Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = information metasurface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7633 KB  
Review
Compound Meta-Optics for Advanced Optical Engineering
by Hak-Ryeol Lee, Dohyeon Kim and Sun-Je Kim
Sensors 2026, 26(3), 792; https://doi.org/10.3390/s26030792 - 24 Jan 2026
Viewed by 79
Abstract
Compound meta-optics, characterized by the unprecedented complex optical architectures containing single or multiple meta-optics elements, has emerged as a powerful paradigm for overcoming the physical limitations of single-layer metasurfaces. This review systematically examines the recent progress in this burgeoning field, primarily focusing on [...] Read more.
Compound meta-optics, characterized by the unprecedented complex optical architectures containing single or multiple meta-optics elements, has emerged as a powerful paradigm for overcoming the physical limitations of single-layer metasurfaces. This review systematically examines the recent progress in this burgeoning field, primarily focusing on the development of high-performance optical systems for imaging, display, sensing, and computing. We first focus on the design of compound metalens architectures that integrate metalenses with additional elements such as iris, refractive optics, or other meta-optics elements. These configurations effectively succeed in providing multiple high-quality image quality metrics simultaneously by correcting monochromatic and chromatic aberrations, expanding the field of view, enhancing overall efficiency, and so on. Thus, the compound approach enables practical applications in next-generation cameras and sensors. Furthermore, we explore the advancement of cascaded metasurfaces in the realm of wave-optics, specifically for advanced meta-holography and optical computing. These multi-layered systems facilitate complex wavefront engineering, leading to significant increases in information capacity and functionality for security and analog optical computing applications. By providing a comprehensive overview of fundamental principles, design strategies, and emerging applications, this review aims to offer a clear perspective on the pivotal role of compound meta-optics in devising and optimizing compact, multifunctional optical systems to optics engineers with a variety of professional knowledge backgrounds and techniques. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 3259 KB  
Article
Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface
by Xiaoming Wang, Bo Cheng, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Fuchun Sun
Photonics 2026, 13(1), 87; https://doi.org/10.3390/photonics13010087 - 19 Jan 2026
Viewed by 108
Abstract
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such [...] Read more.
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such as quarter-wave plates, which undoubtedly increases system complexity and volume, hindering chip-level integration. To address this issue, we propose a monolithic integration scheme that directly integrates a custom-designed double-layer asymmetric metasurface onto the upper distributed Bragg reflector of a chiral VCSEL. This metasurface consists of a rotated GaAs elliptical nanocolumn array and an anisotropic grating above it. By precisely controlling the relative orientation between the two, the in-plane symmetry of the structure is effectively broken, introducing a significant optical chirality response at a wavelength of 1550 nm. Numerical simulations show that this structure can achieve a near 100% high reflectivity for the left circularly polarized light (LCP), while suppressing the reflectivity of the right circularly polarized light (RCP) to approximately 33%, thereby obtaining an efficient in-cavity circular polarization selection function. Based on this, the proposed VCSEL can directly emit high-purity RCP without any external polarization control components. This compact circularly polarized laser source provides a key solution for achieving the next generation of highly integrated photonic chips and will have a profound impact on frontier fields such as spin optics, secure communication, and chip-level quantum light sources. Full article
Show Figures

Figure 1

32 pages, 8754 KB  
Review
Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems
by Muhammad A. Butt
Micromachines 2026, 17(1), 119; https://doi.org/10.3390/mi17010119 - 16 Jan 2026
Viewed by 383
Abstract
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical [...] Read more.
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical nonlinearities, while MSs provide versatile and compact control over phase, amplitude, polarization, and dispersion through planar, nanostructured interfaces. Recent advances in materials, nanofabrication, and device engineering are increasingly enabling these technologies to be combined within unified planar and hybrid optical platforms. This review surveys the physical principles, material strategies, and device architectures that underpin plasmonic, MS, and hybrid plasmonic–dielectric systems, with an emphasis on interface-mediated optical functionality rather than long-range guided-wave propagation. Key developments in modulators, detectors, nanolasers, metalenses, beam steering devices, and programmable optical surfaces are discussed, highlighting how hybrid designs can leverage strong field localization alongside low-loss wavefront control. System-level challenges including optical loss, thermal management, dispersion engineering, and large-area fabrication are critically examined. Looking forward, plasmonic and MS technologies are poised to define a new generation of flat, multifunctional, and programmable optical systems. Applications spanning imaging, sensing, communications, augmented and virtual reality, and optical information processing illustrate the transformative potential of these platforms. By consolidating recent progress and outlining future directions, this review provides a coherent perspective on how plasmonics and MSs are reshaping the design space of next-generation planar optical hardware. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

14 pages, 6120 KB  
Article
Multichannel Wavelength-Selective All-Dielectric Metasurfaces Based on Complex Amplitude Modulation
by Linkun Zhang, Wenjing Fang, Shangshang Cui, Xinye Fan, Santosh Kumar, Mengfei Li and Xin Cai
Photonics 2025, 12(12), 1226; https://doi.org/10.3390/photonics12121226 - 12 Dec 2025
Viewed by 305
Abstract
The ability to independently manipulate the amplitude, phase, and polarization state of light constitutes a central problem in the advancement of integrated photonic devices. In this paper, we propose three multichannel wavelength-selective dielectric metasurfaces that utilize complex amplitude modulation to achieve precise and [...] Read more.
The ability to independently manipulate the amplitude, phase, and polarization state of light constitutes a central problem in the advancement of integrated photonic devices. In this paper, we propose three multichannel wavelength-selective dielectric metasurfaces that utilize complex amplitude modulation to achieve precise and flexible simultaneous control over the spatial position, wavelength, and amplitude of multichannel optical fields. First, the designed metasurface simultaneously generates three pairs of independent foci with uniform intensity at wavelengths of 444 nm, 517 nm, and 700 nm, demonstrating foundational multi-wavelength control. Moreover, the second metasurface achieves complex amplitude distributions with different amplitude ratios through joint modulation of amplitude and phase, providing a solution for programmable adjustment of the relative intensity between foci, whereas the third metasurface offers high design freedom, capable of generating an arbitrary number of foci with customized positions and amplitude ratios across multiple wavelength bands, meeting the requirements for complex optical field construction. The findings suggest that such complex amplitude metasurfaces have broad application prospects in fields such as optical imaging, particle manipulation, and high-density information multiplexing. Full article
Show Figures

Figure 1

10 pages, 5532 KB  
Article
A Long-Wave Infrared Circularly Polarized Photodetector Based on an Array of Trapezoidal Silicon Pillars
by Bo Cheng, Yuxiao Zou, Taohua Liang, Ansheng Ye, Kunpeng Zhai and Longfeng Lv
Crystals 2025, 15(11), 993; https://doi.org/10.3390/cryst15110993 - 17 Nov 2025
Viewed by 581
Abstract
Integrating metasurface-based polarizing filters atop photodetectors enables the expansion of detection capabilities from intensity to polarization, offering significant potential for applications requiring high-precision discrimination in scientific, industrial, and defense sectors. However, such metasurfaces often introduce optical efficiency losses. Here, we present a long-wave [...] Read more.
Integrating metasurface-based polarizing filters atop photodetectors enables the expansion of detection capabilities from intensity to polarization, offering significant potential for applications requiring high-precision discrimination in scientific, industrial, and defense sectors. However, such metasurfaces often introduce optical efficiency losses. Here, we present a long-wave infrared (8.6 μm) circularly polarized photodetector capable of direct chiral discrimination, eliminating the need for additional optical components. The polarization selectivity arises from Guided-Mode resonances (GMRs) excited by two horizontally offset right-trapezoidal unit cells within a chiral metasurface. This design exhibits a pronounced transmittance contrast (~100%) between left circularly polarized light (LCP) and right circularly polarized light (RCP) while maintaining fabrication simplicity via a conventional single-step lithographic process. The proposed detector is expected to achieve high-dimensional physical characterization by resolving polarization-encoded vectorial information, demonstrating enhanced performance in complex environments. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
Show Figures

Figure 1

17 pages, 6416 KB  
Article
Novel High-Contrast Photoacoustic Imaging Method for Cancer Cell Monitoring Based on Dual-Wavelength Confocal Metalenses
by Zixue Chen, Ruihao Zhang, Hongbin Zhang, Bingqiang Zhang, Lei Qin, Jiansen Du, Tao Zhao and Bin Wang
Photonics 2025, 12(11), 1053; https://doi.org/10.3390/photonics12111053 - 24 Oct 2025
Cited by 1 | Viewed by 650
Abstract
This study proposes a high-contrast photoacoustic (PA) imaging methodology based on a dual-wavelength confocal metalens, designed to monitor the dissemination of cancer cells and to inform subsequent cancer treatment strategies. The metalens is composed of two metasurfaces that perform filtering and focusing functions, [...] Read more.
This study proposes a high-contrast photoacoustic (PA) imaging methodology based on a dual-wavelength confocal metalens, designed to monitor the dissemination of cancer cells and to inform subsequent cancer treatment strategies. The metalens is composed of two metasurfaces that perform filtering and focusing functions, effectively reducing the cross-talk between the two wavelengths of light in space and achieving a confocal effect. Furthermore, to minimize process complexity, a uniform material system of silicon dioxide (SiO2) and titanium dioxide (TiO2) is employed across the different metasurfaces of the metalens. The designed metalens has a radius of 25 µm and an operational focal length of 98.5 µm. The results confirm that this dual-metasurface design achieves high focusing efficiency alongside precise focusing capability, with the deviations of the actual focal lengths for both beams from the design values being within 1.5 µm. Additionally, this study developed a skin tissue model and simulated multi-wavelength photoacoustic imaging of cancer cells within the human body by integrating theories of radiative transfer, photothermal conversion, and the wave equation. The results demonstrate that the enhancement trend of the reconstructed signal closely matches the original signal, confirming the model’s excellent fitting performance. The sound pressure values generated by cancer cells are significantly higher than those of normal cells, proving that this method can effectively distinguish cancerous tissue from healthy tissue. This research provides new theoretical support and methodological foundations for the clinical application of multi-wavelength photoacoustic imaging technology. Full article
(This article belongs to the Special Issue The Principle and Application of Photonic Metasurfaces)
Show Figures

Figure 1

15 pages, 3639 KB  
Article
Research on the Generation of High-Purity Vortex Beams Aided by Genetic Algorithms
by Xinyu Ma, Wenjie Guo, Qing’an Sun, Xuesong Deng, Hang Yu and Lixia Yang
Nanomaterials 2025, 15(18), 1448; https://doi.org/10.3390/nano15181448 - 19 Sep 2025
Viewed by 615
Abstract
Vortex beams (VBs) generated by plasmonic metasurfaces hold great potential in the field of information transmission due to their unique helical phase wavefronts and infinite eigenstates. However, achieving perfect multiplexing and superposition of VBs with different orders remains a challenging issue in nanophotonics [...] Read more.
Vortex beams (VBs) generated by plasmonic metasurfaces hold great potential in the field of information transmission due to their unique helical phase wavefronts and infinite eigenstates. However, achieving perfect multiplexing and superposition of VBs with different orders remains a challenging issue in nanophotonics research. In this paper, based on a single-layer metallic porous metasurface structure applicable to the infrared spectrum, VBs with orders 2, 4, 6, and 8 are realized through the arrangement of annular elliptical apertures. Moreover, perfect VBs are achieved by optimizing key structural parameters using a genetic algorithm. The optimization of key structural parameters via genetic-based optimization algorithms to attain the desired effects can significantly reduce the workload of manual parameter adjustment. In addition, leveraging the orthogonality between VBs of different orders, concentric circular multi-channel VBs array (l = 2, 6) and (l = 4, 8) are realized. High-purity multiplexing architectures (>90%) are achieved via rational optimization of critical structural parameters using a genetic optimization algorithm, which further mitigates information crosstalk in optical communication transmission. The introduction of the genetic algorithm not only reduces the workload of manual arrangement of unit arrays but also enables the generation of more perfect VBs, providing a new research direction for optical communication transmission and optical communication encryption. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

11 pages, 8091 KB  
Article
Wireless Communication Using a Radiation-Type Metasurface
by Jun Chen Ke, Li Wang, Mingzhu Jiang and Qiang Wang
Micromachines 2025, 16(8), 924; https://doi.org/10.3390/mi16080924 - 11 Aug 2025
Cited by 1 | Viewed by 934
Abstract
The rapid development of metasurfaces offers new possibilities to establish novel wireless communication systems with simplified architectures. However, the current demonstration systems are based on the reflection-type metasurfaces, which suffer from high profiles and integration challenges in practice. Such configurations are also inefficient [...] Read more.
The rapid development of metasurfaces offers new possibilities to establish novel wireless communication systems with simplified architectures. However, the current demonstration systems are based on the reflection-type metasurfaces, which suffer from high profiles and integration challenges in practice. Such configurations are also inefficient for handling multiple subcarriers during beam scanning and beam tracking. To address these limitations, a radiation-type metasurface fed by a microstrip array antenna is proposed in this paper, which is used to construct a new-architecture wireless communication system. Compared to the reported metasurface-based communication systems, the proposed design is more flexible for information modulation and transmission, with the system profile significantly reduced. The phase modulation is implemented by changing the transmission phase of metasurface, allowing for baseband signals to be directly imparted to the carrier wave from the feeding source. A real-time signal transmission experiment validates the performance of the proposed metasurface-based communication system. Full article
Show Figures

Figure 1

28 pages, 4107 KB  
Article
Channel Model for Estimating Received Power Variations at a Mobile Terminal in a Cellular Network
by Kevin Verdezoto Moreno, Pablo Lupera-Morillo, Roberto Chiguano, Robin Álvarez, Ricardo Llugsi and Gabriel Palma
Electronics 2025, 14(15), 3077; https://doi.org/10.3390/electronics14153077 - 31 Jul 2025
Viewed by 796
Abstract
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power [...] Read more.
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power at subsequent points based on received power, and detection of coverage anomalies. The model is validated using real-world measurements from urban and suburban environments, achieving a maximum estimation error of 7.6%. In contrast to conventional models like Okumura–Hata, COST-231, Third Generation Partnership Project (3GPP) stochastic models, or ray-tracing techniques, which estimate average power under static conditions, the proposed model captures power fluctuations induced by terminal movement, a factor often neglected. Although advanced techniques such as wave-domain processing with intelligent metasurfaces can also estimate DoA, this model provides a simpler, geometry-driven approach based on empirical traces. While it does not incorporate infrastructure-specific characteristics or inter-cell interference, it remains a practical solution for scenarios with limited information or computational resources. Full article
Show Figures

Figure 1

11 pages, 3730 KB  
Communication
Chiral Grayscale Imaging Based on a Versatile Metasurface of Spin-Selective Manipulation
by Yue Cao, Yi-Fei Sun, Zi-Yang Zhu, Qian-Wen Luo, Bo-Xiong Zhang, Xiao-Wei Sun and Ting Song
Materials 2025, 18(13), 3190; https://doi.org/10.3390/ma18133190 - 5 Jul 2025
Viewed by 818
Abstract
Metasurface display, a kind of unique imaging technique with subwavelength scale, plays a key role in data storage, information processing, and optical imaging due to the superior performance of high resolution, miniaturization, and integration. Recent works about grayscale imaging as a typical metasurface [...] Read more.
Metasurface display, a kind of unique imaging technique with subwavelength scale, plays a key role in data storage, information processing, and optical imaging due to the superior performance of high resolution, miniaturization, and integration. Recent works about grayscale imaging as a typical metasurface display have showcased an excellent performance for optical integrated devices in the near field. However, chiral grayscale imaging has been rarely elucidated, especially using a single structure. Here, a novel method is proposed to display a continuously chiral grayscale imaging that is adjusted by a metasurface consisting of a single chiral structure with optimized geometric parameters. The simulation results show that the incident light can be nearly converted into its cross-polarized reflection when the chiral structural variable parameters are α = 80° and β = 45°. The versatile metasurface can arbitrarily and independently realize the spin-selective manipulation of wavelength and amplitude of circularly polarized light. Due to the excellent manipulation ability of the versatile metasurface, a kind of circularly polarized light detection and a two-channel encoded display with different operating wavelengths are presented. More importantly, this versatile metasurface can also be used to show high-resolution chiral grayscale imaging, which distinguishes it from the results of previous grayscale imaging studies about linearly polarized incident illumination. The proposed versatile metasurface of spin-selective manipulation, with the advantages of high resolution, large capacity, and monolithic integration, provides a novel way for polarization detection, optical display, information storage, and other relevant fields. Full article
Show Figures

Figure 1

30 pages, 8576 KB  
Review
Recent Advances in Chiral and Achiral Metasurfaces Under Symmetry Preservation and Breaking
by Xingcheng Wan, Yangyang Li, Yixin Wang, Yifan Li and Chao Zhang
Symmetry 2025, 17(7), 1001; https://doi.org/10.3390/sym17071001 - 25 Jun 2025
Cited by 1 | Viewed by 2215
Abstract
Structural symmetry preservation and breaking play important roles in optical manipulation at subwavelength scales. By precisely engineering the symmetry of the nanostructures, metasurfaces can effectively realize various optical functions such as polarization control, wavefront shaping, and on-chip optical integration, with promising applications in [...] Read more.
Structural symmetry preservation and breaking play important roles in optical manipulation at subwavelength scales. By precisely engineering the symmetry of the nanostructures, metasurfaces can effectively realize various optical functions such as polarization control, wavefront shaping, and on-chip optical integration, with promising applications in information photonics, bio-detection, and flexible devices. In this article, we review the recent advances in chiral and achiral metasurfaces based on symmetry manipulation. We first introduce the fundamental principles of chiral and achiral metasurfaces, including methods for characterizing chirality and mechanisms for phase modulation. Then, we review the research on chiral metasurfaces based on material type and structural dimensions and related applications in high-sensitivity chiral sensing, reconfigurable chiral modulation, and polarization-selective imaging. We then describe the developments in the application of achiral metasurfaces, particularly in polarization-multiplexed holography, phase-gradient imaging, and polarization-insensitive metalenses. Finally, we provide an outlook on the future development of chiral and achiral metasurfaces. Full article
(This article belongs to the Special Issue Studies of Optoelectronics in Symmetry)
Show Figures

Figure 1

44 pages, 18112 KB  
Review
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques
by Borja García García, María Gabriela Fernández-Manteca, Dimitrios C. Zografopoulos, Celia Gómez-Galdós, Alain A. Ocampo-Sosa, Luis Rodríguez-Cobo, José Francisco Algorri and Adolfo Cobo
Biosensors 2025, 15(7), 401; https://doi.org/10.3390/bios15070401 - 20 Jun 2025
Cited by 6 | Viewed by 4766
Abstract
Spectroscopic techniques such as Surface-Enhanced Raman Scattering (SERS), Surface-Enhanced Infrared Absorption (SEIRA), and Surface-Enhanced Fluorescence (SEF) are essential analytical techniques used to study the composition of materials by analyzing the way materials scatter light, absorb infrared radiation or emit fluorescence signals. This provides [...] Read more.
Spectroscopic techniques such as Surface-Enhanced Raman Scattering (SERS), Surface-Enhanced Infrared Absorption (SEIRA), and Surface-Enhanced Fluorescence (SEF) are essential analytical techniques used to study the composition of materials by analyzing the way materials scatter light, absorb infrared radiation or emit fluorescence signals. This provides information about their molecular structure and properties. However, traditional SERS, SEIRA, and SEF techniques can be limited in sensitivity, resolution, and reproducibility, hindering their ability to detect and analyze trace amounts of substances or complex molecular structures. Metasurfaces, a class of engineered two-dimensional metamaterials with unique optical properties, have emerged as a promising tool to overcome these limitations and enhance spectroscopic techniques. This article provides a state-of-the-art overview of metasurfaces for enhanced SERS, SEIRA and SEF, covering their theoretical background, different types, advantages, disadvantages, and potential applications. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

73 pages, 5355 KB  
Review
Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks
by Wagdy M. Othman, Abdelhamied A. Ateya, Mohamed E. Nasr, Ammar Muthanna, Mohammed ElAffendi, Andrey Koucheryavy and Azhar A. Hamdi
J. Sens. Actuator Netw. 2025, 14(2), 30; https://doi.org/10.3390/jsan14020030 - 17 Mar 2025
Cited by 33 | Viewed by 16565
Abstract
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. [...] Read more.
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. Among them, unmanned aerial vehicles (UAVs), terahertz (THz) communication, and intelligent reconfigurable surfaces (IRSs) are three major enablers in redefining the architecture and performance of next-generation wireless systems. This survey provides a comprehensive review of these transformative technologies, exploring their potential, design challenges, and integration into future 6G ecosystems. UAV-based communication provides flexible, on-demand communication in remote, harsh areas and is a vital solution for disasters, self-driving, and industrial automation. THz communication taking place in the 0.1–10 THz band reveals ultra-high bandwidth capable of a data rate of multi-gigabits per second and can avoid spectrum bottlenecks in conventional bands. IRS technology based on programmable metasurface allows real-time wavefront control, maximizing signal propagation and spectral/energy efficiency in complex settings. The work provides architectural evolution, active current research trends, and practical issues in applying these technologies, including their potential contribution to the creation of intelligent, ultra-connected 6G networks. In addition, it presents open research questions, possible answers, and future directions and provides information for academia, industry, and policymakers. Full article
Show Figures

Figure 1

19 pages, 3440 KB  
Article
Experimental Demonstration of Sensing Using Hybrid Reconfigurable Intelligent Surfaces
by Idban Alamzadeh and Mohammadreza F. Imani
Sensors 2025, 25(6), 1811; https://doi.org/10.3390/s25061811 - 14 Mar 2025
Cited by 2 | Viewed by 1722
Abstract
Acquiring information about the surrounding environment is crucial for reconfigurable intelligent surfaces (RISs) to effectively manipulate radio wave propagation. This operation can be fully automated by incorporating an integrated sensing mechanism, leading to a hybrid configuration known as a hybrid reconfigurable intelligent surface [...] Read more.
Acquiring information about the surrounding environment is crucial for reconfigurable intelligent surfaces (RISs) to effectively manipulate radio wave propagation. This operation can be fully automated by incorporating an integrated sensing mechanism, leading to a hybrid configuration known as a hybrid reconfigurable intelligent surface (HRIS). Several HRIS geometries have been studied in previous works, with full-wave simulations used to showcase their sensing capabilities. However, these simulated models often fail to address the practical design challenges associated with HRISs. This paper presents an experimental proof-of-concept for an HRIS, focusing on the design considerations that have been neglected in simulations but are vital for experimental validation. The HRIS prototype comprises two types of elements: a conventional element designed for reconfigurable reflection and a hybrid one for sensing and reconfigurable reflection. The metasurface can carry out the required sensing operations by utilizing signals coupled to several hybrid elements. This paper outlines the design considerations necessary to create a practical HRIS configuration that can be fabricated using standard PCB technology. The sensing capabilities of the HRIS are demonstrated experimentally through angle of arrival (AoA) detection. The proposed HRIS has the potential to facilitate smart, autonomous wireless communication networks, wireless power transfer, and sensing systems. Full article
Show Figures

Figure 1

13 pages, 6504 KB  
Article
Germanium Metasurface for the Polarization-Sensitive Stokes Thermal Imaging at a MWIR 4-Micron Wavelength
by Hosna Sultana
Photonics 2025, 12(2), 137; https://doi.org/10.3390/photonics12020137 - 7 Feb 2025
Cited by 1 | Viewed by 2508
Abstract
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive [...] Read more.
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive detection by integrating the metasurface of the subwavelength-scale structured interface to control light–matter interactions. To enforce the metasurface-enabled simultaneous detection and parallel analysis of polarization states in a compact footprint for 4-micron wavelength, we designed a high-contrast germanium metasurface with an axially asymmetric triangular nanoantenna with a height 0.525 times the working wavelength. First, we optimized linear polarization separation of a 52-degree angle with about 50% transmission efficiency, holding the meta-element aspect ratio within the 3.5–1.67 range. The transmission modulation in terms of periodicity and lattice resonance for the phase-gradient high-contrast dielectric metasurface in correlation with the scattering cross-section for both 1D and 2D cases has been discussed for reducing the aspect ratio to overcome the nanofabrication challenge. Furthermore, by employing the geometric phase, we achieved 40% and 60% transmission contrasts for the linear and circular polarization states, respectively, and reconstructed the Stokes vectors and output polarization states. Without any spatial multiplexing, this single metasurface unit cell can perform well in the division of focal plane Stokes thermal imaging, with an almost 10-degree field of view, and it has an excellent refractive index and height tolerance for nanofabrication. Full article
Show Figures

Figure 1

Back to TopTop