Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = influenza vaccine response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KiB  
Review
Microbiome–Immune Interaction and Harnessing for Next-Generation Vaccines Against Highly Pathogenic Avian Influenza in Poultry
by Yongming Sang, Samuel N. Nahashon and Richard J. Webby
Vaccines 2025, 13(8), 837; https://doi.org/10.3390/vaccines13080837 (registering DOI) - 6 Aug 2025
Abstract
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating [...] Read more.
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating vaccine-induced immunity, including enhancement of mucosal IgA production, CD8+ T-cell activation, and modulation of systemic immune responses. Engineered commensal bacteria such as Lactococcus lactis, Bacteroides ovatus, Bacillus subtilis, and Staphylococcus epidermidis have emerged as promising live vectors for antigen delivery. Postbiotic and synbiotic strategies further enhance protective efficacy through targeted modulation of the gut microbiota. Additionally, artificial intelligence (AI)-driven tools enable predictive modeling of host–microbiome interactions, antigen design optimization, and early detection of viral antigenic drift. These integrative technologies offer a new framework for mucosal, broadly protective, and field-deployable vaccines for HPAI control. However, species-specific microbiome variation, ecological safety concerns, and scalable manufacturing remain critical challenges. This review synthesizes emerging evidence on microbiome–immune crosstalk, commensal vector platforms, and AI-enhanced vaccine development, emphasizing the urgent need for One Health integration to mitigate zoonotic adaptation and pandemic emergence. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

18 pages, 1472 KiB  
Article
Single-Dose Intranasal or Intramuscular Administration of Simian Adenovirus-Based H1N1 Vaccine Induces a Robust Humoral Response and Complete Protection in Mice
by Daria V. Voronina, Irina V. Vavilova, Olga V. Zubkova, Tatiana A. Ozharovskaia, Olga Popova, Anastasia S. Chugunova, Polina P. Goldovskaya, Denis I. Zrelkin, Daria M. Savina, Irina A. Favorskaya, Dmitry V. Shcheblyakov, Denis Y. Logunov and Alexandr L. Gintsburg
Viruses 2025, 17(8), 1085; https://doi.org/10.3390/v17081085 - 5 Aug 2025
Abstract
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, [...] Read more.
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, named rSAd25-H1. Both systemic and mucosal humoral immune responses, as well as the protective efficacy, were assessed in mice immunized via the intramuscular (IM) or intranasal (IN) route. A single-dose IM or IN administration of rSAd25-H1 elicited a robust systemic IgG antibody response, including hemagglutination inhibition antibodies. As expected, only IN immunization was able to induce IgA production in serum and respiratory mucosa. Notably, a single dose of rSAd25-H1 at the highest dose (1010 viral particles) conferred complete protection against lethal homologous H1N1 challenge in mice despite the route of administration. These findings demonstrate the potential of simian adenovirus type 25-based vectors as a promising candidate for intranasal vaccine development targeting respiratory pathogens. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Viewed by 63
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 - 2 Aug 2025
Viewed by 247
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

19 pages, 427 KiB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 (registering DOI) - 2 Aug 2025
Viewed by 266
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

27 pages, 2147 KiB  
Systematic Review
Immunogenicity, Safety, and Protective Efficacy of Mucosal Vaccines Against Respiratory Infectious Diseases: A Systematic Review and Meta-Analysis
by Jiaqi Chen, Weitong Lin, Chaokai Yang, Wenqi Lin, Xinghui Cheng, Haoyuan He, Xinhua Li and Jingyou Yu
Vaccines 2025, 13(8), 825; https://doi.org/10.3390/vaccines13080825 - 31 Jul 2025
Viewed by 256
Abstract
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review [...] Read more.
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review and meta-analysis assessed their immunogenicity, safety, and protective efficacy. Methods: The study design was a systematic review and meta-analysis, searching PubMed and Cochrane databases up to 30 May 2025. Inclusion criteria followed the PICOS framework, focusing on mucosal vaccines for COVID-19, influenza, RSV, pertussis, and tuberculosis. Results: A total of 65 studies with 229,614 participants were included in the final analysis. Mucosal COVID-19 vaccines elicited higher neutralizing antibodies compared to intramuscular vaccines (SMD = 2.48, 95% CI: 2.17–2.78 for wild-type; SMD = 1.95, 95% CI: 1.32–2.58 for Omicron), with varying efficacy by route (inhaled VE = 47%, 95% CI: 22–74%; intranasal vaccine VE = 17%, 95% CI: 0–31%). Mucosal influenza vaccines protected children well (VE = 62%, 95% CI: 30–46%, I2 = 17.1%), but seroconversion rates were lower than those of intramuscular vaccines. RSV and pertussis vaccines had high seroconversion rates (73% and 52%, respectively). Tuberculosis vaccines were reviewed systemically, exhibiting robust cellular immunogenicity. Safety was comparable to intramuscular vaccines or placebo, with no publication bias detected. Conclusions: Current evidence suggests mucosal vaccines are immunogenic, safe, and protective, particularly for respiratory diseases. This review provides insights for future research and vaccination strategies, though limitations include varying efficacy by route and study heterogeneity. Full article
(This article belongs to the Special Issue Immune Correlates of Protection in Vaccines, 2nd Edition)
Show Figures

Figure 1

15 pages, 1609 KiB  
Article
Advancing Reversed-Phase Chromatography Analytics of Influenza Vaccines Using Machine Learning Approaches on a Diverse Range of Antigens and Formulations
by Barry Lorbetskie, Narges Manouchehri, Michel Girard, Simon Sauvé and Huixin Lu
Vaccines 2025, 13(8), 820; https://doi.org/10.3390/vaccines13080820 - 31 Jul 2025
Viewed by 212
Abstract
One concern in the yearly re-formulation of influenza vaccines is the time-consuming manufacturing of vaccine potency reagents, particularly for emergency responses. The continuous evaluation of modern techniques such as reversed-phase (RP) chromatography is an asset for streamlining this process. One challenge with RP [...] Read more.
One concern in the yearly re-formulation of influenza vaccines is the time-consuming manufacturing of vaccine potency reagents, particularly for emergency responses. The continuous evaluation of modern techniques such as reversed-phase (RP) chromatography is an asset for streamlining this process. One challenge with RP methods, however, is the need to re-optimize methods for antigens that show poor separation, which can be highly dependent on analyst experience and available data. In this study, we leveraged a large RP dataset of influenza antigens to explore machine learning (ML) approaches of classifying challenging separations for computer-assisted method re-optimization across years, products, and analysts. Methods: To address recurring chromatographic issues—such as poor resolution, strain co-elution, and signal absence—we applied data augmentation techniques to correct class imbalance and trained multiple supervised ML classifiers to distinguish between these peak profiles. Results: With data augmentation, several ML models demonstrated promising accuracy in classifying chromatographic profiles according to the provided labels. These models effectively distinguished patterns indicative of separation issues in real-world data. Conclusions Our findings highlight the potential of ML as a computer assisted tool in the evaluation of vaccine quality, offering a scalable and objective approach to chromatogram classification. By reducing reliance on manual interpretation, ML can expedite the optimization of analytical methods, which is particularly needed for rapid responses. Future research involving larger, inter-laboratory datasets will further elucidate the utility of ML in vaccine analysis. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 406
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 1254 KiB  
Article
Attitudes Toward COVID-19 and Seasonal Influenza Vaccines in the Post-COVID Era: A Cross-Sectional Study Among Adults in Malta
by Maria Cordina, Mary Anne Lauri and Josef Lauri
Pharmacy 2025, 13(4), 102; https://doi.org/10.3390/pharmacy13040102 - 29 Jul 2025
Viewed by 198
Abstract
The uptake of the COVID-19 and seasonal influenza (SI) vaccines have decreased in Europe and especially in Malta. The present study aimed to investigate the attitudes toward COVID-19 and SI vaccines and determine if individuals perceive that these vaccines are relevant to protect [...] Read more.
The uptake of the COVID-19 and seasonal influenza (SI) vaccines have decreased in Europe and especially in Malta. The present study aimed to investigate the attitudes toward COVID-19 and SI vaccines and determine if individuals perceive that these vaccines are relevant to protect their health and identify reasons for their responses. A cross-sectional study using an anonymous questionnaire, informed by the Theory of Planned Behavior, addressing behavior beliefs and attitudes, and targeted at adult residents in Malta, was designed on Google Forms and disseminated using social media between January and March 2024. A total of 555 responses were received. The majority of respondents did not take/intend to take the COVID-19 (75%, n = 417) or SI (64.3%, n = 362) vaccines, with females being less likely to do so (p = 0.033). Perceived lack of safety (31.3%, n = 174) was the primary reason for rejecting the COVID-19 vaccine, and perceived lack of a threat from SI (26%, n = 144) was the reason for rejecting the SI vaccine. Those having chronic conditions were positively associated with uptake of both vaccines. In the post-pandemic era, these vaccines are not envisaged as having a major role in protecting one’s health. A high degree of skepticism especially toward the combined COVID-19 and SI vaccine in terms of safety, mostly in women, is still present. Full article
Show Figures

Figure 1

21 pages, 471 KiB  
Review
Role and Contribution of Serological Surveillance in Animals and Exposed Humans to the Study of Zoonotic Influenza Disease Epidemiology: A Scoping Review
by Rebecca Badra, Wenqing Zhang, John S. L. Tam, Richard Webby, Sylvie van der Werf, Sergejs Nikisins, Ann Cullinane, Saad Gharaibeh, Richard Njouom, Malik Peiris, Ghazi Kayali and Jean-Michel Heraud
Pathogens 2025, 14(8), 739; https://doi.org/10.3390/pathogens14080739 - 27 Jul 2025
Viewed by 477
Abstract
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological [...] Read more.
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological surveillance plays a pivotal role by providing insights into the prevalence and transmission dynamics of influenza viruses. Objective: This scoping review aimed to map the global research landscape on serological surveillance of zoonotic influenza in animals and exposed humans between 2017, the date of the last WHO public health research agenda for influenza review, and 2024, as well as to identify methodological advancements. Methods: Following PRISMA-ScR guidelines, we searched PubMed for English-language peer-reviewed articles published between January 2017 and March 2024. Studies were included if they reported serological surveillance in wild or domestic animals or occupationally exposed human populations, or novel methodologies and their technical limitations and implementation challenges. Results: Out of 7490 screened records, 90 studies from 33 countries, covering 25 animal species, were included. Seroprevalence studies were in domestic poultry and swine. Surveillance in companion animals, wild mammals, and at the human–animal interface was limited. Emerging serological methods included multiplex and nanobody-based assays, though implementation barriers remain. Conclusions: The review is limited by its restriction to one database and English-language articles, lack of quality appraisal, and significant heterogeneity among the included studies. Serological surveillance is a critical but underutilized tool in zoonotic influenza monitoring. Greater integration of serological surveillance into One Health frameworks, especially in high-risk regions and populations, is needed to support early detection and pandemic preparedness. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 400
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

23 pages, 680 KiB  
Review
Immunological Strategies for Enhancing Viral Neutralization and Protection in Antibody-Guided Vaccine Design
by Dimitrina Miteva, Maria Kokudeva, Latchesar Tomov, Hristiana Batselova and Tsvetelina Velikova
Biologics 2025, 5(3), 21; https://doi.org/10.3390/biologics5030021 - 23 Jul 2025
Viewed by 428
Abstract
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of [...] Read more.
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of vaccines against different pathogens, such as influenza A virus, HIV-1 virus, single-celled malaria parasite, respiratory syncytial virus, and SARS-CoV-2. We summarize the available literature guidance, including emerging techniques in immunological vaccine design, to help understand and improve antibody-based immunity. The search strategy we applied is a comprehensive literature review of major databases, with specific search terms related to antibody-mediated vaccine design, viral neutralization, and immune protection. We discuss the how future directions for next-generation vaccine platforms and personalized vaccines based on immunogenetics will help improve vaccine design for increased specificity and potency of antibodies that neutralize pathogens, offering more precise and effective immune responses and, therefore, protection. Full article
(This article belongs to the Special Issue Progress in Antibody-Guided Vaccine Design for Viruses)
Show Figures

Figure 1

18 pages, 2502 KiB  
Article
Epitope Variation in Hemagglutinin and Antibody Responses to Successive A/Victoria A(H1N1) Strains in Young and Older Adults Following Seasonal Influenza Vaccination: A Pilot Study
by Mónica Espinar-García, Isabel María Vallejo-Bermúdez, María Ángeles Onieva-García, Irene Reina-Alfonso, Luis Llapa-Chino, Pablo Álvarez-Heredia, Inmaculada Salcedo, Rafael Solana, Alejandra Pera and Alexander Batista-Duharte
Vaccines 2025, 13(7), 774; https://doi.org/10.3390/vaccines13070774 - 21 Jul 2025
Viewed by 389
Abstract
Background: Annual influenza vaccine updates target viral drift, but immune responses may be biased by original antigenic sin (OAS). Few studies have explored this across closely related strains. This study examines how OAS shapes responses to sequential influenza variants in the context of [...] Read more.
Background: Annual influenza vaccine updates target viral drift, but immune responses may be biased by original antigenic sin (OAS). Few studies have explored this across closely related strains. This study examines how OAS shapes responses to sequential influenza variants in the context of seasonal vaccination. Methods: We conducted a prospective, longitudinal study to assess the humoral immune response to the 2023–2024 seasonal influenza vaccine containing the A/Victoria/4897/2022 (H1N1) strain. Bioinformatic analyses compared the hemagglutinin (HA) sequences of A/Victoria/4897/2022 and the antigenically related A/Victoria/2570/2019 strain. B-cell epitopes were mapped with BepiPred-3.0 and BepiBlast, and their physicochemical properties analyzed via accessibility, β-turns, flexibility, and hydrophilicity. Antibody responses were measured pre- and 28 days post-Vaxigrip Tetra vaccination in young (18–35) and older (>65) adults, stratified by cytomegalovirus (CMV) serostatus. HA sequences showed >97% identity, with variations mainly in the globular head. Predicted B-cell epitopes overlapped variable sites, suggesting possible immune escape. Despite having been vaccinated against the 2022 strain, serology showed higher antibody titers against the 2019 HA strain in all participants. This pattern suggests a potential antigen imprinting effect, though confirmation awaits further analysis. Age groups differed: older adults showed greater variability, while younger CMV+ individuals tended toward stronger 2019 HA responses. Conclusions: These findings suggest a complex interplay of factors shaping immune responses, though the imprinting effect and the potential role of CMV warrant further exploration in larger, more focused studies. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 354
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

Back to TopTop