learning Assisted Plasmonic Metascreen for Enhanced Broadband Absorption in Ultra-Thin Silicon Films. Light-Sci. Appl. 2025, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qin, Z. Multifunctional Plasmonic Metamaterial Absorber in the Middle Infrared Range for Polarization Detection. Opt. Commun. 2025, 574, 131124. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Zuo, P.; Tian, H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials 2023, 16, 3083. [Google Scholar] [CrossRef]
- Guo, H.; Yang, X.; Zhu, D. Easy-to-Manufacture In-Line 2D Nano Antenna for Enhanced Radiation-Cooled IR Camouflage. ACS Photonics 2023, 10, 1405–1415. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, M.; Zhao, X.; You, R. Fabrication and Modulation of Flexible Electromagnetic Metamaterials. Microsyst. Nanoeng. 2025, 11, 14. [Google Scholar] [CrossRef]
- Cha, J.; Lee, G.; Lee, D.; Kim, D.-S.; Kim, S. A Progressive Wafer Scale Approach for Sub-10 Nm Nanogap Structures. Sci. Rep.-UK 2025, 15, 11323. [Google Scholar] [CrossRef]
- Qian, C.; Kaminer, I.; Chen, H. A Guidance to Intelligent Metamaterials and Metamaterials Intelligence. Nat. Commun. 2025, 16, 1154. [Google Scholar] [CrossRef]
- Larciprete, M.C.; Centini, M.; Li Voti, R.; Bertolotti, M.; Sibilia, C. Polarization insensitive infrared absorbing behaviour of one-dimensional multilayer stack: A fractal approach. Opt. Express. 2014, 22, A1547–A1552. [Google Scholar] [CrossRef]
- Tong, H.; Li, H.; Huang, H.; Wu, A.; Cao, T.; Guo, D. Achievement of Low Infrared Emissivity Photonic Crystal Design on [CdSe/SiO2]N Periodic Films. Opt. Laser Technol. 2022, 156, 108557. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, H.; Wang, B.; Zhang, J.; Tang, H.; Li, Q.; Shen, Z.; Yang, H.; Shan, D.; Zhao, Y.; et al. Enhancing Coupling Resonance in Multilayer MIM Structure and F-P Cavity Mode for Mid-Infrared Band Applications. Plasmonics 2024, 19, 2333–2343. [Google Scholar] [CrossRef]
- Babayigit, C.; Boztug, C.; Kurt, H.; Turduev, M. Fabry–Pérot Microtube Cavity Structure for Optical Sensing at Mid-Infrared Spectrum. IEEE Sens. J. 2020, 20, 2390–2397. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, W.; Tang, X.; Zhu, D.; Luo, F. Effects of Substrate Roughness on Infrared-Emissivity Characteristics of Au Films Deposited on Ni Alloy. Thin Solid Films 2011, 519, 3100–3106. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-Loss Plasmonic Metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Li Voti, R. Optimization of a perfect absorber multilayer structure by genetic algorithms. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 11. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q.; Huang, J.; Xu, H.; Lu, Y.; Song, W. Scalable-Manufactured Metamaterials for Simultaneous Visible Transmission, Infrared Reflection, and Microwave Absorption. ACS Appl. Mater. Interfaces 2022, 14, 33933–33943. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, Y.; Zhou, Y.; Qiu, M.; Li, Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 2023, 12, 246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Huang, H.; Wang, X.; Tian, C.; Huang, Z.; Zhong, Z.; Liu, S. Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials 2025, 15, 678. https://doi.org/10.3390/nano15090678
Wu S, Huang H, Wang X, Tian C, Huang Z, Zhong Z, Liu S. Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials. 2025; 15(9):678. https://doi.org/10.3390/nano15090678
Chicago/Turabian StyleWu, Shenglan, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong, and Shuang Liu. 2025. "Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film" Nanomaterials 15, no. 9: 678. https://doi.org/10.3390/nano15090678
APA StyleWu, S., Huang, H., Wang, X., Tian, C., Huang, Z., Zhong, Z., & Liu, S. (2025). Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials, 15(9), 678. https://doi.org/10.3390/nano15090678