Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,183)

Search Parameters:
Keywords = inflammatory bone disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 23946 KiB  
Article
Biomarkers of Inflammation and Radiographic Progression in Axial Spondyloarthritis: A Clinical Evaluation of Leptin, Adiponectin, TNF-α, and IL-17A
by Alexandra-Diana Diaconu, Laurențiu Șorodoc, Cristina Pomîrleanu, Liliana Georgeta Foia, Victorița Șorodoc, Cătălina Lionte, Mara Russu, Vladia Lăpuște, Larisa Ghemiș and Codrina Ancuța
J. Clin. Med. 2025, 14(15), 5605; https://doi.org/10.3390/jcm14155605 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Axial spondyloarthritis (axSpA) is a chronic immune-mediated inflammatory disorder affecting the spine and sacroiliac joints, with variable clinical expression. This study assessed serum levels of inflammatory (TNF-α, IL-17A) and metabolic (leptin, adiponectin) biomarkers and their associations with disease activity, inflammation, structural [...] Read more.
Background/Objectives: Axial spondyloarthritis (axSpA) is a chronic immune-mediated inflammatory disorder affecting the spine and sacroiliac joints, with variable clinical expression. This study assessed serum levels of inflammatory (TNF-α, IL-17A) and metabolic (leptin, adiponectin) biomarkers and their associations with disease activity, inflammation, structural damage, and comorbidities. Methods: This prospective cross-sectional study assessed 89 axSpA patients using clinical, laboratory, and radiological evaluations. Disease activity was measured using ASDAS-CRP and BASDAI scores. Radiographic damage was quantified using the Modified Stoke Ankylosing Spondylitis Spine Score (mSASSS). Serum concentrations of TNF-α, IL-17A, leptin, and adiponectin were quantified by enzyme-linked immunosorbent assay (ELISA). Clinical and imaging correlations were analyzed. Results: Serum leptin levels correlated significantly with higher disease activity scores, inflammatory markers (CRP, ESR), radiographic progression (syndesmophyte formation, mSASSS), and arterial hypertension. Adiponectin levels were inversely associated with disease activity, structural damage, and arterial hypertension, suggesting anti-inflammatory, bone- and cardio-protective properties. TNF-α levels showed an association with inflammatory markers and were higher in patients with peripheral enthesitis. IL-17A levels were weakly correlated with disease activity and structural severity and were significantly lower in patients with a history of anterior uveitis. Conclusions: Leptin and adiponectin may serve as complementary biomarkers in axSpA, reflecting both inflammatory burden and structural damage. While TNF-α and IL-17A remain key therapeutic targets, their correlation with structural changes appears limited. Biomarker profiling could support personalized disease monitoring. Longitudinal studies are needed to validate prognostic implications. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

23 pages, 5370 KiB  
Article
Evidence of Chronic Tusk Trauma and Compensatory Scoliosis in Mammuthus meridionalis from Madonna della Strada (Scoppito, L’Aquila, Italy)
by Leonardo Della Salda, Amedeo Cuomo, Franco Antonucci, Silvano Agostini and Maria Adelaide Rossi
Quaternary 2025, 8(3), 46; https://doi.org/10.3390/quat8030046 (registering DOI) - 7 Aug 2025
Abstract
A remarkably well-preserved skeleton of a male Mammuthus meridionalis, approximately 60 years old, from the Early Pleistocene that is housed at the Castle of L’Aquila (Italy) exhibits a fractured left tusk with severe bone erosion of the alveolus and premaxillary bone, as [...] Read more.
A remarkably well-preserved skeleton of a male Mammuthus meridionalis, approximately 60 years old, from the Early Pleistocene that is housed at the Castle of L’Aquila (Italy) exhibits a fractured left tusk with severe bone erosion of the alveolus and premaxillary bone, as well as marked spinal deformities. The cranial region underwent ultrasonographic, radiological, and histological examinations, while morphological and biomechanical analyses were conducted on the vertebral column. Microscopic analysis revealed intra vitam lesions, including woven bone fibers indicative of early bone remodeling and lamellar bone with expanded and remodeled Haversian systems. These findings are consistent with osteomyelitis and bone sequestration, likely resulting from chronic pulpitis following the tusk fracture, possibly due to an accident or interspecific combat. The vertebral column shows cervical scoliosis, compensatory curves, fusion between the first cervical vertebrae, and asymmetric articular facets, suggesting postural adaptations. Evidence of altered molar wear and masticatory function also support long-term survival post-trauma. Additionally, lesions compatible with spondyloarthropathy, an inflammatory spinal condition not previously documented in Mammuthus meridionalis, were identified. These findings provide new insights into the pathology and adaptive responses of extinct proboscideans, demonstrating the critical role of (paleo)histological methods in reconstructing trauma, disease, and aspects of life history in fossil vertebrates. Full article
Show Figures

Figure 1

28 pages, 2414 KiB  
Review
Breaking Down Osteoarthritis: Exploring Inflammatory and Mechanical Signaling Pathways
by Wafa Ali Batarfi, Mohd Heikal Mohd Yunus, Adila A. Hamid, Manira Maarof and Rizal Abdul Rani
Life 2025, 15(8), 1238; https://doi.org/10.3390/life15081238 - 4 Aug 2025
Viewed by 297
Abstract
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the [...] Read more.
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the dual roles of inflammatory and mechanical signaling in OA pathogenesis, focusing on crucial pathways such as NF-kB, JAK/STAT, and MAPK in inflammation, as well as Wnt/β-catenin, Integrin-FAK, and Hippo-YAP/TAZ in mechanotransduction. The interplay between these pathways highlights a vicious cycle wherein mechanical stress exacerbates inflammation, and inflammation weakens cartilage, increasing its vulnerability to mechanical damage. Additionally, we discuss emerging therapeutic strategies targeting these pathways, including inhibitors of cartilage-degrading enzymes, anti-inflammatory biologics, cell-based regenerative approaches, and non-pharmacological mechanical interventions. By dissecting the molecular mechanisms underlying OA, this review aims to provide insights into novel interventions that address both inflammatory and mechanical components of the disease, paving the way for precision medicine in OA management. Full article
(This article belongs to the Special Issue Current Views on Knee Osteoarthritis: 3rd Edition)
Show Figures

Figure 1

16 pages, 2864 KiB  
Article
RANKL/OPG Axis and Bone Mineral Density in Pediatric Inflammatory Bowel Disease
by Mariusz Olczyk, Agnieszka Frankowska, Marcin Tkaczyk, Anna Socha-Banasiak, Renata Stawerska, Anna Łupińska, Zuzanna Gaj, Ewa Głowacka and Elżbieta Czkwianianc
J. Clin. Med. 2025, 14(15), 5440; https://doi.org/10.3390/jcm14155440 - 1 Aug 2025
Viewed by 183
Abstract
Background: Inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis (UC), may impair bone metabolism, particularly in children. The RANKL/OPG axis, as a key regulator of bone turnover, may contribute to these disturbances. However, data in the pediatric population [...] Read more.
Background: Inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis (UC), may impair bone metabolism, particularly in children. The RANKL/OPG axis, as a key regulator of bone turnover, may contribute to these disturbances. However, data in the pediatric population remain limited. Methods: A single-center, prospective observational study included 100 children aged 4–18 years, with a comparable number of girls and boys. Among them, 72 had IBD (27 CD, 45 UC) and 28 were healthy controls. Anthropometric, biochemical, and densitometric assessments were performed, including serum levels of RANKL and OPG, and markers of inflammation and bone turnover. Results: Children with CD had significantly lower height and weight percentiles compared to UC and controls. Serum RANKL and the RANKL/OPG ratio were significantly elevated in IBD patients, particularly in CD (p < 0.01). Total body BMD Z-scores were lower in IBD compared to controls (p = 0.03). Low BMD was found in 14.7% of UC and 26.3% of CD patients. In both groups, over 30% had values in the “gray zone” (−1.0 to −2.0). A positive correlation was observed between height and weight and bone density (p < 0.01). Higher OPG was associated with lower body weight (p < 0.001), while increased RANKL correlated with osteocalcin (p = 0.03). Patients receiving biological therapy had significantly lower BMD. Conclusions: Pediatric IBD is associated with significant alterations in the RANKL/OPG axis and reduced bone density. These findings support early screening and suggest RANKL/OPG as a potential biomarker of skeletal health. Full article
Show Figures

Graphical abstract

16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 208
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

17 pages, 1015 KiB  
Review
Docosahexaenoic Acid Inhibits Osteoclastogenesis via FFAR4-Mediated Regulation of Inflammatory Cytokines
by Jinghan Ma, Hideki Kitaura, Fumitoshi Ohori, Aseel Marahleh, Ziqiu Fan, Angyi Lin, Kohei Narita, Kou Murakami and Hiroyasu Kanetaka
Molecules 2025, 30(15), 3180; https://doi.org/10.3390/molecules30153180 - 29 Jul 2025
Viewed by 301
Abstract
Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads to pathological bone [...] Read more.
Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads to pathological bone loss in diseases such as osteoporosis and rheumatoid arthritis. FFAR4 (Free Fatty Acid Receptor 4), a G protein-coupled receptor for long-chain omega-3 fatty acids, has been confirmed as a key mediator of metabolic and anti-inflammatory effects. This review focuses on how FFAR4 acts as the selective receptor for the omega-3 fatty acid docosahexaenoic acid (DHA). It activates two divergent signaling pathways. The Gαq-dependent cascade facilitates intracellular calcium mobilization and ERK1/2 activation. Meanwhile, β-arrestin-2 recruitment inhibits NF-κB. These collective actions reshape the cytokine environment. In macrophages, DHA–FFAR4 signaling lowers the levels of TNF-α, interleukin-6 (IL-6), and IL-1β while increasing IL-10 secretion. Consequently, the activation of NFATc1 and NF-κB p65 is profoundly suppressed under TNF-α or RANKL stimulation. Additionally, DHA modulates the RANKL/OPG axis in osteoblastic cells by suppressing RANKL expression, thereby reducing osteoclast differentiation in an inflammatory mouse model. Full article
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
The Rapid Activation of MYDGF Is Critical for Cell Survival in the Acute Phase of Retinal Regeneration in Fish
by Kayo Sugitani, Yuya Omori, Takumi Mokuya, Serika Hosoi, Haruto Kobayashi, Koki Miyata, Yuhei Araiso and Yoshiki Koriyama
Int. J. Mol. Sci. 2025, 26(15), 7251; https://doi.org/10.3390/ijms26157251 - 27 Jul 2025
Viewed by 221
Abstract
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet [...] Read more.
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet to be reported in the nervous system. Herein, we demonstrate for the first time that MYDGF mRNA levels increased in the zebrafish retina 1 h after optic nerve injury (ONI). MYDGF-producing cells were located in the photoreceptors and infiltrating leukocytic cells. We prepared the retina for MYDGF gene knockdown by performing intraocular injections using either MYDGF-specific morpholino or the CRISPR/Cas9 system. Under these MYDGF-knockdown retinal conditions, anti-apoptotic Bcl-2 mRNA was suppressed; in comparison, apoptotic caspase-3 and inflammatory TNFα mRNA were significantly upregulated in the zebrafish retina after ONI compared to the control. Furthermore, heat shock factor 1 (HSF1) was evidently suppressed under these conditions, leading to a significant number of apoptotic neurons. These findings indicate that MYDGF is a key molecule in the stimulation of neuronal regeneration in the central nervous system. Full article
Show Figures

Figure 1

31 pages, 1902 KiB  
Review
Effects of Epigallocatechin-3-O-Gallate on Bone Health
by Patrycja Wróbel, Beata Czarczynska-Goslinska, Kyrylo Chornovolenko, Julia Liwarska, Jakub Kubiak, Tomasz Koczorowski, Agnieszka Malinska, Tomasz Goslinski and Magdalena Waszyk-Nowaczyk
Appl. Sci. 2025, 15(15), 8182; https://doi.org/10.3390/app15158182 - 23 Jul 2025
Viewed by 219
Abstract
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). [...] Read more.
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). Though EGCG has shown some pharmacological effects, to date, it has not been utilised as a therapeutic agent. This is attributed to the fact that EGCG lacks adequate stability, and it is known to degrade through epimerization or auto-oxidation processes, especially when it is exposed to light, temperature fluctuations, some pH values, or the presence of oxygen. Consuming green tea with EGCG can alleviate the effects of bone diseases, such as osteoporosis, and support faster bone regeneration in the case of fractures. Therefore, this review focuses on the current state of research, highlighting the effects of EGCG on bone biology, such as enhancing osteoblast differentiation, promoting bone mineralisation, improving bone microarchitecture, and inhibiting osteoclastogenesis through the modulation of the RANK/RANKL/OPG pathway. Additionally, EGCG exerts antioxidant, anti-inflammatory, and dose-dependent effects on bone cells. It also downregulates inflammatory markers (TNF-α, IL-1β, and COX-2) and reduces oxidative stress via the inhibition of reactive oxygen species generation and the activation of protective signalling pathways (e.g., MAPK and NF-κB). Studies in animal models confirm that EGCG supplementation leads to increased bone mass and strength. These findings collectively support the further exploration of EGCG as an adjunct in the treatment and prevention of metabolic bone diseases. The authors aim to present the relationship between EGCG and bone health, highlighting issues for future research and clinical applications. Full article
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 207
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1515 KiB  
Article
Enhancing Professional Periodontal Therapy with a Novel PMA-Zeolite Application: A Clinical Study on Periodontal Outcomes and Microbiological Changes
by Ines Đapić, Andrej Aurer, Jurica Žučko, Marinka Mravak-Stipetić, Marinka Baranović Baričević, Krešimir Pavelić, Fusun Ozer and Sandra Kraljević Pavelić
J. Funct. Biomater. 2025, 16(8), 270; https://doi.org/10.3390/jfb16080270 - 22 Jul 2025
Viewed by 482
Abstract
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas [...] Read more.
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola has been documented. This disbalance is combined with an inadequate host immune response, often exacerbated by other systemic comorbidities including diabetes mellitus and cardiovascular diseases. Conventional therapy typically comprises mechanical debridement and adjunctive local or systemic antimicrobials, but emerging antibiotic resistance highlights a need for alternative adjuvant therapeutic strategies. The present descriptive analysis of microbiome and clinical trends study evaluated the adjuvant effects of a clinoptilolite-based zeolite material, namely PMA-zeolite, with professional prophylaxis on clinical and microbiological parameters in patients with chronic periodontitis over a 10-week period. Clinical assessment revealed significant reductions in bleeding on probing (BoP) and periodontal pocket depth (PD), indicating improved inflammatory status. Microbiome profiling demonstrated a marked decrease in key periodontal pathogens, suggesting that PMA-zeolite can help rebalance the oral microbiome. These findings suggest that the combined therapy exhibits promising anti-inflammatory and antimicrobial properties, indicating its role in promoting microbial homeostasis and reducing periodontal inflammation. However, further investigation through larger, controlled clinical trials is needed to validate the efficacy of the therapy. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

11 pages, 243 KiB  
Review
Adipokines: Do They Affect the Osteochondral Unit?
by Sergio Rosini, Gianantonio Saviola, Stefano Rosini, Eleonora Baldissarro and Luigi Molfetta
Rheumato 2025, 5(3), 9; https://doi.org/10.3390/rheumato5030009 - 22 Jul 2025
Viewed by 202
Abstract
Obesity, characterized by excessive or abnormal accumulation of body fat, is associated with a range of metabolic and inflammatory diseases, including osteoarthritis (OA). In obese individuals, adipose tissue expansion—via adipocyte hypertrophy or hyperplasia—is accompanied by altered secretion of adipokines such as leptin and [...] Read more.
Obesity, characterized by excessive or abnormal accumulation of body fat, is associated with a range of metabolic and inflammatory diseases, including osteoarthritis (OA). In obese individuals, adipose tissue expansion—via adipocyte hypertrophy or hyperplasia—is accompanied by altered secretion of adipokines such as leptin and adiponectin, which play significant roles in immune modulation, metabolism, and skeletal homeostasis. Leptin, acting through the hypothalamus, regulates the sympathetic nervous system and modulates hormonal axes, influencing bone metabolism and cartilage integrity. Elevated leptin concentrations in the synovial fluid, and the presence of its receptors on cartilage surfaces, suggest its direct role in cartilage degradation and OA progression. Conversely, adiponectin exerts anti-inflammatory effects, modulates osteoblast and macrophage activity, and appears to have a protective function in joint metabolism. These findings underscore the complex interplay between the adipose tissue, adipokines, and the osteochondral unit, highlighting the importance of their balance in maintaining joint health. Full article
17 pages, 2234 KiB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 442
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

21 pages, 2039 KiB  
Article
Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption
by Fernanda D’Amélio, Hugo Vigerelli, Rodrigo Pinheiro Araldi, Isabel de Fátima Correia Batista, Daniel Carvalho Pimenta and Irina Kerkis
Toxins 2025, 17(7), 358; https://doi.org/10.3390/toxins17070358 - 19 Jul 2025
Viewed by 408
Abstract
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied [...] Read more.
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied at 5 µg/mL (crude venom and HMM) or 1 µg/mL (LMM) from day 4 of peripheral blood mononuclear cell (PBMC) differentiation through terminal OC formation, enabling evaluation across early differentiation, fusion, and maturation stages. RNA sequencing revealed 7793 genes common to all experimental groups, with unique gene expression signatures of 149 (control), 221 (HMM), 248 (crude venom), and 60 (LMM) genes, reflecting distinct molecular responses. The negative control PBMC group exhibited 1013 unique genes enriched in immune-related pathways, consistent with their undifferentiated state. Crude venom induced the broadest transcriptional modulation, upregulating key fusion (CD47) and resorption (CTSK) genes, and altering markers of OC differentiation. The HMM fraction predominantly influenced inflammatory and osteoclastogenic pathways, notably TNF and NF-κB signaling, while the LMM fraction selectively regulated fusion-related genes (e.g., CD44) and immune pathways, indicating targeted modulation of OC activity. Cytokine profiling showed that crude venom and HMM suppressed osteoclastogenic cytokines such as IL-1β and IL-6, supporting their potential use in inflammatory bone diseases. Pathway enrichment analyses confirmed these differential effects on immune response and bone resorption mechanisms. Together, these results demonstrate that B. moojeni venom and its fractions differentially impact OC biology, with crude venom exerting broad effects and HMM and LMM fractions offering more specific modulation. Future studies will isolate bioactive components and assess therapeutic efficacy in animal models of osteoporosis and rheumatoid arthritis. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

24 pages, 31371 KiB  
Article
Ultrasound Phenotype-Based Approach to Treatment Choice in Osteoarthritis
by Rositsa Karalilova, Velichka Popova, Konstantin Batalov, Dimitar Kolev, Lyatif Kodzhaahmed, Dimitrina Petrova-Stoyankova, Nikola Tepeliev, Tsvetelina Kostova, Lili Mekenyan and Zguro Batalov
Life 2025, 15(7), 1140; https://doi.org/10.3390/life15071140 - 19 Jul 2025
Viewed by 359
Abstract
Introduction/Objectives: Osteoarthritis (OA) is a chronic systemic disease that affects the entire array of joint structures. It is one of the most common chronic, socially significant diseases, associated with a decline in the quality of life of patients and constantly increasing the cost [...] Read more.
Introduction/Objectives: Osteoarthritis (OA) is a chronic systemic disease that affects the entire array of joint structures. It is one of the most common chronic, socially significant diseases, associated with a decline in the quality of life of patients and constantly increasing the cost of treatment. Clinical trial outcomes are largely inconclusive, and OA remains one of the few musculoskeletal diseases without an established disease-modifying therapy. One potential explanation is the use of ineffective tools for OA classification, patient stratification, and the assessment of disease progression. There is growing interest in musculoskeletal ultrasonography (MSK US), as it enables the dynamic visualization of the examined structures and gives information about both inflammatory and structural changes that have occurred. Determining the leading ultrasound phenotype, which depends on the most damaged tissue at a given time (bone, cartilage, synovial membrane, joint capsule, ligaments, tendons, menisci, etc.), can rationalize therapy use by selecting patients more suitable for specific treatments. This article aims to evaluate and summarize the potential of MSK US in the process of determining the clinical phenotype of OA and to emphasize the importance of this imaging modality in evaluating further therapeutic strategies. Method: A single-center prospective study conducted in the period of September 2023–June 2024 enrolled 259 consecutive patients with proven OA. The statistical program Minitab version 22.2.1 (2025) was used to analyze the data. The predominant and secondary phenotypes were tabulated for each OA localization and were presented numerically and as relative proportions (%). The rate of the most frequently occurring phenotypes was compared against that of the less frequent ones through paired z-tests. The initially acceptable type I error was set at 5%; it was further adjusted for the number of comparisons (Bonferroni). Results: The most frequent and predominant US phenotype for patients with knee OA was intra-articular effusion (n = 47, 37.90%). It was significantly higher compared to the rest of the US phenotypes: synovial proliferation (n = 22, 17.70%; p < 0.001), cartilage destruction (n = 26, 21%; p = 0.001), altered subchondral bone (n = 8, 6.50%; p < 0.001), extra-articular soft tissue changes (n = 12, 9.70%; p < 0.001), crystal deposits (n = 6, 4.8%; p < 0.001), and post-traumatic (n = 3, 2.40%; p < 0.001). The most common US phenotype for hip OA was altered subchondral bone (n = 32, 47.1%), with significant differences from intra-articular effusion (n = 12, 17.60%; p = 0.001), synovial proliferation (n = 5, 7.40; p = 0.001), cartilage destruction (n = 12, 17.60%; p = 0.001), extra-articular soft tissue changes (n = 3, 4.40%; p = 0.001), crystal deposits (n = 3, 4.40%; p = 0.001), and post-traumatic (n = 0). Altered subchondral bone was also the leading US phenotype for hand OA (n = 31, 55.40%), with significant differences compared to intra-articular effusion (n = 1, 1.80%; p < 0.001), synovial proliferation (n = 7, 12.50%; p < 0.001), cartilage destruction (n = 11, 19.60%; p < 0.001), extra-articular soft tissue changes (n = 2, 3.60%; p < 0.001), crystal deposits (n = 3, 5.40%; p < 0.001), and post-traumatic (n = 1, 1.80%, p < 0.001). For shoulder OA, extra-articular soft tissue changes were the most frequent (n = 8, 46.20%), followed by post-traumatic (n = 4, 30.70%), as the rate of both phenotypes was significantly higher compared to that of intra-articular effusion (n = 0), synovial proliferation (n = 0), cartilage destruction (n = 1, 7.70%; p = 0.003), and crystal deposits (n = 0). Conclusions: The therapeutic approach for OA is a dynamic and intricate process, for which the type of affected joint and the underlying pathogenetic mechanism at a specific stage of the disease’s evolution is essential. MSK US is one of the options for the clinical phenotyping of OA. Some of the suggested ultrasound subtypes may serve as the rationale for selecting a particular treatment. Full article
Show Figures

Figure 1

16 pages, 2408 KiB  
Article
Female Mice Lacking LSD1 in Myeloid Cells Are Resistant to Inflammatory Bone Loss
by Kristina Astleford-Hopper, Flavia Saavedra, Peter Bittner-Eddy, Clara Stein, Jennifer Auger, Rachel Clark, Juan E. Abrahante Llorens, Bryce A. Binstadt, Vivek Thumbigere-Math and Kim C. Mansky
Cells 2025, 14(14), 1111; https://doi.org/10.3390/cells14141111 - 19 Jul 2025
Viewed by 365
Abstract
Osteoclasts, which are derived from myeloid precursors, are essential for physiologic bone remodeling but also mediate pathological bone loss in inflammatory diseases such as periodontitis and rheumatoid arthritis. Lysine-specific demethylase (LSD1/KDM1A) is a histone demethylase that modulates the chromatin landscape via demethylation of [...] Read more.
Osteoclasts, which are derived from myeloid precursors, are essential for physiologic bone remodeling but also mediate pathological bone loss in inflammatory diseases such as periodontitis and rheumatoid arthritis. Lysine-specific demethylase (LSD1/KDM1A) is a histone demethylase that modulates the chromatin landscape via demethylation of H3K4me1/2 and H3K9me1/2, thereby regulating the expression of genes essential for deciding cell fate. We previously demonstrated that myeloid-specific deletion of LSD1 (LSD1LysM-Cre) disrupts osteoclast differentiation, leading to enhanced BV/TV under physiological conditions. In this study, we show that LSD1LysM-Cre female mice are similarly resistant to inflammatory bone loss in both ligature-induced periodontitis and K/BxN serum-transfer arthritis models. Bulk RNA-seq of mandibular-derived preosteoclasts from LSD1LysM-Cre mice with ligature-induced periodontitis revealed the upregulation of genes involved in inflammation, lipid metabolism, and immune response. Notably, LSD1 deletion blocked osteoclastogenesis even under TGF-β and TNF co-stimulation, which is an alternative RANKL-independent differentiation pathway. Upregulation of Nlrp3, Hif1α, and Acod1 in LSD1LysM-Cre preosteoclasts suggests that LSD1 is essential for repressing inflammatory and metabolic programs that otherwise hinder osteoclast commitment. These findings establish LSD1 as a critical epigenetic gatekeeper integrating inflammatory and metabolic signals to regulate osteoclast differentiation and bone resorption. Therapeutic inhibition of LSD1 may selectively mitigate inflammatory bone loss while preserving physiological bone remodeling. Full article
Show Figures

Figure 1

Back to TopTop