Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = infiltration grouting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5958 KB  
Article
A Material–Structure Integrated Approach for Soft Rock Roadway Support: From Microscopic Modification to Macroscopic Stability
by Sen Yang, Yang Xu, Feng Guo, Zhe Xiang and Hui Zhao
Processes 2026, 14(3), 414; https://doi.org/10.3390/pr14030414 - 24 Jan 2026
Viewed by 161
Abstract
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of [...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

23 pages, 6731 KB  
Article
Research on the Infiltration Effect of Waterborne Polyurethane Cementitious Composite Slurry Penetration Grouting Under Vacuum Effect
by Chungang Zhang, Feng Huang, Yingguang Shi, Xiujun Sun and Guihe Wang
Polymers 2025, 17(23), 3205; https://doi.org/10.3390/polym17233205 - 1 Dec 2025
Viewed by 404
Abstract
To address the issue of restricted grout diffusion caused by seepage effects during grouting in sandy soil layers, this study proposes an optimised grouting method for water-based polyurethane-cement composite grout (WPU-CS) under vacuum-pressure synergy. By establishing a porous medium flow model based on [...] Read more.
To address the issue of restricted grout diffusion caused by seepage effects during grouting in sandy soil layers, this study proposes an optimised grouting method for water-based polyurethane-cement composite grout (WPU-CS) under vacuum-pressure synergy. By establishing a porous medium flow model based on the mass conservation equation and linear filtration law, the influence mechanism of cement particle seepage effects was quantitatively characterised. An orthogonal test (L9(34)) optimised the grout composition, determining the optimal parameter combination as the following: water-to-cement ratio 1.5:1, polyurethane-to-cement ratio 5~10%, magnesium aluminium silicate content 1%, and hydroxypropyl methylcellulose content 0.15%. Vacuum permeation grouting tests demonstrated that compared to pure cement slurry, WPU-CS reduced filter cake thickness by 80%, significantly suppressing the leaching effect (the volume fraction δ of cement particles exhibited exponential decay with increasing distance r from the grouting end, and the slurry front velocity gradually decreased). Concurrently, the porosity ϕ in the grouted zone showed a gradient distribution (with more pronounced porosity reduction near the grouting end). When vacuum pressure increased from −10 kPa to −30 kPa, slurry diffusion distance rose from 11 cm to 18 cm (63.6% increase). When grouting pressure increased from 20 kPa to 60 kPa, diffusion distance increased from 8 cm to 20 cm (150% increase). The study confirms that synergistic control using WPU-CS with moderate grouting pressure and high vacuum effectively balances seepage suppression and soil stability, providing an innovative solution for efficient sandy soil reinforcement. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 6872 KB  
Article
The Simulation of Grouting Behavior in the Pea Gravel Filling Layer Behind a Double-Shield TBM Based on the Level Set Method
by Xinlong Li, Yulong Zhang, Dongjiao Cao, Yang Liu and Lin Chen
Appl. Sci. 2025, 15(13), 7542; https://doi.org/10.3390/app15137542 - 4 Jul 2025
Viewed by 868
Abstract
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this [...] Read more.
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this study. The model directly simulates the flow of grout through the porous medium by solving the Navier–Stokes equations and employs the level set method to track the evolving interface between the grout and air phases. Unlike conventional continuum approaches, this model incorporates particle-scale heterogeneity, allowing for a more realistic analysis of grout infiltration through the non-uniform pore structures formed by gravel packing. Three different grouting port positions and two boundary conditions are considered in the simulation. The results indicate that under pressure boundary conditions, the grout flow rate increases rapidly in the initial stage, and then decreases and stabilizes, with the flow rate peak increasing as the grout port moves upward. Under velocity boundary conditions, the injection pressure grows slowly in the early stage but accelerates with time. Additionally, the rate of pressure change is faster when the grout port is located lower in the backfilling layer. Through theoretical analysis, the existing analytical formula was extended by introducing a gravitational correction term. When the grouting port is near the upper part of the tunnel, the analytical solution aligns well with the numerical simulation results, but as the grout port moves downward, the discrepancy between the two increases. Full article
Show Figures

Figure 1

34 pages, 6364 KB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Cited by 5 | Viewed by 6867
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

15 pages, 16494 KB  
Article
Experimental Analysis of the Slurry Diffusion Behavior Characteristics of Point Source Grouting and Perforated Pipe Grouting in Sandy Soil
by Liuxi Li, Chao Deng, Yuan Chen, Zhichao Xu, Wenqin Yan and Yi Zhou
Buildings 2025, 15(7), 1133; https://doi.org/10.3390/buildings15071133 - 31 Mar 2025
Cited by 2 | Viewed by 851
Abstract
Grouting technology is widely used in foundation treatment to achieve the uplifting and correction of buildings. In this context, analyzing the slurry diffusion mechanism and the resulting behavioral characteristics is crucial for guiding precise engineering design practices. This study utilized an independently developed [...] Read more.
Grouting technology is widely used in foundation treatment to achieve the uplifting and correction of buildings. In this context, analyzing the slurry diffusion mechanism and the resulting behavioral characteristics is crucial for guiding precise engineering design practices. This study utilized an independently developed grouting model testing system to conduct grouting experiments on sandy soil employing diverse grouting methodologies and infiltration diffusion patterns. The objectives were to elucidate the characteristics of grouting pressure, lifting displacement, and stress variations within the sandy soil. The findings indicate that slurry diffusion in sandy soil typically progresses through three distinct stages, exhibiting a cyclic pattern of “compaction–splitting–compaction”. We observed that the slurry diffusion pattern closely aligns with the trend of uplift displacement changes. Furthermore, a general downward trend was observed in the stress attenuation of sand during the grouting process. Marked disparities exist in the slurry diffusion mechanism and stress characteristics between point source and perforated pipe grouting. These research outcomes contribute significantly to advancing the theoretical understanding and experimental design of grouting techniques in sandy soil. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

22 pages, 17192 KB  
Article
Investigation of Power-Law Fluid Infiltration Grout Characteristics on the Basis of Fractal Theory
by Fucheng Wei, Jinxing Lai and Xulin Su
Buildings 2025, 15(6), 987; https://doi.org/10.3390/buildings15060987 - 20 Mar 2025
Cited by 16 | Viewed by 804
Abstract
This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through laboratory experiments [...] Read more.
This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through laboratory experiments and numerical simulations. Key findings include the following: (1) The fractal permeability constant demonstrates an exponential dependence on the rheological index (n), with a critical threshold at n = 0.4. Below this threshold, the constant asymptotically approaches zero (slope < 0.1), while beyond it, sensitivity intensifies exponentially, attaining 0.48 at n = 0.9. (2) Non-linear positive correlations exist between the slurry diffusion radius and both the grouting pressure (P) and the water–cement ratio (W/C). Spherical diffusion dominates over columnar diffusion, with their ratio shifting from 1:0.96 at P = 0.1 MPa to 1:0.82 at P = 0.5 MPa. The diffusion distance differential increases from 22 mm to 38 mm as the W/C rises from 0.5 to 0.7, attributable to reduced interfacial shear resistance from decreasing slurry viscosity and yield stress. (3) Experimental validation confirms exponentially decaying model errors: spherical grouting errors decrease from 21.54% (t = 5 s) to 8.43% (t = 15 s) and columnar errors from 25.45% to 10.17%, both within the 50% engineering tolerance. (4) Numerical simulations show that the meander fractal dimension (48 mm) demonstrates a higher sensitivity than the volume fractal dimension (37 mm), with both dimensions reaching maximum values. These findings establish a theoretical framework for optimizing grouting design in heterogeneous porous media. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3580 KB  
Article
Experimental Study on Permeation of Composite Grout with Multi-Particle-Size Distribution: Comparative Analysis with Nano-Silica Sol and Cement Grout
by Zhe Xiang, Nong Zhang, Zhengzheng Xie, Huajun Tang and Ziheng Song
Processes 2025, 13(1), 172; https://doi.org/10.3390/pr13010172 - 9 Jan 2025
Cited by 3 | Viewed by 1573
Abstract
The low injectability and strong permeation of micro-fractures in argillaceous rock masses significantly impair the impermeabilization and reinforcement performance of conventional cement-based grouting materials. This study first develops a highly injectable and high-strength nano-silica sol-based composite grout. Then, the characteristics of silica sol, [...] Read more.
The low injectability and strong permeation of micro-fractures in argillaceous rock masses significantly impair the impermeabilization and reinforcement performance of conventional cement-based grouting materials. This study first develops a highly injectable and high-strength nano-silica sol-based composite grout. Then, the characteristics of silica sol, cement grout, and composite grout in argillaceous fractured rock masses are analyzed and compared. The permeation mechanism of the composite-grout grouting in these rock masses is preliminarily elucidated, and the grouting process is described in detail, showing its application prospects. The research results indicate the following: (1) The electrical conductivity and stone-formation rate of granular pulp can reflect the characteristics of pulp filtration. Silica sol is a grouting material with nanometer particles, and the stone rate and gel strength are weakly affected by rock mass infiltration. (2) A large amount of water cannot be combined into the gel network and separated during the cement slurry percolation process, resulting in a significant reduction in the stone rate and compressive strength of deep rock mass. The minimum stone rate decreased to 45.19%, and the minimum compressive strength decreased to 2.29 MPa. This reduces the sealing and reinforcement effect of cement grouting on deep rock masses. (3) Rock permeation primarily affects the compressive strength of the formed stones, with minimal impact on the stability and stone-formation rate of the composite grout. As permeability decreases, the position of rock permeation shifts closer to the rock surface, while the sealing of deeper rock masses is less affected, enabling the composite grout to achieve dual functions of superficial reinforcement and deep sealing. This study provides theoretical support for the practical application of composite-grout grouting in reinforcing argillaceous rock masses. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 14137 KB  
Article
Penetration Grouting Mechanism of Bingham Fluid in Porous Media Based on Fractal Theory
by Jiakun Gong, Chenxi Xu, Yuan Wang, Shan Gao, Haikuan Chen and Lu Jia
Fractal Fract. 2024, 8(12), 739; https://doi.org/10.3390/fractalfract8120739 - 15 Dec 2024
Cited by 3 | Viewed by 1429
Abstract
Penetration grouting is a significant grouting technique. The pore structure has important impacts on the infiltration mechanism of slurry in porous media. In this study, based on fractal theory, a theoretical penetration grouting model for Bingham fluid is established. An experimental apparatus for [...] Read more.
Penetration grouting is a significant grouting technique. The pore structure has important impacts on the infiltration mechanism of slurry in porous media. In this study, based on fractal theory, a theoretical penetration grouting model for Bingham fluid is established. An experimental apparatus for simulating the penetration process of Bingham fluid with a constant flow rate is developed. A series of penetration-grouting experiments are conducted to validate the theoretical model established in this study and analyze the impacts of the water–cement ratio and flow rate on the slurry injection pressure. The results show that the theoretical values of the slurry pressure along the penetration direction obtained from the penetration grouting model match the experimental values well. This indicates that the proposed model can better describe the process of slurry infiltration and provide valuable support for related grouting projects. Full article
(This article belongs to the Special Issue Fractal and Fractional in Geotechnical Engineering)
Show Figures

Figure 1

19 pages, 10306 KB  
Article
Study on Formation Mechanism of Advance Grouting Curtain in Ore-Rock Contact Zone in Water-Rich Roadway
by Bei Kong, Lijun Han and Jiongze Zheng
Appl. Sci. 2024, 14(14), 6257; https://doi.org/10.3390/app14146257 - 18 Jul 2024
Cited by 2 | Viewed by 2188
Abstract
During tunnel development in metal mines, there are situations where a zone of contact between the ore and the surrounding rock is reached. Nevertheless, there is a notable disparity in the mechanical characteristics between the ore and the surrounding rock, leading to a [...] Read more.
During tunnel development in metal mines, there are situations where a zone of contact between the ore and the surrounding rock is reached. Nevertheless, there is a notable disparity in the mechanical characteristics between the ore and the surrounding rock, leading to a specific response of grouting in the contact area between the ore and rock. This response differs from the typical diffusion and curtain formation effects observed when using grouting slurry. This study investigates the effects of grouting curtain creation when implementing highly advanced curtain grouting in a water-rich highway, utilizing the engineering conditions of Zhongjiu Iron Mine as a reference. At first, Darcy’s law and the Navier-Stokes equation are used to control the flow of fluid in the area where the ore-rock meets the rock around it. COMSOL, a multi-physical field coupled analysis software, is employed for the numerical simulation of slurry plane diffusion, single-hole, and group-hole curtain grouting. Two optimization strategies for group-hole grouting parameters are subsequently suggested and proven using numerical simulation. Finally, the project implements the research to assess the influence of curtain grouting by employing the water influx of the exploratory apertures as the standard of comparison before and after grouting; the results demonstrate that the slurry forms a highly efficient grouting curtain, effectively impeding water infiltration. The findings indicate that slurry diffusion in the contact zone between the ore and rock follows a spherical motion pattern, resulting in a considerable decrease in the flow rate compared to the previous stage. The force of gravity visibly affects the spreading of the slurry in the area where the ore and rock come into contact, causing the slurry to mostly spread downwards. This inclination intensifies as the rate of grouting is elevated. To successfully address the inadequate distribution of the slurry, one can either increase the rate at which grouting is performed or decrease the distance between the grouting holes. Full article
Show Figures

Figure 1

15 pages, 4607 KB  
Article
Mechanical and Failure Characteristics of Grouting Cemented Coal under Different Degrees of Early Damage
by Aibing Jin, Hailong Du, Yiqing Zhao, Zhongshu Wang and Hai Li
Appl. Sci. 2024, 14(12), 5178; https://doi.org/10.3390/app14125178 - 14 Jun 2024
Cited by 1 | Viewed by 1551
Abstract
Pre-grouting is an effective method to reinforce fractured coal in front of working faces. The mining of adjacent working faces after grouting can cause early damage to the grouting cemented coal. To explore the mechanical properties of grouting cemented coal with different degrees [...] Read more.
Pre-grouting is an effective method to reinforce fractured coal in front of working faces. The mining of adjacent working faces after grouting can cause early damage to the grouting cemented coal. To explore the mechanical properties of grouting cemented coal with different degrees of early damage, we designed and built a grouting equipment that was used on fractured coal to produce grouting cemented coal. In total, 0%, 20%, 40%, and 60% of the uniaxial compressive strength of complete coal were applied to the grouting cemented coal to produce early damage. The uniaxial compressive test, digital image correlation technology (DIC), acoustic emission (AE), and scan electron microscopy (SEM) were used to explore the changes in the mechanical properties of the grouting cemented coal with different early disturbance, and the surface and internal failure modes of the samples were investigated. The results show that with an increase in the early damage degree from 0% to 60%, the strength of the grouting cemented coal samples first increased and then decreased. Moreover, when the damage degree was 40%, the strength of the grouting cemented coal reached a maximum, which increased by 24.38% compared to that of the grouting cemented coal without damage. Under the low degree of damage, the samples exhibited tensile failure. As the damage degree increases, the samples’ failure mode changes to shear and mixed failure mode, and the breakdown speed increases. Internal crack propagation mostly occurred during the failure stage. As the damage degree increased, the failure stage increased, and the grouting cemented coal exhibited plastic characteristics. However, when the early damage degree increased to 60%, the samples exhibited typical brittle failure characteristics. The microstructure results show that the low degree of early damage for the samples is conducive to the infiltration of the slurry in coal, improving the grouting reinforcement effect. A large degree of early damage can lead to internal structural damage and strength degradation in grouting cemented coal. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

18 pages, 8221 KB  
Article
Experimental Study on the Relationship between Time-Varying Uplift Displacement and Grout Diffusion in Sand
by Huan-Xiao Hu, Wei Cao, Chao Deng and Yu-Fan Lu
Appl. Sci. 2024, 14(9), 3922; https://doi.org/10.3390/app14093922 - 4 May 2024
Cited by 6 | Viewed by 1578
Abstract
Traditional model tests for soil and rock materials face challenges in observing the slurry diffusion within the soil mass, hindering the understanding of the relationship between grouting-induced ground deformation and grout diffusion. This study conducts grouting diffusion model tests using a self-developed experimental [...] Read more.
Traditional model tests for soil and rock materials face challenges in observing the slurry diffusion within the soil mass, hindering the understanding of the relationship between grouting-induced ground deformation and grout diffusion. This study conducts grouting diffusion model tests using a self-developed experimental setup on both ordinary and transparent sand. We investigate cement slurry diffusion patterns, distribution characteristics, and temporal variations in ground uplift displacement during the grouting process. By leveraging a visualization grouting model and non-intrusive displacement measurements, we directly observe and verify the changes in cement slurry diffusion and ground displacement in transparent sand. The results indicate the following: during non-steady grouting in sand, slurry diffusion progresses from low-pressure infiltration to medium-pressure compaction, culminating in high-pressure fracturing; ground uplift displacement curves exhibit a consistent “step-like” increase with grouting time, featuring accelerated growth after each step; and visualization tests reveal a strong correlation between grouting pressure, slurry diffusion, and corresponding uplift displacement. Distinct features in the grouting pressure plot align with the acceleration phases of the displacement; at a water–cement ratio (w/c) of 0.8, the stratum’s vertical deformation shows a symmetric “higher in the middle, lower on the sides” distribution. As the burial depth decreases, the stratum’s uplift displacement tends to flatten horizontally, especially at w/c = 0.8 and 1.2. Full article
(This article belongs to the Special Issue Recent Advances in Soft Soil Engineering)
Show Figures

Figure 1

13 pages, 3344 KB  
Article
Experimental Study of the Injectability of Infiltration Grouting in Surface Moraine of Pulang Copper Mine
by Zeng Liu, Wei Sun, Xinglong Feng, Shaoyong Wang, Chong Chen, Hao Song, Minggui Jiang and Kai Fan
Water 2024, 16(5), 728; https://doi.org/10.3390/w16050728 - 29 Feb 2024
Cited by 4 | Viewed by 1775
Abstract
In order to effectively reduce the risk of underground debris flow, surface moraine is solidified and modified by using grouting technology to realize the change in fine-grained moraine from “powder” to “block” to change the source conditions of underground debris flow and to [...] Read more.
In order to effectively reduce the risk of underground debris flow, surface moraine is solidified and modified by using grouting technology to realize the change in fine-grained moraine from “powder” to “block” to change the source conditions of underground debris flow and to reduce the risk of moraine from the root. In this paper, the effects of grouting pressure, porosity, and pore diameter on the spillability of moraine are investigated experimentally. The results show that the grouting depth increases linearly with increasing sample porosity. For the same sample density, the grouting pressure is proportional to the grouting depth. As the pore diameter of the sample increases, the longitudinal grouting depth of the sample increases, but the transverse diffusion distance decreases. The chemical grout in the moraine is mainly split-infiltration grouting mode. The present research results can provide effective support for the prevention and control of underground debris flow in Pulang Copper Mine. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Graphical abstract

21 pages, 7930 KB  
Article
Study on Vertical Bearing Capacity of Pile Foundation with Distributed Geopolymer Post-Grouting on Pile Side
by Pan Li, Yangyang Xia, Xinhui Xie, Jing Wang, Chaojie Wang, Mingsheng Shi, Bo Wang and Haoye Wu
Materials 2024, 17(2), 398; https://doi.org/10.3390/ma17020398 - 12 Jan 2024
Cited by 5 | Viewed by 2173
Abstract
To study the applicability of the new geopolymer grouting material for super-long and large-diameter post-grouting bored piles in silty fine sand geology, this paper compares the bearing capacity of two grouting materials, geopolymer and normal Portland cement, and different grouting volume pile side-distributed [...] Read more.
To study the applicability of the new geopolymer grouting material for super-long and large-diameter post-grouting bored piles in silty fine sand geology, this paper compares the bearing capacity of two grouting materials, geopolymer and normal Portland cement, and different grouting volume pile side-distributed grouting piles in silty fine sand based on field model tests are analyzed through the diffusion forms of the two materials in silty fine sand through the morphology of the grouted body after excavation. The results show that the ultimate bearing capacities of P0 (ungrouted pile), P1 (8 kg cement grouted pile), P2 (6 kg geopolymer-grouted pile), P3 (8 kg geopolymer-grouted pile) and P4 (10 kg geopolymer-grouted pile) are 5400 N, 8820 N, 9450 N, 11,700 N and 12,600 N, respectively, and that the ultimate bearing capacity of the grouted pile is improved compared with that of the ungrouted pile since, under the same grouting amount, the maximum bearing capacity of the pile using geopolymer grouting is increased by 133% compared with that of the pile with cement grouting. This further verifies the applicability of the geopolymer grouting material for the post-grouting of the pile foundation in silty fine sand. Under the action of the ultimate load, the pile side friction resistance of P1, P2, P3 and P4 is increased by 200%, 218%, 284% and 319% compared with that of P0. In addition, the excavation results show that the geopolymer post-grouting pile forms the ellipsoidal consolidation body at the pile side grouting location, which mainly comprises extrusion diffusion with a small amount of infiltration diffusion, and the cement grouting pile forms a sheet-like consolidation body at the lower grouting location, which primarily comprises split diffusion. This study can provide a reference basis for the theoretical and engineering application of post-grouting piles using geopolymers. Full article
(This article belongs to the Special Issue Structural and Functional Performance of Geopolymer Materials)
Show Figures

Figure 1

18 pages, 5949 KB  
Article
Infiltration Grouting Mechanism of Bingham Fluids in Porous Media with Different Particle Size Distributions
by Baojie Xu, Hualei Zhang, Jiadi Yin and Yonglin Xue
Appl. Sci. 2023, 13(21), 11986; https://doi.org/10.3390/app132111986 - 2 Nov 2023
Cited by 10 | Viewed by 2322
Abstract
Although permeation grouting technology has been widely used in engineering practice, there has not been sufficient research on how the distribution of pore sizes in porous media affects the diffusion of grout. In this study, based on the fractal theory of porous media [...] Read more.
Although permeation grouting technology has been widely used in engineering practice, there has not been sufficient research on how the distribution of pore sizes in porous media affects the diffusion of grout. In this study, based on the fractal theory of porous media and the Bingham fluid rheological equation, a Bingham fluid permeation grouting mechanism considering the distribution of pore sizes in porous media is proposed. The mechanism is validated through laboratory experiments and numerical simulations using COMSOL 6.0. During the experiments, parallel electrical resistance imaging is employed to monitor the diffusion range of the grout. Furthermore, the effects of grouting pressure, porosity, and water–cement ratio on the diffusion radius of the grout are analyzed. The results show that the Bingham fluid grout diffuses in a semi-spherical shape in the gravel. Additionally, parallel electrical resistance imaging can analyze the diffusion range of the grout in the gravel. The diffusion radius of the Bingham fluid grout in the gravel is smaller than the diffusion radius obtained by considering the particle size distribution theory, with an average difference of 31.8%. Compared to the diffusion radius obtained without considering the particle size distribution theory, the diffusion radius obtained by considering the distribution of pore sizes is closer to the experimental results. The numerically simulated program, which was developed for this study, can effectively simulate the diffusion law of the Bingham fluid in the gravel. So far, the Bingham fluid seepage grouting model considering the different particle size distribution of porous media has been built. The findings of this study can provide theoretical support and technical reference for practical grouting projects. Full article
(This article belongs to the Special Issue Mechanics, Damage Properties and Impacts of Coal Mining)
Show Figures

Figure 1

13 pages, 7630 KB  
Article
Assessment of New Bio-Cement Method for Sand Foundation Reinforcement
by Jinzheng Sun, Zhichao Song, Rongzheng Zhang, Danyi Shen and Chuangzhou Wu
Sustainability 2023, 15(12), 9432; https://doi.org/10.3390/su15129432 - 12 Jun 2023
Cited by 3 | Viewed by 2813
Abstract
Microbially induced carbonate precipitation (MICP) is a new method used in recent years to improve the soil. However, this method still faces challenges related to low grouting reinforcement strength and efficiency. In this study, both the bio-cement infiltration method and bio-cement mixed method [...] Read more.
Microbially induced carbonate precipitation (MICP) is a new method used in recent years to improve the soil. However, this method still faces challenges related to low grouting reinforcement strength and efficiency. In this study, both the bio-cement infiltration method and bio-cement mixed method for sand foundation were proposed, and physical model tests were conducted to investigate the mechanical properties of sand treated with the bio-cement method. The results showed that the bio-cement maximized the utilization rate of bacterial liquid and reduced the waste caused by the loss of bacteria compared with traditional methods. Both the size of the reinforced area and bearing capacity of the sand reinforced by bio-cement infiltration method were controlled by the volume ratio of the bio-cement, calcareous sand powder, and the inflow rate. The maximum bearing capacity was 125 N when using a mixture of bio-cement and calcareous sand powder with a ratio of 400/80, with an inflow rate of 20 mL/min. The UCS of the sand reinforced by the bio-cement mixed method gradually decreased from 3.44 MPa to 0.88 MPa with depth, but increased with increasing CaCO3 content. The CaCO3 crystals were primarily concentrated at the contact point between the particles, and the formed crystals were mainly polyhedral. Reduction in the CaCO3 content mainly occurred in the central deep part of the reinforcement area. The result provides an experimental basis for the use of bio-cement in the reinforcement of sand soil foundations. Full article
Show Figures

Figure 1

Back to TopTop