Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,136)

Search Parameters:
Keywords = infrared LED

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2648 KB  
Perspective
Perovskites to Photonics: Engineering NIR LEDs for Photobiomodulation
by Somnath Mahato, Hendradi Hardhienata and Muhammad Danang Birowosuto
Micromachines 2025, 16(9), 1002; https://doi.org/10.3390/mi16091002 - 30 Aug 2025
Viewed by 48
Abstract
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing [...] Read more.
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing their performance for clinical use remains a challenge. This perspective explores the latest advances in NIR-emitting materials, spanning Group III–V, IV, and II–VI semiconductors, organic small molecules, polymers, and perovskites, with an emphasis on their applicability to PBM. Particular attention is given to the promise of perovskite LEDs, including lead-free and lanthanide-doped variants, for delivering narrowband, tunable NIR emission. Furthermore, we examine photonic and plasmonic engineering strategies that enhance light extraction, spectral precision, and device efficiency. By integrating advances in materials science and nanophotonics, it is increasingly feasible to develop flexible, biocompatible, and high-performance NIR LEDs tailored for next-generation therapeutic applications. Full article
(This article belongs to the Special Issue Recent Advances in Nanophotonic Materials and Devices)
19 pages, 6514 KB  
Article
Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model
by Jinxiu Cheng, Pengfei Xie, Huimeng Zhao and Zhong Ji
Sensors 2025, 25(17), 5260; https://doi.org/10.3390/s25175260 - 24 Aug 2025
Viewed by 584
Abstract
Blood glucose monitoring is crucial for the daily management of diabetic patients. In this study, we developed a differential absorbance and photoplethysmography (PPG)-based non-invasive blood glucose measurement system (NIBGMS) using visible–near-infrared (Vis-NIR) light. Three light-emitting diodes (LEDs) (625 nm, 850 nm, and 940 [...] Read more.
Blood glucose monitoring is crucial for the daily management of diabetic patients. In this study, we developed a differential absorbance and photoplethysmography (PPG)-based non-invasive blood glucose measurement system (NIBGMS) using visible–near-infrared (Vis-NIR) light. Three light-emitting diodes (LEDs) (625 nm, 850 nm, and 940 nm) and three photodetectors (PDs) with different source–detector separation distances were used to detect the differential absorbance of tissues at different depths and PPG signals of the index finger. A spatiotemporal multimodal fused long short-term memory (STMF-LSTM) model was developed to improve the prediction accuracy of blood glucose levels by multimodal fusion of optical spatial information (differential absorbance and PPG signals) and glucose temporal information. The validity of the NIBGMS was preliminarily verified using multilayer perceptron (MLP), support vector regression (SVR), random forest regression (RFR), and extreme gradient boosting (XG Boost) models on datasets collected from 15 non-diabetic subjects and 3 type-2 diabetic subjects, with a total of 805 samples. Additionally, a continuous dataset consisting 272 samples from four non-diabetic subjects was used to validate the developed STMF-LSTM model. The results demonstrate that the STMF-LSTM model indicated improved prediction performance with a root mean square error (RMSE) of 0.811 mmol/L and a percentage of 100% for Parkes error grid analysis (EGA) Zone A and B in 8-fold cross validation. Therefore, the developed NIBGMS and STMF-LSTM model show potential in practical non-invasive blood glucose monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 1167 KB  
Article
Enhanced Accuracy in Jump Power Estimation Using Photoelectric Cell System and GRS80 Location-Specific Gravitational Acceleration
by J. L. González-Montesinos, F. G. Montesinos, J. R. Fernández Santos, A. Suárez Llorens, I. Caraballo, P. Gutiérrez-Mulas and J. V. Gutiérrez-Manzanedo
Sensors 2025, 25(16), 5163; https://doi.org/10.3390/s25165163 - 20 Aug 2025
Viewed by 372
Abstract
Power is essential in sports and is typically calculated using a standard gravity value of g = 9.81 m·s−2. However, this value varies according to altitude and geographical latitude. The aim of this study was to improve the accuracy of power [...] Read more.
Power is essential in sports and is typically calculated using a standard gravity value of g = 9.81 m·s−2. However, this value varies according to altitude and geographical latitude. The aim of this study was to improve the accuracy of power calculations using a photoelectric cell system and the local g value. First, the uncertainty in jump power calculation induced by the direct measurements involved in its estimation was analyzed in this cross-sectional study. Subsequently, the power values obtained for ten volleyball players were calculated through repeated jump tests of 15, 30, and 60 s, using a kinematic system composed of a transmitting bar and a receiving bar with 96 infrared LEDs that detect flight and ground times for each jump. The local gravity values for 34 different locations—obtained through the Geodetic Reference System, taking into account the altitude of each location—and the standard value of g = 9.81 m·s−2 were used for the power calculation. Significant differences were observed, with underestimation occurring at higher altitude locations and overestimation at lower altitudes. To conclude, the results indicated that the geographic location of the experiment should be considered, and the use of GRS80 local gravity values is recommended to improve the accuracy of jump power calculations. Full article
(This article belongs to the Special Issue Sensing Technologies for Human Evaluation, Testing and Assessment)
Show Figures

Figure 1

18 pages, 4856 KB  
Article
Comparative Analysis of Multispectral LED–Sensor Architectures for Scalable Waste Material Classification
by Anju Manakkakudy Kumaran, Rahmi Elagib, Andrea De Iacovo, Andrea Ballabio, Jacopo Frigerio, Giovanni Isella, Gaetano Assanto and Lorenzo Colace
Appl. Sci. 2025, 15(16), 8964; https://doi.org/10.3390/app15168964 - 14 Aug 2025
Viewed by 248
Abstract
We present a comprehensive study of LED-based optical sensing systems for the classification of waste materials, analyzing recent developments in the field. Accurate identification of materials such as plastics, glass, aluminum, and paper is a crucial yet challenging task in waste management for [...] Read more.
We present a comprehensive study of LED-based optical sensing systems for the classification of waste materials, analyzing recent developments in the field. Accurate identification of materials such as plastics, glass, aluminum, and paper is a crucial yet challenging task in waste management for recycling. The first approach uses short-wave infrared reflectance spectroscopy with commercial Germanium photodetectors and selected LEDs to keep data complexity and cost at a minimum while achieving classification accuracies up to 98% with machine learning algorithms. The second system employes a voltage-tunable Germanium-on-Silicon photodetector that operates across a broader spectral range (400–1600 nm), in combination with three LEDs in both the visible and short-wave infrared bands. This configuration enables an adaptive spectral response and simplifies the optical setup, supporting energy-efficient and scalable integration. Accuracies up to 99% were obtained with the aid of machine learning algorithms. Across all systems, the strategic use of low-cost LEDs as light sources and compact optical sensors demonstrates the potential of light-emitting devices in the implementation of compact, intelligent, and sustainable solutions for real-time material recognition. This article explores the design, characterization, and performance of such systems, providing insights into the way light-emitting and optoelectronic components can be leveraged for advanced sensing in waste classification applications. Full article
Show Figures

Figure 1

19 pages, 1355 KB  
Article
Exploring the Thermal Degradation of Bakelite: Non-Isothermal Kinetic Modeling, Thermodynamic Insights, and Evolved Gas Analysis via Integrated In Situ TGA/MS and TGA/FT-IR Techniques
by Gamzenur Özsin
Polymers 2025, 17(16), 2197; https://doi.org/10.3390/polym17162197 - 12 Aug 2025
Viewed by 423
Abstract
Thermogravimetric analysis (TGA) is a key technique for evaluating the kinetics and thermodynamics of thermal degradation, providing essential data for material assessment and system design. When coupled with Fourier-transform infrared (FT-IR) spectroscopy or mass spectroscopy (MS), it enables the identification of evolved gases [...] Read more.
Thermogravimetric analysis (TGA) is a key technique for evaluating the kinetics and thermodynamics of thermal degradation, providing essential data for material assessment and system design. When coupled with Fourier-transform infrared (FT-IR) spectroscopy or mass spectroscopy (MS), it enables the identification of evolved gases and correlates mass loss with specific chemical species, offering detailed insight into decomposition mechanisms. In this study, TGA was coupled with FT-IR and MS to investigate the thermal degradation behavior of Bakelite, with the aim of evaluating its kinetic and thermodynamic parameters under non-isothermal conditions, identifying evolved volatile compounds, and elucidating the degradation process. The results showed that higher heating rates led to increased decomposition temperatures and broader dTG peaks due to thermal lag effects. The degradation proceeded in multiple stages between 220 °C and 860 °C, ultimately yielding a carbonaceous residue. The activation energy increased with conversion, particularly beyond 0.5, indicating a greater energy requirement as degradation progressed. Peak values at conversion degrees of 0.8–0.9 suggested enhanced thermal stability or changes in the dominant reaction mechanism. Detailed kinetic analysis revealed complex decomposition pathways with variable activation energies and a pronounced kinetic compensation effect. Thermodynamic analysis confirmed the endothermic nature of the process, with increasing energy demand and non-spontaneous degradation of the resulting char. TGA/FT-IR and TGA/MS analyses identified the release of several compounds, including CO2, water, formaldehyde, and phenolic derivatives, at distinct stages. This comprehensive understanding of Bakelite’s thermal behavior supports its optimization for high-temperature applications, enhances material reliability and safety, and contributes to sustainable processing and recycling strategies. Full article
(This article belongs to the Special Issue Development in Polymer Recycling)
Show Figures

Graphical abstract

14 pages, 4543 KB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 - 7 Aug 2025
Viewed by 377
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 3520 KB  
Article
Cellulose Ether/Citric Acid Systems Loaded with SrTiO3 Nanoparticles with Solvent-Tailored Features for Energy-Related Technologies
by Raluca Marinica Albu, Mihaela Iuliana Avadanei, Lavinia Petronela Curecheriu, Gabriela Turcanu, Iuliana Stoica, Marius Soroceanu, Daniela Rusu, Cristian-Dragos Varganici, Victor Cojocaru and Andreea Irina Barzic
Molecules 2025, 30(15), 3271; https://doi.org/10.3390/molecules30153271 - 5 Aug 2025
Viewed by 410
Abstract
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles [...] Read more.
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles (5–20 wt%). In this case, citric acid can act as a crosslinking agent for the polymer but also can react differently with the other counterparts from the composite as a function of the solvent used (H2O and H2O2). This led to considerable differences in the morphological, thermal, optical, and electrical characteristics due to distinct solvent-driven interactions, as revealed by the infrared spectroscopy investigation. Hence, in contrast to H2O, the oxidizing activity of H2O2 led to changes in the surface morphology, a greater transparency, a greater yellowness, an enhanced refractive index, and higher permittivity. These data provide new pathways to advance the optical and dielectric behavior of eco-compatible materials for energy devices by the careful selection of the composite’s components and the modulation of the molecular interactions via solvent features. Full article
Show Figures

Figure 1

13 pages, 1859 KB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Viewed by 427
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

13 pages, 2273 KB  
Article
Impact of Shades and Thickness on the Polymerization of Low-Viscosity Bulk-Fill Composites in Pediatric Restorations: An In Vitro Study
by Gennaro Musella, Stefania Cantore, Maria Eleonora Bizzoca, Mario Dioguardi, Rossella Intini, Lorenzo Lo Muzio, Federico Moramarco, Francesco Pettini and Andrea Ballini
Dent. J. 2025, 13(8), 352; https://doi.org/10.3390/dj13080352 - 1 Aug 2025
Viewed by 382
Abstract
Background/Objectives: This study aimed to investigate the influence of shade and thickness on the polymerization of SDR® flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). Methods: An in vitro study was conducted using SDR® flow+ composite resin. [...] Read more.
Background/Objectives: This study aimed to investigate the influence of shade and thickness on the polymerization of SDR® flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). Methods: An in vitro study was conducted using SDR® flow+ composite resin. Specimens were prepared at two thicknesses (2 mm and 4 mm) and four shades (Universal, A1, A2, A3). Polymerization was performed using a high-intensity LED curing unit. The DC was assessed using Fourier-transform infrared spectroscopy (ATR-FTIR). Results: Both shade and thickness significantly influenced DC. Thicker specimens (4 mm) exhibited reduced polymerization compared to thinner specimens (2 mm). Darker shades, particularly A3, demonstrated the lowest DC values due to their higher chroma, which limits light penetration. In contrast, the Universal shade achieved higher DC values, even at increased depths, likely due to its greater translucency. Conclusions: Shade and thickness play a critical role in the polymerization of bulk-fill composites. Ensuring adequate polymerization is essential for the longevity of pediatric restorations. Further in vivo research is needed to confirm these findings and assess their clinical implications. Full article
(This article belongs to the Special Issue Women's Research in Dentistry)
Show Figures

Figure 1

32 pages, 4418 KB  
Article
The Use of Chitosan/Perlite Material for Microbial Support in Anaerobic Digestion of Food Waste
by Agnieszka A. Pilarska, Anna Marzec-Grządziel, Małgorzata Makowska, Alicja Kolasa-Więcek, Ranjitha Jambulingam, Tomasz Kałuża and Krzysztof Pilarski
Materials 2025, 18(15), 3504; https://doi.org/10.3390/ma18153504 - 26 Jul 2025
Viewed by 511
Abstract
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in [...] Read more.
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in the AD process for the first time. A laboratory experiment using wafer waste (WF) and cheese (CE) waste was conducted under mesophilic conditions. The analysis of physico-chemical properties confirmed the suitability of the tested carrier material for anaerobic digestion. Both components influenced the microstructural characteristics of the carrier: perlite contributed to the development of specific surface area, while chitosan determined the porosity of the system. Using next-generation sequencing (NGS), the study examined how the additive affected the genetic diversity of bacterial communities. Fourier-transform infrared spectroscopy (FTIR) revealed that the degradation rate depended on both the carrier and the substrate type. Consequently, the presence of the carrier led to an increase in the volume of biogas and methane produced. The volume of methane for the wafer waste (WF–control) increased from 351.72 m3 Mg−1 (VS) to 410.74 m3 Mg−1 (VS), while for the cosubstrate sample (wafer and cheese, WFC–control), it increased from 476.84 m3 Mg−1 (VS) to 588.55 m3 Mg−1 (VS). Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

24 pages, 6623 KB  
Article
Light Exposure as a Tool to Enhance the Regenerative Potential of Adipose-Derived Mesenchymal Stem/Stromal Cells
by Kaarthik Sridharan, Tawakalitu Okikiola Waheed, Susanne Staehlke, Alexander Riess, Mario Mand, Juliane Meyer, Hermann Seitz, Kirsten Peters and Olga Hahn
Cells 2025, 14(15), 1143; https://doi.org/10.3390/cells14151143 - 24 Jul 2025
Viewed by 513
Abstract
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and [...] Read more.
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and in combination, on human adipose-derived mesenchymal stem/stromal cells (adMSCs). A single, short-term exposure of adMSCs in suspension to these wavelengths using an integrating sphere revealed distinct wavelength- and dose-dependent cellular responses. Blue light exposure led to a dose-dependent increase in intracellular reactive oxygen species, accompanied by reduced cell proliferation, metabolic activity, interleukin-6/interleukin-8 secretion, and adipogenic differentiation. In contrast, red and near-infrared light preserved cell viability and metabolic function while enhancing cell migration, consistent with their documented ability to stimulate proliferation and mitochondrial activity in mesenchymal stem cells. These findings highlight the necessity of precise wavelength and dosage selection in PBM applications and support the potential of PBM as a customizable tool for optimizing patient-specific regenerative therapies. Full article
Show Figures

Figure 1

25 pages, 4661 KB  
Article
Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study
by Acela López-Benítez, Alfredo Guevara-Lara, Diana Palma-Ramírez, Karen A. Neri-Espinoza, Rebeca Silva-Rodrigo and José A. Andraca-Adame
Foods 2025, 14(14), 2543; https://doi.org/10.3390/foods14142543 - 21 Jul 2025
Viewed by 538
Abstract
Tomatoes are among the most widely consumed and economically significant fruits in the world. However, the extensive use of pesticides in their cultivation has led to the contamination of the peels, posing potential health risks to consumers. As one of the top global [...] Read more.
Tomatoes are among the most widely consumed and economically significant fruits in the world. However, the extensive use of pesticides in their cultivation has led to the contamination of the peels, posing potential health risks to consumers. As one of the top global producers, consumers, and exporters of tomatoes, Mexico requires rapid, non-destructive, and real-time methods for pesticide monitoring. In this study, a detailed characterization of six pesticides using Raman and Fourier Transform Infrared (FT-IR) spectroscopies was carried out to identify their characteristic vibrational modes. The pesticides examined included different chemical classes commonly used in tomato cultivation: organophosphorus (dichlorvos and methamidophos), pyrethroids (lambda-cyhalothrin and cypermethrin), and carbamates (methomyl and benomyl). Tomato peel samples were examined both before and after pesticide application. Prior to treatment, the peel exhibited a well-organized polygonal structure and showed the presence of carotenoid compounds. After pesticide application, no visible structural damage was observed; however, distinct vibrational bands enabled the detection of each pesticide. Organophosphorus pesticides could be identified through vibrational bands associated with P-O and C-S bonds. Pyrethroid detection was facilitated by benzene ring breathing modes and C=C stretching vibrations, while carbamates were identified through C-N stretching contributions. Phytotoxicity testing in the presence of pesticides indicates no significant damage during the germination of tomatoes. Full article
Show Figures

Figure 1

22 pages, 5401 KB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Viewed by 490
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 3324 KB  
Article
Curcumin and Papain-Loaded Liposomal Natural Latex Dressings with Phototherapy: A Synergistic Approach to Diabetic Wound Healing
by Franciéle M. Silva, Jaqueline R. Silva, Wellington Rodrigues, Breno A. S. M. Sousa, Thamis F. S. Gomes, Mario F. F. Rosa, Suélia S. R. F. Rosa and Marcella L. B. Carneiro
Pharmaceuticals 2025, 18(7), 1067; https://doi.org/10.3390/ph18071067 - 20 Jul 2025
Viewed by 803
Abstract
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated [...] Read more.
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated with liposome-encapsulated curcumin and papain. The therapeutic efficacy of these composite dressings, in combination with red light-emitting diode (LED) phototherapy, was evaluated in a diabetic rat model. NLBs were produced by blending natural latex with multilamellar liposomes containing either curcumin, papain, or both. In vivo wound healing was assessed by applying the biomembranes to the dorsal lesions and administering red LED irradiation (650 ± 20 nm, 10 min every 48 h) over 11 days. Results: Fourier transform infrared spectroscopy (FTIR) confirmed that the integration of liposomes did not induce significant chemical alterations to the latex matrix. The treated diabetic rats exhibited enhanced wound contraction, with the curcumin and papain groups demonstrating up to 99% and 95% healing, respectively. Plasma fructosamine levels were significantly reduced (p < 0.05), indicating improved glycemic control. Conclusions: Combining NLBs with bioactive-loaded liposomes and phototherapy accelerated wound healing in diabetic rats. This multifunctional platform shows promise for the treatment of chronic wounds in diabetic patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

18 pages, 6380 KB  
Article
Synthesis and Application of Fe3O4–ZrO2 Magnetic Nanoparticles for Fluoride Adsorption from Water
by Israel Águila-Martínez, José Antonio Pérez-Tavares, Efrén González-Aguiñaga, Pablo Eduardo Cardoso-Avila, Héctor Pérez Ladrón de Guevara and Rita Patakfalvi
Inorganics 2025, 13(7), 248; https://doi.org/10.3390/inorganics13070248 - 19 Jul 2025
Viewed by 1004
Abstract
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios [...] Read more.
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios of 1:1, 1:2, and 1:4, and characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FTIR analysis confirmed the presence of Fe3O4 and ZrO2 functional groups, while XRD showed that increased Zr content led to a dominant amorphous phase. SEM and EDS analyses revealed quasi-spherical and elongated morphologies with uniform elemental distribution, maintaining the designed Fe/Zr ratios. Preliminary adsorption tests identified the Fe/Zr = 1:1 (M1) nanoadsorbent as the most effective due to its high surface homogeneity and optimal fluoride-binding characteristics. Adsorption experiments demonstrated that the material achieved a maximum fluoride adsorption capacity of 70.4 mg/g at pH 3, with the adsorption process best fitting the Temkin isotherm model (R2 = 0.987), suggesting strong adsorbate–adsorbent interactions. pH-dependent studies confirmed that adsorption efficiency decreased at higher pH values due to electrostatic repulsion and competition with hydroxyl ions. Competitive ion experiments revealed that common anions such as nitrate, chloride, and sulfate had negligible effects on fluoride adsorption, whereas bicarbonate, carbonate, and phosphate reduced removal efficiency due to their strong interactions with active adsorption sites. The Fe3O4–ZrO2 nanoadsorbent exhibited excellent magnetic properties, facilitating rapid and efficient separation using an external magnetic field, making it a promising candidate for practical water treatment applications. Full article
Show Figures

Graphical abstract

Back to TopTop