Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = information security management systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 206
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

19 pages, 1072 KiB  
Article
Efficient and Reliable Identification of Probabilistic Cloning Attacks in Large-Scale RFID Systems
by Chu Chu, Rui Wang, Nanbing Deng and Gang Li
Micromachines 2025, 16(8), 894; https://doi.org/10.3390/mi16080894 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag [...] Read more.
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag information by readers, thereby threatening personal privacy and corporate security and incurring significant economic losses. Although some efforts have been made to detect cloning attacks, the presence of missing tags in RFID systems can obscure cloned ones, resulting in a significant reduction in identification efficiency and accuracy. To address these problems, we propose the block-based cloned tag identification (BCTI) protocol for identifying cloning attacks in the presence of missing tags. First, we introduce a block indicator to sort all tags systematically and design a block mechanism that enables tags to respond repeatedly within a block with minimal time overhead. Then, we design a superposition strategy to further reduce the number of verification times, thereby decreasing the execution overhead. Through an in-depth analysis of potential tag response patterns, we develop a precise method to identify cloning attacks and mitigate interference from missing tags in probabilistic cloning attack scenarios. Moreover, we perform parameter optimization of the BCTI protocol and validate its performance across diverse operational scenarios. Extensive simulation results demonstrate that the BCTI protocol meets the required identification reliability threshold and achieves an average improvement of 24.01% in identification efficiency compared to state-of-the-art solutions. Full article
Show Figures

Figure 1

17 pages, 529 KiB  
Article
Coping with Risk: The Three Spheres of Safety in Latin American Investigative Journalism
by Lucia Mesquita, Mathias Felipe de-Lima-Santos and Isabella Gonçalves
Journal. Media 2025, 6(3), 121; https://doi.org/10.3390/journalmedia6030121 - 29 Jul 2025
Viewed by 278
Abstract
Small news media organizations are increasingly reshaping the news media system in Latin America. They are stepping into the role of watchdogs by investigating issues such as corruption scandals that larger outlets sometimes overlook. However, this journalistic work exposes both journalists and their [...] Read more.
Small news media organizations are increasingly reshaping the news media system in Latin America. They are stepping into the role of watchdogs by investigating issues such as corruption scandals that larger outlets sometimes overlook. However, this journalistic work exposes both journalists and their organizations to a range of security threats, including physical violence, legal pressure, and digital attacks. In response, these outlets have developed coping strategies to manage and mitigate such risks. This article presents an exploratory study of the approaches adopted to protect information and data, ensure the safety and well-being of journalists, and maintain organizational continuity. Based on a series of in-depth interviews with leaders of award-winning news organizations for their investigative reporting, the study examines a shift from a competitive newsroom model to a collaborative approach in which information is shared—sometimes across borders—to support investigative reporting and strengthen security practices. We identify strategies implemented by small news organizations to safeguard their journalistic work and propose an integrative model of news safety encompassing the following three areas of security: physical, legal, and digital. This study contributes to the development of the newsafety framework and sheds light on safety practices that support media freedom. Full article
Show Figures

Figure 1

33 pages, 1146 KiB  
Article
Impact of Security Management Activities on Corporate Performance
by Hyunwoo Cho and Keuntae Cho
Systems 2025, 13(8), 633; https://doi.org/10.3390/systems13080633 - 28 Jul 2025
Viewed by 165
Abstract
The digital business environment is rapidly evolving with advancements in information technology (IT), increasing the risk of information security incidents. Grounded in the resource-based view and in contingency theory, this study adopts a different approach from prior research by conceptualizing security management activities [...] Read more.
The digital business environment is rapidly evolving with advancements in information technology (IT), increasing the risk of information security incidents. Grounded in the resource-based view and in contingency theory, this study adopts a different approach from prior research by conceptualizing security management activities not as mere risk control mechanisms, but as strategic innovation drivers that can enhance corporate performance (sales revenue and operating profit). The authors develop a research model with six independent variables, including internal and external security management activities, CISO role configuration (independent or dual-role with CIO), and investment levels in IT and information security. The dependent variables include sales revenue and operating profit, with ISMS or ISO certification as a moderating variable. Using information security (IS) disclosures and financial data from 545 Korean firms that have reported their security management activities to the Ministry of Science and ICT, multiple regression and moderation analyses reveal that high IT investment negatively impacts performance, but this effect is mitigated when formal security systems, like ISMS or ISO, are in place. The results suggest that integrating recognized security frameworks into management strategies can enhance both innovation and financial outcomes, encouraging a proactive approach to security management. Full article
Show Figures

Figure 1

22 pages, 1156 KiB  
Article
An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access Control
by Gangzheng Zhao, Weijie Tan and Changgen Peng
Electronics 2025, 14(15), 2988; https://doi.org/10.3390/electronics14152988 - 26 Jul 2025
Viewed by 259
Abstract
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges [...] Read more.
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges in privacy leakage risks. Existing academic research indicates current proxy re-encryption schemes remain insufficient for cloud access control scenarios characterized by diversified user requirements and personalized permission management, thus failing to fulfill the security needs of emerging computing paradigms. To resolve these issues, a revocable attribute-based proxy re-encryption scheme supporting policy-hiding is proposed. Data owners encrypt data and upload it to the blockchain while concealing attribute values within attribute-based encryption access policies, effectively preventing sensitive information leaks and achieving fine-grained secure data sharing. Simultaneously, proxy re-encryption technology enables verifiable outsourcing of complex computations. Furthermore, the SM3 (SM3 Cryptographic Hash Algorithm) hash function is embedded in user private key generation, and key updates are executed using fresh random factors to revoke malicious users. Ultimately, the scheme proves indistinguishability under chosen-plaintext attacks for specific access structures in the standard model. Experimental simulations confirm that compared with existing schemes, this solution delivers higher execution efficiency in both encryption/decryption and revocation phases. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 301
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

22 pages, 437 KiB  
Article
ApproximateSecret Sharing in Field of Real Numbers
by Jiaqi Wan, Ziyue Wang, Yongqiang Yu and Xuehu Yan
Entropy 2025, 27(7), 769; https://doi.org/10.3390/e27070769 - 20 Jul 2025
Viewed by 190
Abstract
In the era of big data, the security of information encryption systems has garnered extensive attention, particularly in critical domains such as financial transactions and medical data management. While traditional Shamir’s Secret Sharing (SSS) ensures secure integer sharing through threshold cryptography, it exhibits [...] Read more.
In the era of big data, the security of information encryption systems has garnered extensive attention, particularly in critical domains such as financial transactions and medical data management. While traditional Shamir’s Secret Sharing (SSS) ensures secure integer sharing through threshold cryptography, it exhibits inherent limitations when applied to floating-point domains and high-precision numerical scenarios. To address these issues, this paper proposes an innovative algorithm to optimize SSS via type-specific coding for real numbers. By categorizing real numbers into four types—rational numbers, special irrationals, common irrationals, and general irrationals—our approach achieves lossless transmission for rational numbers, special irrationals, and common irrationals, while enabling low-loss recovery for general irrationals. The scheme leverages a type-coding system to embed data category identifiers in polynomial coefficients, combined with Bernoulli-distributed random bit injection to enhance security. The experimental results validate its effectiveness in balancing precision and security across various real-number types. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

18 pages, 706 KiB  
Article
A Design Architecture for Decentralized and Provenance-Assisted eHealth Systems for Enhanced Personalized Medicine
by Wagno Leão Sergio, Victor Ströele and Regina Braga
J. Pers. Med. 2025, 15(7), 325; https://doi.org/10.3390/jpm15070325 - 19 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Electronic medical record systems play a crucial role in the operation of modern healthcare institutions, enabling the foundational data necessary for advancements in personalized medicine. Despite their importance, the software supporting these systems frequently experiences data availability and integrity issues, particularly concerning [...] Read more.
Background/Objectives: Electronic medical record systems play a crucial role in the operation of modern healthcare institutions, enabling the foundational data necessary for advancements in personalized medicine. Despite their importance, the software supporting these systems frequently experiences data availability and integrity issues, particularly concerning patients’ personal information. This study aims to present a decentralized architecture that integrates both clinical and personal patient data, with a provenance mechanism to enable data tracing and auditing, ultimately supporting more precise and personalized healthcare decisions. Methods: A system implementation based on the solution was developed, and a feasibility study was conducted with synthetic medical records data. Results: The system was able to correctly receive data of 190 instances of the entities designed, which included different types of medical records, and generate 573 provenance entries that captured in detail the context of the associated medical information. Conclusions: For the first cycle of the research, the system developed served to validate the main features of the solution, and through that, it was possible to infer the feasibility of a decentralized EHR and PHR health system with formal provenance data tracking. Such a system lays a robust foundation for secure and reliable data management, which is essential for the effective implementation and future development of personalized medicine initiatives. Full article
Show Figures

Graphical abstract

33 pages, 2217 KiB  
Review
A Comprehensive Review of Artificial Intelligence-Based Algorithms for Predicting the Remaining Useful Life of Equipment
by Weihao Li, Jianhua Chen, Sijuan Chen, Peilin Li, Bing Zhang, Ming Wang, Ming Yang, Jipu Wang, Dejian Zhou and Junsen Yun
Sensors 2025, 25(14), 4481; https://doi.org/10.3390/s25144481 - 18 Jul 2025
Viewed by 487
Abstract
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which [...] Read more.
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which serves as a pivotal cornerstone for effective maintenance and operational decision-making. While significant advancements in computer hardware and artificial intelligence (AI) algorithms have catalyzed substantial progress in AI-based RUL prediction, extant research frequently exhibits a narrow focus on specific algorithms, neglecting a comprehensive and comparative analysis of AI techniques across diverse equipment types and operational scenarios. This study endeavors to bridge this gap through the following contributions: (1) A rigorous analysis and systematic categorization of application scenarios for equipment RUL prediction, elucidating their distinct characteristics and requirements. (2) A comprehensive summary and comparative evaluation of several AI algorithms deemed suitable for RUL prediction, delineating their respective strengths and limitations. (3) An in-depth comparative analysis of the applicability of AI algorithms across varying application contexts, informed by a nuanced understanding of different application scenarios and AI algorithm research. (4) An insightful discussion on the current challenges confronting AI-based RUL prediction technology, coupled with a forward-looking examination of its future prospects. By furnishing a meticulous and holistic understanding of the traits of various AI algorithms and their contextual applicability, this study aspires to facilitate the attainment of optimal application outcomes in the realm of equipment RUL prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 1019 KiB  
Article
Blockchain-Based Decentralized Identity Management System with AI and Merkle Trees
by Hoang Viet Anh Le, Quoc Duy Nam Nguyen, Nakano Tadashi and Thi Hong Tran
Computers 2025, 14(7), 289; https://doi.org/10.3390/computers14070289 - 18 Jul 2025
Viewed by 385
Abstract
The Blockchain-based Decentralized Identity Management System (BDIMS) is an innovative framework designed for digital identity management, utilizing the unique attributes of blockchain technology. The BDIMS categorizes entities into three distinct groups: identity providers, service providers, and end-users. The system’s efficiency in identifying and [...] Read more.
The Blockchain-based Decentralized Identity Management System (BDIMS) is an innovative framework designed for digital identity management, utilizing the unique attributes of blockchain technology. The BDIMS categorizes entities into three distinct groups: identity providers, service providers, and end-users. The system’s efficiency in identifying and extracting information from identification cards is enhanced by the integration of artificial intelligence (AI) algorithms. These algorithms decompose the extracted fields into smaller units, facilitating optical character recognition (OCR) and user authentication processes. By employing Merkle Trees, the BDIMS ensures secure authentication with service providers without the need to disclose any personal information. This advanced system empowers users to maintain control over their private information, ensuring its protection with maximum effectiveness and security. Experimental results confirm that the BDIMS effectively mitigates identity fraud while maintaining the confidentiality and integrity of sensitive data. Full article
Show Figures

Figure 1

20 pages, 459 KiB  
Article
Post-Quantum Secure Multi-Factor Authentication Protocol for Multi-Server Architecture
by Yunhua Wen, Yandong Su and Wei Li
Entropy 2025, 27(7), 765; https://doi.org/10.3390/e27070765 - 18 Jul 2025
Viewed by 231
Abstract
The multi-factor authentication (MFA) protocol requires users to provide a combination of a password, a smart card and biometric data as verification factors to gain access to the services they need. In a single-server MFA system, users accessing multiple distinct servers must register [...] Read more.
The multi-factor authentication (MFA) protocol requires users to provide a combination of a password, a smart card and biometric data as verification factors to gain access to the services they need. In a single-server MFA system, users accessing multiple distinct servers must register separately for each server, manage multiple smart cards, and remember numerous passwords. In contrast, an MFA system designed for multi-server architecture allows users to register once at a registration center (RC) and then access all associated servers with a single smart card and one password. MFA with an offline RC addresses the computational bottleneck and single-point failure issues associated with the RC. In this paper, we propose a post-quantum secure MFA protocol for a multi-server architecture with an offline RC. Our MFA protocol utilizes the post-quantum secure Kyber key encapsulation mechanism and an information-theoretically secure fuzzy extractor as its building blocks. We formally prove the post-quantum semantic security of our MFA protocol under the real or random (ROR) model in the random oracle paradigm. Compared to related protocols, our protocol achieves higher efficiency and maintains reasonable communication overhead. Full article
Show Figures

Figure 1

19 pages, 11267 KiB  
Article
Urban–Rural Differences in Cropland Loss and Fragmentation Caused by Construction Land Expansion in Developed Coastal Regions: Evidence from Jiangsu Province, China
by Jiahao Zhai and Lijie Pu
Remote Sens. 2025, 17(14), 2470; https://doi.org/10.3390/rs17142470 - 16 Jul 2025
Viewed by 354
Abstract
With the acceleration of global urbanization, cropland loss and fragmentation due to construction land expansion have become critical threats to food security and ecological sustainability, particularly in rapidly developing coastal regions. Understanding urban–rural differences in these processes is essential as divergent governance policies, [...] Read more.
With the acceleration of global urbanization, cropland loss and fragmentation due to construction land expansion have become critical threats to food security and ecological sustainability, particularly in rapidly developing coastal regions. Understanding urban–rural differences in these processes is essential as divergent governance policies, socioeconomic pressures, and land use transition pathways may lead to uneven impacts on agricultural systems. However, past comparisons of urban–rural differences regarding this issue have been insufficient. Therefore, this study takes Jiangsu Province, China, as an example. Based on 30 m-resolution land use data, Geographic Information System (GIS) spatial analysis, and landscape pattern indices, it delves into the urban–rural differences in cropland loss and fragmentation caused by construction land expansion from 1990 to 2020. The results show that cropland in urban and rural areas decreased by 44.14% and 5.97%, respectively, while the area of construction land increased by 2.61 times and 90.14%, respectively. 94.36% of the newly added construction land originated from cropland, with the conversion of rural cropland to construction land being particularly prominent in northern Jiangsu, while the conversion of urban cropland to construction land is more pronounced in southern Jiangsu. The expansion of construction land has led to the continuous fragmentation of cropland, which is more severe in urban areas than in rural areas, while construction land is becoming increasingly agglomerated. There are significant differences in the degree of land use change between urban and rural areas, necessitating the formulation of differentiated land management policies to balance economic development with agricultural sustainability. Full article
Show Figures

Figure 1

36 pages, 1120 KiB  
Article
Triple-Shield Privacy in Healthcare: Federated Learning, p-ABCs, and Distributed Ledger Authentication
by Sofia Sakka, Nikolaos Pavlidis, Vasiliki Liagkou, Ioannis Panges, Despina Elizabeth Filippidou, Chrysostomos Stylios and Anastasios Manos
J. Cybersecur. Priv. 2025, 5(3), 45; https://doi.org/10.3390/jcp5030045 - 12 Jul 2025
Viewed by 480
Abstract
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and [...] Read more.
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and medical information. Privacy-Enhancing Technologies (PETs), such as Privacy-Attribute-based Credentials, Differential Privacy, and Federated Learning, have emerged as crucial tools to tackle these challenges. Despite their potential, PETs are not widely utilized due to technical and implementation obstacles. This research introduces a comprehensive framework for protecting health applications from privacy and security threats, with a specific emphasis on gamified mental health apps designed to manage Attention Deficit Hyperactivity Disorder (ADHD) in children. Acknowledging the heightened sensitivity of mental health data, especially in applications for children, our framework prioritizes user-centered design and strong privacy measures. We suggest an identity management system based on blockchain technology to ensure secure and transparent credential management and incorporate Federated Learning to enable privacy-preserving AI-driven predictions. These advancements ensure compliance with data protection regulations, like GDPR, while meeting the needs of various stakeholders, including children, parents, educators, and healthcare professionals. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

13 pages, 973 KiB  
Article
Perceptions and Willingness of Patients and Caregivers on the Utilization of Patient-Generated Health Data: A Cross-Sectional Survey
by Ye-Eun Park, Sang Sook Beck and Yura Lee
Int. J. Environ. Res. Public Health 2025, 22(7), 1099; https://doi.org/10.3390/ijerph22071099 - 11 Jul 2025
Viewed by 336
Abstract
Patient-generated health data (PGHD) enhance traditional healthcare by enabling continuous monitoring and supporting personalized care, yet concerns over privacy, security, and integration into existing systems hinder broader adoption. This study examined the perceptions, awareness, and concerns of patients and caregivers regarding PGHD and [...] Read more.
Patient-generated health data (PGHD) enhance traditional healthcare by enabling continuous monitoring and supporting personalized care, yet concerns over privacy, security, and integration into existing systems hinder broader adoption. This study examined the perceptions, awareness, and concerns of patients and caregivers regarding PGHD and assessed their willingness to share such data for clinical, research, and commercial purposes. A cross-sectional survey was conducted from 6 to 12 November 2023, involving 400 individuals with experience using PGHD. Participants completed structured questionnaires addressing health information management, PGHD usage, and attitudes toward its application. PGHD was most commonly used by patients with chronic conditions and guardians of minors, with tethered personal health record apps frequently utilized. Respondents identified improved self-management and better access to information as key benefits. However, significant concerns about data privacy and security emerged, especially regarding non-clinical use. Younger adults, particularly those in their 20s, showed lower willingness to engage with PGHD due to heightened privacy concerns. These findings suggest that, while support for clinical use of PGHD is strong, barriers related to trust and consent remain. Addressing privacy concerns and simplifying consent processes will be essential to promote equitable and responsible PGHD utilization across diverse patient populations. Full article
Show Figures

Graphical abstract

Back to TopTop