Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = influenza viral dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 790 KiB  
Review
A Review of Avian Influenza Virus Exposure Patterns and Risks Among Occupational Populations
by Huimin Li, Ruiqi Ren, Wenqing Bai, Zhaohe Li, Jiayi Zhang, Yao Liu, Rui Sun, Fei Wang, Dan Li, Chao Li, Guoqing Shi and Lei Zhou
Vet. Sci. 2025, 12(8), 704; https://doi.org/10.3390/vetsci12080704 - 28 Jul 2025
Viewed by 528
Abstract
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through [...] Read more.
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through a comprehensive analysis of viral characteristics, host dynamics, environmental influences, and human behaviors. The main routes of transmission include direct animal contact, respiratory contact during slaughter/milking, and environmental contamination (aerosols, raw milk, shared equipment). Risks increase as the virus adapts between species, survives longer in cold/wet conditions, and spreads through wild bird migration (long-distance transmission) and live bird trade (local transmission). Recommended control measures include integrated animal–human–environment surveillance, stringent biosecurity measures, vaccination, and education. These findings underscore the urgent need for global ‘One Health’ collaboration to assess risk and implement preventive measures against potentially pandemic strains of influenza A viruses, especially in light of undetected mild/asymptomatic cases and incomplete knowledge of viral evolution. Full article
Show Figures

Figure 1

13 pages, 1231 KiB  
Article
Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods
by Michele Manno, Grazia Pavia, Simona Gigliotti, Marta Pantanella, Giorgio Settimo Barreca, Cinzia Peronace, Luigia Gallo, Francesca Trimboli, Elena Colosimo, Angelo Giuseppe Lamberti, Nadia Marascio, Giovanni Matera and Angela Quirino
Viruses 2025, 17(8), 1040; https://doi.org/10.3390/v17081040 - 25 Jul 2025
Viewed by 359
Abstract
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, [...] Read more.
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, during, and after the COVID-19 pandemic and by investigating how the emergence of SARS-CoV-2 affected the circulation and seasonality of other respiratory viruses. This retrospective and prospective study was performed on de-identified nasopharyngeal specimens classified as pre-COVID-19 (before 15 March 2020), during-COVID-19 (from 16 March 2020 to 5 May 2023), and post-COVID-19 (from 6 May 2023 to 31 December 2024). Overall, 790 out of 3930 (20%) patient samples tested positive for at least one respiratory virus. The mean age of patients was 60 ± 19 years, with significant positivity rates observed in the 65–98 age group (p ≤ 0.05) across all periods. In the pre-COVID-19 period, the most prevalent virus was influenza A (47.5%, 47/99), followed by the human rhinovirus (19.2%, 19/99). During the COVID-19 pandemic, SARS-CoV-2 was the most prevalent (64.9%, 290/447), before decreasing to 38% (92/244) after the pandemic, while influenza A’s positivity prevalence increased to 14.3% (35/244). Rhinovirus/enterovirus remained relatively stable throughout all periods. The pandemic notably altered viral co-infection dynamics, with its effects lasting into the post-COVID-19 period. Specifically, a marked decrease in influenza A circulation was observed, while respiratory syncytial virus (RSV) epidemiology remained stable and significant co-circulation of rhinovirus/enterovirus with SARS-CoV-2 persisted. Therefore, since COVID-19 and influenza affect the same high-risk groups, those individuals must be vaccinated against both viruses. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

8 pages, 764 KiB  
Communication
A Strand-Specific Quantitative RT-PCR Method for Detecting vRNA, cRNA, and mRNA of H7N9 Avian Influenza Virus in a Mouse Model
by Bo Wang, Guangwen Wang, Yi-han Wang, Xuwei Liu, Manman Li, Huihui Kong, Hualan Chen, Li Jiang and Chengjun Li
Viruses 2025, 17(7), 1007; https://doi.org/10.3390/v17071007 - 17 Jul 2025
Viewed by 397
Abstract
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on [...] Read more.
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on a mouse model was established, which can simultaneously and quantitatively analyze the dynamic changes in the viral genomic RNA (vRNA), complementary RNA (cRNA), and messenger RNA (mRNA) of H7N9 AIV by using reverse transcription primers with tag sequences to reverse transcribe the three species of RNAs into corresponding cDNA templates, which are then absolutely quantified using the TaqMan quantitative PCR method. This system specifically targets the PB2 and NA genes and, for the first time, enables a spatiotemporal analysis of all three viral RNA species within an animal model. Our results revealed that H7N9 AIV exhibits characteristic replication kinetics, with all three species of viral RNAs showing a rapid increase followed by a certain degree of decline. This system offers a powerful tool for us to further advance our understanding of the replication dynamics of AIV in mice. Full article
Show Figures

Figure 1

25 pages, 3522 KiB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 (registering DOI) - 10 Jul 2025
Viewed by 493
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

10 pages, 3437 KiB  
Article
Phylogenetic and Mutation Analysis of Hemagglutinin Gene from Highly Pathogenic Avian Influenza Virus H5 Clade 2.3.4.4b in South America
by Alfredo Bruno, Domenica de Mora, Miguel Angel Garcia-Bereguiain and Juan Cristina
Viruses 2025, 17(7), 924; https://doi.org/10.3390/v17070924 - 28 Jun 2025
Viewed by 606
Abstract
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South [...] Read more.
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South America was reported for the first time in Colombia in October 2022, followed by outbreaks in other South American countries affecting poultry, wild birds, mammals, and humans. In this study, a phylogenetic and mutation analysis of the hemagglutinin (HA) gene of HPAIV H5N1 2.3.4.4b viruses isolated in South America was performed to analyze its evolution and its transmission and zoonotic potential. The analysis shows an increase in the viral effective population size between April and June 2022, which was followed by multiple outbreaks of HPAIV H5N1 clade 2.3.4.4b in South America. Moreover, the virus variants evolved from a recent common ancestor estimated to have existed in June 2017. The mean rate of evolution of the HA gene was 6.95 × 10−3 substitutions per site per year, and the sequence analysis of HA identified a mutation (D171N) located at antibody binding sites and viral oligomerization interfaces, with implications for immune response evasion and new host species infection. Additionally, viral strains from South America share the substitutions L104M, T156A, P181S, and V210A, compared to the vaccine strain A/chicken/Ghana/AVL763/2021. Understanding the dynamics of viral evolution and transmission is essential for effective prevention strategies to mitigate future outbreaks. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Immunogenicity of Matrix Protein 2 Ectodomain (M2e) Displayed on Nodavirus-like Particles as Avian Influenza Vaccine for Poultry
by Anis Suraya Mohamad Abir, Wen Siang Tan, Abdul Rahman Omar, Kok Lian Ho, Munir Iqbal and Abdul Razak Mariatulqabtiah
Vaccines 2025, 13(7), 701; https://doi.org/10.3390/vaccines13070701 - 27 Jun 2025
Viewed by 523
Abstract
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that [...] Read more.
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that threaten poultry production and pose zoonotic risks. The ectodomain of the avian influenza virus (AIV) matrix protein 2 (M2e), known for its high conservation across influenza strains, has emerged as a promising candidate for developing a universal influenza vaccine in a mouse model. However, the efficacy of such expression against poultry AIVs remains limited. The objective of this study was to evaluate the immunogenicity of nodavirus-like particles displaying the M2e proteins. In this study, three synthetic heterologous M2e genes originated from AIV strains H5N1, H9N2 and H5N2 were fused with the nodavirus capsid protein (NVC) of the giant freshwater prawn Macrobrachium rosenbergii (NVC-3xAvM2e) prior to immunogenicity characterisations in chickens. The expression vector pTRcHis-TARNA2 carrying the NVC-3xAvM2e gene cassette was introduced into E. coli TOP-10 cells. The recombinant proteins were purified, inoculated into one-week-old specific pathogen-free chickens subcutaneously and analysed. The recombinant protein NVC-3xAvM2e formed virus-like particles (VLPs) of approximately 25 nm in diameter when observed under a transmission electron microscope. Dynamic light scattering (DLS) analysis revealed that the VLPs have a polydispersity index (PDI) of 0.198. A direct ELISA upon animal experiments showed that M2e-specific antibodies were significantly increased in vaccinated chickens after the booster, with H5N1 M2e peptides having the highest mean absorbance value when compared with those of H9N2 and H5N2. A challenge study using low pathogenic AIV (LPAI) strain A/chicken/Malaysia/UPM994/2018 (H9N2) at 106.5 EID50 showed significant viral load in the lung and cloaca, but not in the oropharyngeal of vaccinated animals when compared with the unvaccinated control group. Collectively, this study suggests that nodavirus-like particles displaying three heterologous M2e have the potential to provide protection against LPAI H9N2 in chickens, though the vaccine’s efficacy and cross-protection across different haemagglutinin (HA) subtypes should be further evaluated. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

27 pages, 8834 KiB  
Article
Genetic and Immunological Profiling of Recent SARS-CoV-2 Omicron Subvariants: Insights into Immune Evasion and Infectivity in Monoinfections and Coinfections
by Nadine Alvarez, Irene Gonzalez-Jimenez, Risha Rasheed, Kira Goldgirsh, Steven Park and David S. Perlin
Viruses 2025, 17(7), 918; https://doi.org/10.3390/v17070918 - 27 Jun 2025
Viewed by 570
Abstract
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and [...] Read more.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and prophylactic interventions. The SARS-CoV-2 variant landscape remains dynamic, with new subvariants continuously emerging, many harboring spike protein mutations linked to immune evasion. In this study, we characterized a panel of live SARS-CoV-2 strains, including those key subvariants implicated in recent waves of infection. Our findings revealed a significant variability in mutation patterns in the spike protein across the strains analyzed. Commercial antibodies and human convalescent plasma (HCoP) samples from unvaccinated donors were ineffective in neutralizing the most recent Omicron subvariants, particularly after the emergence of JN.1 subvariant. Using human airway epithelial cells derived from healthy bronchiolar tissue (hBAEC), we established both monoinfections and coinfections involving SARS-CoV-2, Influenza A virus H1N1 (IFAV_H1N1) and Respiratory Syncytial Virus (RSV). Assessments were conducted to compare viral infectivity and the production and release of immune mediators in the apical and basolateral compartments. Notably, Omicron KP.3.1.1 subvariant induced a more pronounced cytopathic effect in hBAEC compared to its parental strain JN.1 and even surpassed the impact observed with the ancestral wild-type virus (WA1/2020, Washington strain). Furthermore, the coinfection of KP.3.1.1 subvariant with IFAV_H1N1 or RSV did not attenuate SARS-CoV-2 infectivity; instead, it significantly exacerbated the pathogenic synergy in the lung epithelium. Our study demonstrated that pro-inflammatory cytokines IL-6, IFN-β, and IL-10 were upregulated in hBAEC following SARS-CoV-2 monoinfection with recent Omicron subvariants as well as during coinfection with IFAV_H1N1 and RSV. Taken together, our findings offer new insights into the immune evasion strategies and pathogenic potential of evolving SARS-CoV-2 Omicron subvariants, as well as their interactions with other respiratory viruses, carrying important implications for therapeutic development and public health preparedness. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
Show Figures

Graphical abstract

21 pages, 2702 KiB  
Article
Avian Influenza Virus: Comparative Evolution as the Key for Predicting Host Tropism Expansion
by Matteo Mellace, Carlotta Ceniti, Marielda Cataldi, Luca Borrelli and Bruno Tilocca
Pathogens 2025, 14(7), 608; https://doi.org/10.3390/pathogens14070608 - 20 Jun 2025
Viewed by 819
Abstract
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying [...] Read more.
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying the spillover, using a bioinformatics approach to viral sequences. Eight viral proteins involved in the process of adaptation to new hosts were selected, and 156 amino acid mutations potentially associated with interspecies transmission were analyzed. The sequences, obtained from the NCBI Virus database, were aligned with the BLASTP1.4.0 tool and compared through phylogenetic analysis. The results show significant evolutionary proximity between human and animal viral strains, and the identification of shared mutations suggests the presence of conserved mechanisms in spillover. The identification of hosts that share mutations with human strains highlights the potential role of these animals as reservoirs or vectors. This study contributes to the understanding of viral adaptation and provides a starting point for targeted preventive strategies, including molecular surveillance and the development of containment and prevention measures. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

12 pages, 1832 KiB  
Article
Single-Cell Analysis of Host Responses in Bovine Milk Somatic Cells (bMSCs) Following HPAIV Bovine H5N1 Influenza Exposure
by Gagandeep Singh, Sujan Kafle, Patricia Assato, Mankanwal Goraya, Igor Morozov and Juergen A. Richt
Viruses 2025, 17(6), 811; https://doi.org/10.3390/v17060811 - 3 Jun 2025
Viewed by 780
Abstract
The 2024 outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in U.S. dairy cattle presented an unprecedented scenario where the virus infected bovine mammary glands and was detected in milk, raising serious concerns for public health and the dairy industry. Unlike previously [...] Read more.
The 2024 outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in U.S. dairy cattle presented an unprecedented scenario where the virus infected bovine mammary glands and was detected in milk, raising serious concerns for public health and the dairy industry. Unlike previously described subclinical influenza A virus (IAV) infections in cattle, H5N1 infection induced severe clinical symptoms, including respiratory distress, mastitis, and abnormal milk production. To understand the host immune responses and changes, particularly in the mammary gland, we performed single-cell RNA sequencing analysis on bovine milk somatic cells (bMSCs) in vitro exposed to an H5N1 isolate from an infected dairy farm. We identified ten distinct cell clusters and observed a shift toward type-2 immune responses, characterized by T cells expressing IL13 and GATA3, and three different subtypes of epithelial cells based on the expression of genes associated with milk production. Our study revealed temporal dynamics in cytokine expression, with a rapid decline in luminal epithelial cells and an increase in macrophages and dendritic cells, suggesting a role in increased antigen presentation. While viral RNA was detected in bulk-exposed bMSC samples via qRT-PCR, no viral reads were observed in the scRNA-seq data, indicating that the immune responses captured may be due to exposure to viral components rather than productive infection. This research fills a critical gap in understanding the immune responses of bovine mammary glands to H5N1 exposure and highlights the need for further investigation into therapeutic strategies for managing such outbreaks. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

16 pages, 858 KiB  
Review
Advances in Diagnostic Techniques for Influenza Virus Infection: A Comprehensive Review
by Qi Qian, Guohao Fan, Wei Yang, Chenguang Shen, Yang Yang, Yingxia Liu and Weiwei Xiao
Trop. Med. Infect. Dis. 2025, 10(6), 152; https://doi.org/10.3390/tropicalmed10060152 - 28 May 2025
Viewed by 2348
Abstract
Influenza poses a significant global health burden due to its high transmissibility, antigenic variability, and substantial morbidity. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has further complicated influenza dynamics, highlighting the need for rapid, accurate, and accessible diagnostics. This review comprehensively [...] Read more.
Influenza poses a significant global health burden due to its high transmissibility, antigenic variability, and substantial morbidity. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has further complicated influenza dynamics, highlighting the need for rapid, accurate, and accessible diagnostics. This review comprehensively summarized the advancements in influenza virus (IFV) detection, from conventional methods like viral culture and serology to modern molecular techniques, including CRISPR-based systems, next-generation sequencing (NGS), and biosensors. We analyze the sensitivity, specificity, and applicability of these methods and emphasize their roles in clinical and public health settings. While traditional techniques remain valuable for strain characterization, novel technologies like CRISPR and portable biosensors offer rapid, low-resource solutions. This review provides a comprehensive insight into the development of integrated diagnostic strategies for seasonal IFV epidemics and future pandemics. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Epidemiology of Viral Infections)
Show Figures

Figure 1

27 pages, 1665 KiB  
Review
An Emphasis on the Role of Long Non-Coding RNAs in Viral Gene Expression, Pathogenesis, and Innate Immunity in Viral Chicken Diseases
by Anindita Sarma, Parul Suri, Megan Justice, Raja Angamuthu and Samuel Pushparaj
Non-Coding RNA 2025, 11(3), 42; https://doi.org/10.3390/ncrna11030042 - 26 May 2025
Viewed by 737
Abstract
The poultry farming industry encounters considerable obstacles stemming from viral diseases, resulting in elevated mortality rates and substantial economic losses. Current research highlights the significant involvement of long non-coding RNAs (lncRNAs) in the interactions between hosts and pathogens by enhancing antiviral responses at [...] Read more.
The poultry farming industry encounters considerable obstacles stemming from viral diseases, resulting in elevated mortality rates and substantial economic losses. Current research highlights the significant involvement of long non-coding RNAs (lncRNAs) in the interactions between hosts and pathogens by enhancing antiviral responses at different levels, such as the activation of pathogen recognition receptors, as well as through epigenetic, transcriptional, and post-transcriptional modifications. Specific long non-coding RNAs (lncRNAs), including ERL lncRNA, linc-GALMD3, and loc107051710, have been recognized as significant contributors to the antiviral immune response to multiple avian viral pathogens. Understanding the mechanisms by which long non-coding RNAs (lncRNAs) act offers valuable insights into prospective diagnostic and therapeutic approaches aimed at improving disease resistance in poultry. Differentially expressed lncRNAs may also be utilized as biomarkers for both prognosis and diagnosis of avian viral diseases. This review delves into the various roles of long non-coding RNAs (lncRNAs) in the context of viral diseases in chickens, such as avian leukosis, Marek’s disease, infectious bursal disease, avian influenza, infectious bronchitis, and Newcastle disease. It highlights the pivotal role of lncRNAs in the complex dynamics between the host and viral pathogens, particularly their interactions with specific viral proteins. Understanding these interactions may provide valuable insights into the spatial and temporal regulation of lncRNAs, aid in the identification of potential drug targets, and reveal the expression patterns of lncRNA and coding gene transcripts in response to different viral infections in avian species. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

16 pages, 1706 KiB  
Review
A Review of Cross-Species Transmission Mechanisms of Influenza Viruses
by Xianfeng Hui, Xiaowei Tian, Shihuan Ding, Ge Gao, Jiyan Cui, Chengguang Zhang, Tiesuo Zhao, Liangwei Duan and Hui Wang
Vet. Sci. 2025, 12(5), 447; https://doi.org/10.3390/vetsci12050447 - 7 May 2025
Viewed by 1712
Abstract
The cross-species transmission of influenza viruses represents a critical link in the pandemic of zoonotic diseases. This mechanism involves multi-level interactions, including viral genetic adaptability, host–receptor compatibility, and ecological drivers. Recent studies have highlighted the essential role of mutations in hemagglutinin and neuraminidase [...] Read more.
The cross-species transmission of influenza viruses represents a critical link in the pandemic of zoonotic diseases. This mechanism involves multi-level interactions, including viral genetic adaptability, host–receptor compatibility, and ecological drivers. Recent studies have highlighted the essential role of mutations in hemagglutinin and neuraminidase in overcoming host barriers, while elucidating the differences in the distribution of host sialic acid receptors. Furthermore, the “mixer” function of intermediate hosts, such as pigs, plays a significant role in viral redistribution. Advances in high-throughput sequencing and structural biology technologies have gradually resolved key molecular markers and host restriction factors associated with these viruses. However, challenges remain in understanding the dynamic evolutionary patterns of virus–host interaction networks, developing real-time early warning capabilities for cross-species transmission, and formulating broad-spectrum prevention and control strategies. Moving forward, it is essential to integrate multidisciplinary approaches to establish a multi-level defense system, leveraging the ‘One Health’ monitoring network, artificial intelligence prediction models, and new vaccine research and development to address the ongoing threat of cross-species transmission of influenza viruses. This paper systematically reviews the research progress and discusses bottlenecks in this field, providing a theoretical foundation for optimizing future prevention and control strategies. Full article
Show Figures

Figure 1

23 pages, 1033 KiB  
Review
Memory T Cells in Respiratory Virus Infections: Protective Potential and Persistent Vulnerabilities
by Henry Sutanto, Febrian Ramadhan Pradana, Galih Januar Adytia, Bagus Aditya Ansharullah, Alief Waitupu, Bramantono Bramantono and Deasy Fetarayani
Med. Sci. 2025, 13(2), 48; https://doi.org/10.3390/medsci13020048 - 29 Apr 2025
Cited by 1 | Viewed by 1265
Abstract
Respiratory virus infections, such as those caused by influenza viruses, respiratory syncytial virus (RSV), and coronaviruses, pose a significant global health burden. While the immune system’s adaptive components, including memory T cells, are critical for recognizing and combating these pathogens, recurrent infections and [...] Read more.
Respiratory virus infections, such as those caused by influenza viruses, respiratory syncytial virus (RSV), and coronaviruses, pose a significant global health burden. While the immune system’s adaptive components, including memory T cells, are critical for recognizing and combating these pathogens, recurrent infections and variable disease outcomes persist. Memory T cells are a key element of long-term immunity, capable of responding swiftly upon re-exposure to pathogens. They play diverse roles, including cross-reactivity to conserved viral epitopes and modulation of inflammatory responses. However, the protective efficacy of these cells is influenced by several factors, including viral evolution, host age, and immune system dynamics. This review explores the dichotomy of memory T cells in respiratory virus infections: their potential to confer robust protection and the limitations that allow for breakthrough infections. Understanding the underlying mechanisms governing the formation, maintenance, and functional deployment of memory T cells in respiratory mucosa is critical for improving immunological interventions. We highlight recent advances in vaccine strategies aimed at bolstering T cell-mediated immunity and discuss the challenges posed by viral immune evasion. Addressing these gaps in knowledge is pivotal for designing effective therapeutics and vaccines to mitigate the global burden of respiratory viruses. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

12 pages, 763 KiB  
Article
Circulation and Spillover of pdmH1N1 Influenza A Virus at an Educational Swine Farm in Chile, 2019–2023
by Soledad Ruiz, Constanza Díaz-Gavidia, María Antonieta González, Pablo Galdames, Cristóbal Oyarzún, Cecilia Baumberger, Camila Rojas, Christopher Hamilton-West, Bridgett Sharp, Shaoyuan Tan, Stacey Schultz-Cherry and Pedro Jimenez-Bluhm
Viruses 2025, 17(5), 635; https://doi.org/10.3390/v17050635 - 28 Apr 2025
Viewed by 709
Abstract
Educational farms provide students with hands-on experience in agricultural and animal practices. However, the close contact between humans and farm animals creates a significant interface for zoonotic disease transmission, yet research on infectious diseases in such settings remains limited. This study investigates the [...] Read more.
Educational farms provide students with hands-on experience in agricultural and animal practices. However, the close contact between humans and farm animals creates a significant interface for zoonotic disease transmission, yet research on infectious diseases in such settings remains limited. This study investigates the ongoing spillovers of human-origin influenza A virus (IAV) into swine at an educational farm in central Chile, describing IAV prevalence, outbreak dynamics, and the genomic characterization of detected strains. The Menesianos educational farm, located in Melipilla, central Chile, houses approximately 40 swine alongside other domestic animals, such as horses and cows. As part of an active IAV surveillance project, monthly nasal swab samples were collected from pigs between June 2019 and September 2023 for IAV detection via RT-qPCR targeting the M gene, with positive samples subsequently sequenced. During the study period, monthly IAV prevalence ranged from 0% to 52.5%, with a notable outbreak detected between May and June 2023. The outbreak lasted 5 weeks, peaking at 52.5% prevalence during week 3. Nine IAV strains were isolated over the study period, eight of which were obtained during weeks 2 and 3 of the outbreak. Phylogenetic analysis revealed that all strains were closely related to the pandemic H1N1 2009 influenza virus, with the closest related strains being those circulating in humans in Chile during the same years. These findings highlight the importance of conducting regular IAV surveillance on educational farms, where close interactions between animals and individuals—particularly children and young people—can facilitate viral spillovers and potential reverse zoonosis events. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 4664 KiB  
Article
Dynamic Interaction Between SARS-CoV-2 and Influenza A Virus Infection in Human Respiratory Tissues and Cells
by John C. W. Ho, Kachun Ng, Rachel H. H. Ching, Malik Peiris, John M. Nicholls, Michael C. W. Chan and Kenrie P. Y. Hui
Microorganisms 2025, 13(5), 988; https://doi.org/10.3390/microorganisms13050988 - 25 Apr 2025
Viewed by 666
Abstract
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The [...] Read more.
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The intrinsic dynamic relationship and pathological significance for such co-infections remain largely unknown. The replication kinetics and innate immune responses from the co-infections of SARS-CoV-2 (Omicron BA.1 and D614G variant) and influenza A viruses (pandemic H1N1, seasonal H3N2 and highly pathogenic avian H5N1) were characterized in human respiratory tissue explants, human airway, and alveolar epithelial cells. SARS-CoV-2 reduced the replication of influenza A viruses, but not vice versa, during co-infections in human bronchial tissues and airway epithelial cells. In lung tissues, the co-infections showed minimal effects on each other, but the viral replications of the two viruses were mutually reduced except for H1N1pdm in the alveolar epithelial cells irrespective of the enhancement of the ACE2 receptor. Notably, the co-infections showed a significant upregulation of the innate immune responses of SARS-CoV-2 in comparison to single infections in both respiratory epithelial cells, suggesting that co-infections of influenza A viruses potentially lead to more severe damage to the host than SARS-CoV-2 single infections. Full article
(This article belongs to the Special Issue Infections, Immune Mechanisms and Host-Pathogen Interactions)
Show Figures

Figure 1

Back to TopTop