Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,037)

Search Parameters:
Keywords = infrared (IR) spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 31042 KiB  
Article
Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging
by Georgios th Karagiannis, Ioannis Grivas, Anastasia Tsingotjidou, Georgios Apostolidis, Eirini Tsardaka, Ioanna Dori, Kyriaki-Nefeli Poulatsidou, Ioannis Tsougos, Stefan Wesarg, Argyrios Doumas and Panagiotis Georgoulias
Cancers 2025, 17(15), 2599; https://doi.org/10.3390/cancers17152599 (registering DOI) - 7 Aug 2025
Abstract
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of [...] Read more.
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of the developing tumor, whilst the latter identifies its biochemical features, both at the micron scale. To implement this diagnostic method, an animal model that mimics human melanoma was developed. The results of this investigation show that using high-frequency (>20 MHz) acoustic microscopy in conjunction with spectroscopic images provides useful information about distinct features of melanoma tumors’ 3D structures. The structures and cytoarchitecture of the tumors were assessed using conventional histology, and their malignant nature was confirmed using histological and immumohistochemical analysis. The proposed approach may provide an invaluable tool in diagnostic dermatology, as it is noninvasive and produces highly detailed and accurate data about the early appearance and development of melanoma tumors. Full article
14 pages, 2177 KiB  
Article
Study on the Regulation Mechanism of Silane Coupling Agents’ Molecular Structure on the Rheological Properties of Fe3O4/CNT Silicone Oil-Based Magnetic Liquids
by Wenyi Li, Xiaotong Zeng, Shiyu Yang, Bingxue Wang, Xiangju Tian and Weihao Shen
J. Compos. Sci. 2025, 9(8), 423; https://doi.org/10.3390/jcs9080423 - 7 Aug 2025
Abstract
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane [...] Read more.
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane (7030). Infrared Spectroscopy (IR), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) were used to confirm the successful doping of CNTs and the effective coating of the coupling agents. The rheological behavior of the magnetic liquids was systematically studied using an Anton Paar Rheometer. The results show that viscosity decreases exponentially with increasing temperature (fitting the Arrhenius equation), increases and tends to saturate with rising magnetic field intensity, and exhibits shear-thinning characteristics with increasing shear rate. Among the samples, Fe3O4@7030 has the best visco-thermal performance due to the benzene ring structure, which reduces the symmetry of the molecular chains. In contrast, Fe3O4@570 shows the most significant magneto-viscous effect (viscosity variation of 161.4%) as a result of the long-chain structure enhancing the steric hindrance of the magnetic dipoles. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

33 pages, 10775 KiB  
Article
Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation—Toward Smart 2D Biomaterials
by Julia Radwan-Pragłowska, Aleksandra Kopacz, Aleksandra Sierakowska-Byczek, Łukasz Janus, Piotr Radomski and Aleksander Radwan-Pragłowski
Appl. Sci. 2025, 15(15), 8713; https://doi.org/10.3390/app15158713 - 6 Aug 2025
Abstract
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes [...] Read more.
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes enhanced with periclase (MgO) and gold nanoparticles (AuNPs). The membranes were fabricated using an optimized electrospinning process and subsequently characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and contact angle measurements. Additionally, in vitro biodegradation studies in simulated body fluid (SBF) and cytocompatibility tests with osteoblast-like cells were conducted. The results demonstrated that the incorporation of MgO and AuNPs significantly influenced the structural and chemical properties of the membranes, improving their wettability and bioactivity. SEM imaging confirmed uniform fiber morphology with well-distributed nanoparticles. FT-IR spectroscopy indicated successful integration of bioactive components into the PLA matrix. Cytocompatibility assays showed that modified membranes promoted higher osteoblast adhesion and proliferation compared to pristine PLA membranes. Furthermore, biodegradation studies revealed a controlled degradation rate suitable for guided bone regeneration applications. These findings suggest that electrospun PLA membranes enriched with MgO and AuNPs present a promising biomaterial for GBR applications, offering improved bioactivity, mechanical stability, and biocompatibility. Full article
(This article belongs to the Special Issue Bioactive Composite Materials: From Preparation to Application)
Show Figures

Figure 1

19 pages, 1584 KiB  
Article
The Development of a Predictive Maintenance System for Gearboxes Through a Statistical Diagnostic Analysis of Lubricating Oil and Artificial Intelligence
by Diego Rigolli, Lorenzo Pompei, Massimo Manfredini, Massimiliano Vignoli, Vincenzo La Battaglia and Alessandro Giorgetti
Machines 2025, 13(8), 693; https://doi.org/10.3390/machines13080693 - 6 Aug 2025
Abstract
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, [...] Read more.
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, characterized by long analysis times and a marked dependence on the subjective interpretation of operators. The method includes a detailed statistical analysis of the common ways to assess the condition of lubricants, such as optical emission spectroscopy, particle counting, measuring viscosity and density, and Fourier-transform infrared spectroscopy (FT-IR). These methods are then combined with an artificial intelligence model. Tested on commercial gearbox data, the proposed approach demonstrates agreement between IA and expert evaluation. The application has shown that it can effectively support diagnoses, reduce processing time by 60%, and minimize human errors. It also improves knowledge sharing through an increase in the stability and repetitiveness of diagnoses and promotes consistency and clarity in reporting. Full article
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Viewed by 34
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

22 pages, 5497 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Viewed by 36
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 137
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

11 pages, 1876 KiB  
Article
Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits
by Marina V. Parchaykina, Mikhail A. Baykov, Elvira S. Revina, Mikhail V. Shchankin and Viktor V. Revin
Polymers 2025, 17(15), 2123; https://doi.org/10.3390/polym17152123 - 31 Jul 2025
Viewed by 273
Abstract
The article is devoted to the study of the physico-mechanical properties and oxygen permeability of the examined conduits based on bacterial cellulose (BC) obtained using the Komagataeibacter sucrofermentans B-11267 strain. BC is considered a promising material for regenerative biomedicine. The chemical structure, crystallinity [...] Read more.
The article is devoted to the study of the physico-mechanical properties and oxygen permeability of the examined conduits based on bacterial cellulose (BC) obtained using the Komagataeibacter sucrofermentans B-11267 strain. BC is considered a promising material for regenerative biomedicine. The chemical structure, crystallinity degree and porosity of BC-based conduits were characterized by means of infrared spectroscopy (IR-spectroscopy), scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Both the Young’s modulus and determined tension showed the high strength of the obtained conduits. Their oxygen permeability exceeded the values for the existing analogues, and lack of cytotoxicity indicated biocompatibility, confirming that BC-based conduits may be used for biomedical purposes. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Viewed by 388
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Graphical abstract

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 226
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

15 pages, 2018 KiB  
Article
Study on Preparation and Properties of Super Absorbent Gels of Homogenous Cotton Straw-Acrylic Acid-Acrylamide by Graft Copolymerization
by Jun Guo, Jing Shi, Lisheng Xu, Xingtao Zhang, Fangkai Han and Minwei Xu
Gels 2025, 11(8), 583; https://doi.org/10.3390/gels11080583 - 28 Jul 2025
Viewed by 229
Abstract
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose [...] Read more.
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. 60Co gamma rays as initiators. Different concentrations of alkaline solution were used to dissolve the cellulose in the straw. Single-factor and orthogonal experiments were conducted to optimize the experimental conditions. various analytical methods such as thermogravimetric analysis (TG), X-ray crystallography (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to characterize the structure and properties of the product. 60Co gamma rays as initiators, can reduce the pollution caused by chemical initiators and lower energy consumption. Through this research, agricultural waste can be effectively utilized, reducing environmental pollution, lowering industrial energy consumption, and synthesizing degradable and environmentally friendly high-absorbent resins. The product can be applied to agricultural water retention agent, fertilizer controlled release agent and other aspects. Full article
(This article belongs to the Special Issue Cellulose-Based Hydrogels for Advanced Applications)
Show Figures

Graphical abstract

29 pages, 2927 KiB  
Article
Rheological Properties, Textural Properties and Storage Stability of Sauce Enriched with Pomace from Oxheart Tomatoes (Lycopersicon esculentum)
by Dumitrița Flaiș and Mircea Oroian
Foods 2025, 14(15), 2627; https://doi.org/10.3390/foods14152627 - 26 Jul 2025
Viewed by 276
Abstract
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and [...] Read more.
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and three control samples (E0, S0, and P0) were prepared, corresponding to three protein sources (E: egg yolk, S: soy, P: pea), with increasing concentrations of tomato pomace (0, 2, 4, and 6%). The formulations were adjusted proportionally in terms of water and oil to maintain the desired consistency. The analyses performed included: physico-chemical analysis of the sauce (fat content, peroxide value, and CIE L* a* b* color determination), quality assessment using Fourier Transform Infrared Spectroscopy (FT-IR, rheological measurements, and microstructural evaluation. The sample designated P2 demonstrated a notable correlation with favourable parameters, exhibiting intense colouration, elevated protein content, and consistent rheological properties. However, at higher levels of tomato pomace (notably 6%), microstructural instability was observed, which may limit the formulation’s robustness over time. These findings demonstrate that tomato pomace can enhance the functional and structural characteristics of sauce, while also highlighting the importance of optimizing concentration levels to avoid negative impacts on emulsion stability. Overall, the results support the use of tomato pomace and plant proteins in the formulation of sustainable and innovative food products. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

27 pages, 8396 KiB  
Article
Biosynthesis of Zinc Oxide Nanostructures Using Leaf Extract of Azadirachta indica: Characterizations and In Silico and Nematicidal Potentials
by Gulrana Khuwaja, Anis Ahmad Chaudhary, Abadi M. Mashlawi, Abdullah Ali Alamri, Faris Alfifi, Kahkashan Anjum, Md Shamsher Alam, Mohammad Intakhab Alam, Syed Kashif Ali, Nadeem Raza, Mohamed A. M. Ali and Mohd Imran
Catalysts 2025, 15(7), 693; https://doi.org/10.3390/catal15070693 - 21 Jul 2025
Viewed by 486
Abstract
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed [...] Read more.
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed a distinct absorption peak at 321 nm. The Zeta potential of the ZnO nanostructures was −24.28 mV, indicating high stability in suspension, which is essential for their dispersion and functionality in biological and environmental applications. The nematicidal activity of ZnO was evaluated in vitro at concentrations of 150, 300, 450, and 600 ppm, with the highest concentration achieving 75.71% mortality of second-stage juveniles (J2s) after 72 h. The calculated LC50 values for the treatments were 270.33 ppm at 72 h. Additionally, molecular docking studies indicated significant interactions between the ZnO nanostructures and nematode proteins, HSP-90 and ODR1, supporting their potential nematicidal mechanism. This research highlights the effectiveness of neem leaf extract-mediated ZnO nanostructures as an eco-friendly, sustainable alternative for nematode control, presenting a promising solution for agricultural pest management. Full article
(This article belongs to the Special Issue (Bio)nanomaterials in Catalysis)
Show Figures

Figure 1

25 pages, 4661 KiB  
Article
Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study
by Acela López-Benítez, Alfredo Guevara-Lara, Diana Palma-Ramírez, Karen A. Neri-Espinoza, Rebeca Silva-Rodrigo and José A. Andraca-Adame
Foods 2025, 14(14), 2543; https://doi.org/10.3390/foods14142543 - 21 Jul 2025
Viewed by 294
Abstract
Tomatoes are among the most widely consumed and economically significant fruits in the world. However, the extensive use of pesticides in their cultivation has led to the contamination of the peels, posing potential health risks to consumers. As one of the top global [...] Read more.
Tomatoes are among the most widely consumed and economically significant fruits in the world. However, the extensive use of pesticides in their cultivation has led to the contamination of the peels, posing potential health risks to consumers. As one of the top global producers, consumers, and exporters of tomatoes, Mexico requires rapid, non-destructive, and real-time methods for pesticide monitoring. In this study, a detailed characterization of six pesticides using Raman and Fourier Transform Infrared (FT-IR) spectroscopies was carried out to identify their characteristic vibrational modes. The pesticides examined included different chemical classes commonly used in tomato cultivation: organophosphorus (dichlorvos and methamidophos), pyrethroids (lambda-cyhalothrin and cypermethrin), and carbamates (methomyl and benomyl). Tomato peel samples were examined both before and after pesticide application. Prior to treatment, the peel exhibited a well-organized polygonal structure and showed the presence of carotenoid compounds. After pesticide application, no visible structural damage was observed; however, distinct vibrational bands enabled the detection of each pesticide. Organophosphorus pesticides could be identified through vibrational bands associated with P-O and C-S bonds. Pyrethroid detection was facilitated by benzene ring breathing modes and C=C stretching vibrations, while carbamates were identified through C-N stretching contributions. Phytotoxicity testing in the presence of pesticides indicates no significant damage during the germination of tomatoes. Full article
Show Figures

Figure 1

Back to TopTop