Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,375)

Search Parameters:
Keywords = infection spreading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6966 KiB  
Article
A Concise Grid-Based Model Revealing the Temporal Dynamics in Indoor Infection Risk
by Pengcheng Zhao and Xiaohong Zheng
Buildings 2025, 15(15), 2786; https://doi.org/10.3390/buildings15152786 - 6 Aug 2025
Abstract
Determining the transmission routes of pathogens in indoor environments is challenging, with most studies limited to specific case analyses and pilot experiments. When pathogens are instantaneously released by a patient in an indoor environment, the peak infection risk may not occur immediately but [...] Read more.
Determining the transmission routes of pathogens in indoor environments is challenging, with most studies limited to specific case analyses and pilot experiments. When pathogens are instantaneously released by a patient in an indoor environment, the peak infection risk may not occur immediately but may instead appear at a specific moment during the pathogen’s spread. We developed a concise model to describe the temporal crest of infection risk. The model incorporates the transmission and degradation characteristics of aerosols and surface particles to predict infection risks via air and surface routes. Only four real-world outbreaks met the criteria for validating this phenomenon. Based on the available data, norovirus is likely to transmit primarily via surface touch (i.e., the fomite route). In contrast, crests of infection risk were not observed in outbreaks of respiratory diseases (e.g., SARS-CoV-2), suggesting a minimal probability of surface transmission in such cases. The new model can serve as a preliminary indicator for identifying different indoor pathogen transmission routes (e.g., food, air, or fomite). Further analyses of pathogens’ transmission routes require additional evidence. Full article
(This article belongs to the Special Issue Development of Indoor Environment Comfort)
Show Figures

Figure 1

24 pages, 3149 KiB  
Article
Evaluation of Aggregate Oral Fluid Sampling for Early Detection of African Swine Fever Virus Infection
by Bonto Faburay, Kathleen O’Hara, Marta Remmenga, Theophilus Odoom, Sherry Johnson, William Tasiame, Matilda Ayim-Akonor, Benita Anderson, Kingsley Kwabena Amoako, Diane Holder, Wu Ping, Michelle Zajac, Vivian O’Donnell, Lizhe Xu, Robin Holland, Corrie Brown, Randall Levings and Suelee Robbe-Austerman
Viruses 2025, 17(8), 1089; https://doi.org/10.3390/v17081089 - 6 Aug 2025
Abstract
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large [...] Read more.
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large numbers of pigs, and sampling individual pigs, which represents the main strategy for current ASF surveillance, can be both costly and labor intensive. A study performed in Ghana was designed to estimate the diagnostic sensitivity of pen-based aggregate oral fluid testing for ASFV in infected pigs in a pen of 30 animals and to evaluate its utility as a tool to support surveillance of ASF in the US. This study was performed in three phases: (i) virus (Ghana ASFV24) amplification in a target host species to generate the challenge inoculum; (ii) titration of the inoculum (10% spleen homogenate) in target host species to determine the minimum dose inducing acute ASF in pigs with survival up to 5–6 days post-inoculation (dpi); and (iii) the main study, involving 186 pigs, consisting of 6 replicates of 30 pigs per pen and one seeder pig inoculated with wildtype ASFV (highly virulent genotype II) per pen. Daily sampling of aggregate oral fluids, uncoagulated blood, oropharyngeal swabs, fecal and water nipple swabs, and recording of rectal temperatures and clinical observations was carried out. The seeder pigs were each inoculated intramuscularly with 0.5 mL of the 10% spleen homogenate, which induced the desired clinical course of ASF in the pigs, with survival of up to 6 dpi. ASFV DNA was detected in the seeder pigs as early as 1 dpi and 2 dpi in the blood and oropharyngeal swabs, respectively. Transmission of ASFV from the seeder pigs to the contact pig population was detected via positive amplification of ASFV DNA in aggregate oral fluid samples at 3 days post-contact (dpc) in 4 out of 6 pens, and in all 6 pens, at 4 dpc. Testing of oropharyngeal swabs and blood samples from individual pigs revealed a variable number of ASFV-positive pigs between 3 and 5 dpc, with detection of 100% positivity between 6 and 18 dpc, the study endpoint. These findings demonstrate the potential utility of aggregate oral fluid sampling for sensitive and early detection of ASFV incursion into naïve swine herds. It also demonstrates that testing of environmental samples from the premises could further enhance overall ASF early detection and surveillance strategies. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

9 pages, 508 KiB  
Case Report
Scrofuloderma, An Old Acquaintance: A Case Report and Literature Review
by Heiler Lozada-Ramos and Jorge Enrique Daza-Arana
Infect. Dis. Rep. 2025, 17(4), 96; https://doi.org/10.3390/idr17040096 (registering DOI) - 6 Aug 2025
Abstract
Scrofuloderma, a cutaneous manifestation of tuberculosis, is a rare but clinically significant form of mycobacterial infection. It typically results from the local spread of Mycobacterium tuberculosis from an infected lymph node or bone area to the overlying skin. This disease is mainly characterized [...] Read more.
Scrofuloderma, a cutaneous manifestation of tuberculosis, is a rare but clinically significant form of mycobacterial infection. It typically results from the local spread of Mycobacterium tuberculosis from an infected lymph node or bone area to the overlying skin. This disease is mainly characterized by chronic granulomatous inflammation, leading to skin ulcers and abscesses. Due to its nonspecific clinical presentation, scrofuloderma can mimic various dermatological conditions, making its diagnosis particularly challenging. This case report presents the clinical course of a patient who was positive for the Human Immunodeficiency Virus (HIV) with a diagnosis of scrofuloderma, managed at a tertiary healthcare center, with follow-up before and after treatment. A literature review was also made, highlighting the importance of maintaining a high index of clinical suspicion and utilizing appropriate diagnostic methods to ensure timely diagnosis. Full article
(This article belongs to the Section Tuberculosis and Mycobacteriosis)
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

13 pages, 2127 KiB  
Article
Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
by Dakai Liu, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, Bright Varghese, Mingyu Shao, Gary Chen, Andrew Schreiner, Jiankun Tong, Carl Urban, Nishant Prasad, Ameer Hassoun, Manish Sharma and William Harry Rodgers
Microorganisms 2025, 13(8), 1821; https://doi.org/10.3390/microorganisms13081821 - 4 Aug 2025
Abstract
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral [...] Read more.
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral lineages. The isolates analyzed for rare mutations belonged to three lineages: B.1.1.7 (Alpha), B.1.526 (Iota), and B.1.623. We identified 16 rare mutations (global incidence <1000) in non-structural protein genes, including nsp2, nsp3, nsp4, nsp6, nsp8, nsp13, nsp14, ORF7a, and ORF8. Three of these mutations—located in nsp2, nsp13, and ORF8—have been reported in fewer than 100 individuals worldwide. We also detected five rare mutations in structural proteins (S, M, and N), including two—one in M and one in N—previously reported in fewer than 100 cases globally. We present clinical profiles of three patients, each infected with genetically distinct viral isolates from the three lineages studied. Furthermore, we illustrate a local transmission chain inferred from unique mutation patterns identified in the Omicron genome. These findings underscore the importance of whole-genome sequencing for detecting rare mutations, tracking community spread, and identifying emerging variants with clinical and public health significance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 1942 KiB  
Article
Surveillance and Characterization of Vancomycin-Resistant and Vancomycin-Variable Enterococci in a Hospital Setting
by Claudia Rotondo, Valentina Antonelli, Alberto Rossi, Silvia D’Arezzo, Marina Selleri, Michele Properzi, Silvia Turco, Giovanni Chillemi, Valentina Dimartino, Carolina Venditti, Sara Guerci, Paola Gallì, Carla Nisii, Alessia Arcangeli, Emanuela Caraffa, Stefania Cicalini and Carla Fontana
Antibiotics 2025, 14(8), 795; https://doi.org/10.3390/antibiotics14080795 - 4 Aug 2025
Abstract
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple [...] Read more.
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple antibiotics. Methods: We conducted a point prevalence survey (PPS) to assess the prevalence of VRE and VVE colonization in hospitalized patients. Rectal swabs were collected from 160 patients and analyzed using molecular assays (MAs) and culture. Whole-genome sequencing (WGS) and core-genome multilocus sequence typing (cgMLST) were performed to identify the genetic diversity. Results: Of the 160 rectal swabs collected, 54 (33.7%) tested positive for the vanA and/or vanB genes. Culture-based methods identified 47 positive samples (29.3%); of these, 44 isolates were identified as E. faecium and 3 as E. faecalis. Based on the resistance profiles, 35 isolates (74.5%) were classified as VRE, while 12 (25.5%) were classified as VVE. WGS and cgMLST analyses identified seven clusters of E. faecium, with sequence type (ST) 80 being the most prevalent. Various resistance genes and virulence factors were identified, and this study also highlighted intra- and inter-ward transmission of VRE strains. Conclusions: Our findings underscore the potential for virulence and resistance of both the VRE and VVE strains, and they highlight the importance of effective infection control measures to prevent their spread. VVE in particular should be carefully monitored as they often escape detection. Integrating molecular data with clinical information will hopefully enhance our ability to predict and prevent future VRE infections. Full article
(This article belongs to the Special Issue Hospital-Associated Infectious Diseases and Antibiotic Therapy)
Show Figures

Figure 1

19 pages, 349 KiB  
Review
Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticusAcinetobacter baumannii Complex
by Teodora Vasileva Marinova-Bulgaranova, Hristina Yotova Hitkova and Nikolay Kirilov Balgaranov
Microorganisms 2025, 13(8), 1819; https://doi.org/10.3390/microorganisms13081819 - 4 Aug 2025
Abstract
Acinetobacter baumannii is one of the most challenging nosocomial pathogens associated with a variety of hospital infections, such as ventilator-associated pneumonia, wound and urinary tract infections, meningitis, and sepsis, primarily in patients treated in critical care settings. Its classification as a high-priority pathogen [...] Read more.
Acinetobacter baumannii is one of the most challenging nosocomial pathogens associated with a variety of hospital infections, such as ventilator-associated pneumonia, wound and urinary tract infections, meningitis, and sepsis, primarily in patients treated in critical care settings. Its classification as a high-priority pathogen is due to the emergence of multidrug-resistant strains in healthcare environments and its tendency to spread clonally. A. baumannii belongs to the Acinetobacter calcoaceticusAcinetobacter baumannii (Acb) complex, a group of genotypically and phenotypically similar species. Differentiating between the species is important because of their distinct clinical significance. However, conventional phenotypic methods, both manual and automated, often fail to provide accurate species-level identification. This review aims to summarize current phenotypic and genotypic methods for the identification of species within the Acb complex, evaluating their strengths and limitations to offer guidance for their appropriate application in diagnostic settings and epidemiological investigations. Full article
13 pages, 1412 KiB  
Article
Person-to-Person Transmission During a Norovirus Outbreak in a Korean Kindergarten: A Retrospective Cohort Study
by Yongho Park, Hyelim Jang, Jieun Jang and Ji-Hyuk Park
Children 2025, 12(8), 1027; https://doi.org/10.3390/children12081027 - 4 Aug 2025
Abstract
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the [...] Read more.
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the infection and prevent further spread. Methods: Rectal swab and environmental samples were collected for bacterial and viral testing. A retrospective cohort study was conducted among 114 kindergarteners at the kindergarten. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated to assess associations of contact with the primary case, as well as food and water consumption. Results: Of the kindergarteners, 28 out of 114 (24.6%) met the case definition. The primary case occurred on 19 October, and subsequent cases began on 21 October. Sharing the same four-year-old class as the primary case (RR, 2.56; 95% CI, 1.35–4.87), being in the same regular class (RR, 2.37; 95% CI, 1.27–4.41), being on the same floor during after-school class (RR, 3.49; 95% CI, 1.74–7.00), and attending the same English class (RR, 1.98; 95% CI, 1.05–3.72) were statistically significant. Consumption of drinking water on the third floor and fourth floor on 20 October had significantly higher and lower RRs, respectively. Norovirus was detected in 9 out of 18 rectal swab samples (50.0%). Conclusions: This norovirus outbreak at the kindergarten was presumed to have been caused by person-to-person transmission from the primary case. Isolation and restriction of symptomatic children in kindergartens should be thoroughly implemented. Additionally, enhanced surveillance among family members of affected individuals is necessary to prevent further outbreaks. Full article
(This article belongs to the Section Pediatric Infectious Diseases)
Show Figures

15 pages, 1216 KiB  
Article
Mathematical Modeling of Regional Infectious Disease Dynamics Based on Extended Compartmental Models
by Olena Kiseleva, Sergiy Yakovlev, Olga Prytomanova and Oleksandr Kuzenkov
Computation 2025, 13(8), 187; https://doi.org/10.3390/computation13080187 - 4 Aug 2025
Viewed by 15
Abstract
This study presents an extended approach to compartmental modeling of infectious disease spread, focusing on regional heterogeneity within affected areas. Using classical SIS, SIR, and SEIR frameworks, we simulate the dynamics of COVID-19 across two major regions of Ukraine—Dnipropetrovsk and Kharkiv—during the period [...] Read more.
This study presents an extended approach to compartmental modeling of infectious disease spread, focusing on regional heterogeneity within affected areas. Using classical SIS, SIR, and SEIR frameworks, we simulate the dynamics of COVID-19 across two major regions of Ukraine—Dnipropetrovsk and Kharkiv—during the period 2020–2024. The proposed mathematical model incorporates regionally distributed subpopulations and applies a system of differential equations solved using the classical fourth-order Runge–Kutta method. The simulations are validated against real-world epidemiological data from national and international sources. The SEIR model demonstrated superior performance, achieving maximum relative errors of 4.81% and 5.60% in the Kharkiv and Dnipropetrovsk regions, respectively, outperforming the SIS and SIR models. Despite limited mobility and social contact data, the regionally adapted models achieved acceptable accuracy for medium-term forecasting. This validates the practical applicability of extended compartmental models in public health planning, particularly in settings with constrained data availability. The results further support the use of these models for estimating critical epidemiological indicators such as infection peaks and hospital resource demands. The proposed framework offers a scalable and computationally efficient tool for regional epidemic forecasting, with potential applications to future outbreaks in geographically heterogeneous environments. Full article
Show Figures

Figure 1

22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 - 3 Aug 2025
Viewed by 184
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

11 pages, 715 KiB  
Article
One Health Approach to Trypanosoma cruzi: Serological and Molecular Detection in Owners and Dogs Living on Oceanic Islands and Seashore Mainland of Southern Brazil
by Júlia Iracema Moura Pacheco, Louise Bach Kmetiuk, Melissa Farias, Gustavo Gonçalves, Aaronson Ramathan Freitas, Leandro Meneguelli Biondo, Cristielin Alves de Paula, Ruana Renostro Delai, Cláudia Turra Pimpão, João Henrique Perotta, Rogério Giuffrida, Vamilton Alvares Santarém, Helio Langoni, Fabiano Borges Figueiredo, Alexander Welker Biondo and Ivan Roque de Barros Filho
Trop. Med. Infect. Dis. 2025, 10(8), 220; https://doi.org/10.3390/tropicalmed10080220 - 2 Aug 2025
Viewed by 241
Abstract
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to [...] Read more.
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to detect anti-T. cruzi antibodies, while dog serum samples were tested using indirect fluorescent antibodies in an immunofluorescence assay (IFA). Seropositive human and dog individuals were also tested using quantitative polymerase chain reaction (qPCR) in corresponding blood samples. Overall, 2/304 (0.6%) human and 1/292 dog samples tested seropositive for T. cruzi by ELISA and IFA, respectively, and these cases were also molecularly positive for T. cruzi by qPCR. Although a relatively low positivity rate was observed herein, these cases were likely autochthonous, and the individuals may have been infected as a consequence of isolated events of disturbance in the natural peridomicile areas nearby. Such a disturbance could come in the form of a fire or deforestation event, which can cause stress and parasitemia in wild reservoirs and, consequently, lead to positive triatomines. In conclusion, T. cruzi monitoring should always be conducted in suspicious areas to ensure a Chagas disease-free status over time. Further studies should also consider entomological and wildlife surveillance to fully capture the transmission and spread of T. cruzi on islands and in seashore mainland areas of Brazil and other endemic countries. Full article
(This article belongs to the Section One Health)
Show Figures

Figure 1

13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Viewed by 285
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

24 pages, 3110 KiB  
Article
Coupling Individual Psychological Security and Information for Modeling the Spread of Infectious Diseases
by Na Li, Jianlin Zhou, Haiyan Liu and Xikai Wang
Systems 2025, 13(8), 637; https://doi.org/10.3390/systems13080637 - 1 Aug 2025
Viewed by 96
Abstract
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological [...] Read more.
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological security due to public information and external environmental changes—on the spread to infectious diseases, the model will place greater emphasis on quantifying psychological factors to make it more aligned with real-world situations. Methods: To better understand the interplay between information dissemination and disease transmission, we propose a two-layer network model that incorporates psychological safety factors. Results: Our model reveals key insights into disease transmission dynamics: (1) active defense behaviors help reduce both disease spread and information diffusion; (2) passive resistance behaviors expand disease transmission and may trigger recurrence but enhance information spread; (3) high-timeliness, low-fuzziness information reduces the peak of the initial infection but does not significantly curb overall disease spread, and the rapid dissemination of disease-related information is most effective in limiting the early stages of transmission; and (4) community structures in information networks can effectively curb the spread of infectious diseases. Conclusions: These findings offer valuable theoretical support for public health strategies and disease prevention after government information release. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

Back to TopTop