Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,328)

Search Parameters:
Keywords = industry cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 355 KiB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 (registering DOI) - 6 Aug 2025
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
15 pages, 12180 KiB  
Article
CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance
by Xinghan An, Liang Huang and Li Yang
Molecules 2025, 30(15), 3290; https://doi.org/10.3390/molecules30153290 - 6 Aug 2025
Abstract
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate [...] Read more.
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate CaO/CaAl-layered double oxide (LDO) composites was developed, where CaAl-LDO serves as a nanostructural stabilizer. The CaAl-LDO precursor enables atomic-level dispersion of components, which upon calcination forms a Ca12Al14O33 “rigid scaffold” that spatially confines CaO nanoparticles and effectively mitigates sintering. Thermogravimetric analysis results demonstrate exceptional cyclic stability; the composite achieves an initial CO2 uptake of 14.5 mmol/g (81.5% of theoretical capacity) and retains 87% of its capacity after 30 cycles. This performance significantly outperforms pure CaO and CaO/MgAl-LDO composites. Physicochemical characterization confirms that structural confinement preserves mesoporous channels, ensuring efficient CO2 diffusion. This work establishes a scalable, instrumentally simple route to high-performance sorbents, offering an efficient solution for carbon capture in energy-intensive industries such as power generation and steel manufacturing. Full article
(This article belongs to the Special Issue Progress in CO2 Storage Materials)
Show Figures

Figure 1

32 pages, 1256 KiB  
Article
Bridging Interoperability Gaps Between LCA and BIM: Analysis of Limitations for the Integration of EPD Data in IFC
by Aitor Aragón, Paulius Spudys, Darius Pupeikis, Óscar Nieto and Marcos Garcia Alberti
Buildings 2025, 15(15), 2760; https://doi.org/10.3390/buildings15152760 - 5 Aug 2025
Abstract
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product [...] Read more.
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product declarations (EPDs) to BIM for the purpose of sustainability assessment requires significant resources for its interpretation and integration. This study is founded on a comprehensive review of the scientific literature and standards, an analysis of published digital EPDs, and a thorough evaluation of IFC (industry foundation classes), identifying twenty gaps for the automated incorporation of LCA data from construction products into BIM. The identified limitations were assessed using the digital model of a building pilot, applying simplifications to incorporate actual EPD data. This paper presents the identified barriers to the automated incorporation of digital EPDs into BIM, and proposes eleven concrete actions to improve IFC 4.3. While prior studies have analyzed the environmental data in IFC, this research is significant in two key areas. Firstly, it focuses on the direct machine interpretation of environmental information without human intervention. Secondly, it is intended to be directly applicable to a revision of the IFC standards. Full article
(This article belongs to the Special Issue Research on BIM—Integrated Construction Operation Simulation)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 2559 KiB  
Review
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
by Debalina Bose, Adetayo Olorunlana, Rania Abdel-Latif, Ademola C. Famurewa and Eman M. Othman
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Abstract
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty [...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge. Full article
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

9 pages, 281 KiB  
Article
Decolourisation of a Mixture of Dyes from Different Classes Using a Bioreactor with Immobilised Pleurotus ostreatus Mycelium
by Wioletta Przystaś
Water 2025, 17(15), 2314; https://doi.org/10.3390/w17152314 - 4 Aug 2025
Viewed by 42
Abstract
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim [...] Read more.
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim of the research was to determine the possibility of using the immobilised mycelium of Pleurotus ostreatus strains to remove three-component mixtures of dyes from different classes. Efficiency of the removal in the continuously aerated reactor was similar to that obtained in a periodically aerated reactor and was over 90% at the end of each cycle. Despite the addition of subsequent portions of dyes, no increase in the toxicity of post-process samples was observed, and even a decrease in zootoxicity was noticed. The results of the study therefore indicate that an immobilised biomass can be used to remove the dyes, without the need to constantly inject air into the reactor. Full article
Show Figures

Graphical abstract

24 pages, 5000 KiB  
Article
A Study of Methylene Blue Adsorption by a Synergistic Adsorbent Algae (Nostoc sphaericum)/Activated Clay
by Yakov Felipe Carhuarupay-Molleda, Noemí Melisa Ccasa Barboza, Sofía Pastor-Mina, Carlos Eduardo Dueñas Valcarcel, Ybar G. Palomino-Malpartida, Rolando Licapa Redolfo, Antonieta Mojo-Quisani, Miriam Calla-Florez, Rolando F. Aguilar-Salazar, Yovana Flores-Ccorisapra, Arturo Rojas Benites, Edward Arostegui León, David Choque-Quispe and Frida E. Fuentes Bernedo
Polymers 2025, 17(15), 2134; https://doi.org/10.3390/polym17152134 - 4 Aug 2025
Viewed by 116
Abstract
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was [...] Read more.
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was obtained by acid treatment, followed by activation with 1 M NaCl and sonication, while ANS was obtained by microatomization in an aqueous medium. NC/ANS was mixed in a 4:1 weight ratio. The NC/ANS synergistic adsorbent was characterized by the point of zero charge (PZC), zeta potential (ζ), particle size, FTIR spectroscopy, and scanning electron microscopy (SEM). NC/ANS exhibited good colloidal stability, as determined by pHPZC, particle size in the nanometer range, and heterogeneous morphology with functional groups (hydroxyl, carboxyl, and amide), removing between 72.59 and 97.98% from an initial concentration of 10 ppm of MB, for doses of 20 to 30 mg/L of NC/ANS and pH of 5 to 8. Optimal adsorption conditions are achieved at pH 6.8 and 32.9 mg/L of adsorbent NC/ANS. It was observed that the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models best described the adsorption kinetics, indicating a predominance of the physisorption process, with adsorption capacity around 20 mg/g. Isotherm models and thermodynamic parameters of adsorption, ΔS, ΔH, and ΔG, revealed that the adsorption process is spontaneous, favorable, thermodynamically stable, and occurs at the monolayer level, with a regeneration capacity of 90.35 to 37.54% at the fifth cycle. The application of physical activation methods, such as sonication of the clay and microatomization of the algae, allows proposing a novel and alternative synergistic material from organic and inorganic sources that is environmentally friendly and promotes sustainability, with a high capacity to remove cationic dyes in wastewater. Full article
Show Figures

Figure 1

20 pages, 1639 KiB  
Case Report
The Power of Preventive Protection: Effects of Vaccination Strategies on Furunculosis Resistance in Large-Scale Aquaculture of Maraena Whitefish
by Kerstin Böttcher, Peter Luft, Uwe Schönfeld, Stephanie Speck, Tim Gottschalk and Alexander Rebl
Fishes 2025, 10(8), 374; https://doi.org/10.3390/fishes10080374 - 4 Aug 2025
Viewed by 148
Abstract
Furunculosis caused by Aeromonas salmonicida poses a significant challenge to the sustainable production of maraena whitefish (Coregonus maraena). This case report outlines a multi-year disease management strategy at a European whitefish facility with two production departments, each specialising in different life-cycle [...] Read more.
Furunculosis caused by Aeromonas salmonicida poses a significant challenge to the sustainable production of maraena whitefish (Coregonus maraena). This case report outlines a multi-year disease management strategy at a European whitefish facility with two production departments, each specialising in different life-cycle stages. Recurrent outbreaks of A. salmonicida necessitated the development of effective vaccination protocols. Herd-specific immersion vaccines failed to confer protection, while injectable formulations with plant-based adjuvants caused severe adverse reactions and mortality rates exceeding 30%. In contrast, the bivalent vaccine Alpha Ject 3000, containing inactivated A. salmonicida and Vibrio anguillarum with a mineral oil adjuvant, yielded high tolerability and durable protection in over one million whitefish. Post-vaccination mortality remained low (3.3%), aligning with industry benchmarks, and furunculosis-related losses were fully prevented in both departments. Transcriptomic profiling of immune-relevant tissues revealed distinct gene expression signatures depending on vaccine type and time post-vaccination. Both the herd-specific vaccine and Alpha Ject 3000 induced the expression of immunoglobulin and inflammatory markers in the spleen, contrasted by reduced immunoglobulin transcript levels in the gills and head kidney together with the downregulated expression of B-cell markers. These results demonstrate that an optimised injectable vaccination strategy can significantly improve health outcomes and disease resilience in maraena whitefish aquaculture. Full article
(This article belongs to the Special Issue Fish Pathogens and Vaccines in Aquaculture)
Show Figures

Graphical abstract

22 pages, 5939 KiB  
Article
Single-Nucleus Transcriptome Sequencing Unravels Physiological Differences in Holstein Cows Under Different Physiological States
by Peipei Li, Yaqiang Guo, Yanchun Bao, Caixia Shi, Lin Zhu, Mingjuan Gu, Risu Na and Wenguang Zhang
Genes 2025, 16(8), 931; https://doi.org/10.3390/genes16080931 (registering DOI) - 3 Aug 2025
Viewed by 88
Abstract
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk [...] Read more.
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk yield and excellent milk quality. However, their reproductive efficiency is comprehensively influenced by a variety of complex factors, and improving their reproductive performance faces numerous challenges. The ovary, as the core organ of the female reproductive system, plays a decisive role in embryonic development and pregnancy maintenance. It is not only the site where eggs are produced and developed but it also regulates the cow’s estrous cycle, ovulation process, and the establishment and maintenance of pregnancy by secreting various hormones. The normal functioning of the ovary is crucial for the smooth development of the embryo and the successful maintenance of pregnancy. Methods: Currently, traditional sequencing technologies have obvious limitations in deciphering ovarian function and reproductive regulatory mechanisms. To overcome the bottlenecks of traditional sequencing technologies, this study selected Holstein cows as the research subjects. Ovarian samples were collected from one pregnant and one non-pregnant Holstein cow, and single-nucleus transcriptome sequencing technology was used to conduct an in-depth study on the ovarian cells of Holstein cows. Results: By constructing a cell type-specific molecular atlas of the ovaries, nine different cell types were successfully identified. This study compared the proportions of ovarian cell types under different physiological states and found that the proportion of endothelial cells decreased during pregnancy, while the proportions of granulosa cells and luteal cells increased significantly. In terms of functional enrichment analysis, oocytes during both pregnancy and non-pregnancy play roles in the “cell cycle” and “homologous recombination” pathways. However, non-pregnant oocytes are also involved in the “progesterone-mediated oocyte maturation” pathway. Luteal cells during pregnancy mainly function in the “cortisol synthesis and secretion” and “ovarian steroidogenesis” pathways; non-pregnant luteal cells are mainly enriched in pathway processes such as the “AMPK signaling pathway”, “pyrimidine metabolism”, and “nucleotide metabolism”. Cell communication analysis reveals that there are 51 signaling pathways involved in the pregnant ovary, with endothelial cells, granulosa cells, and luteal cells serving as the core communication hubs. In the non-pregnant ovary, there are 48 pathways, and the interaction between endothelial cells and stromal cells is the dominant mode. Conclusions: This study provides new insights into the regulatory mechanisms of reproductive efficiency in Holstein cows. The differences in the proportions of ovarian cell types, functional pathways, and cell communication patterns under different physiological states, especially the increase in the proportions of granulosa cells and luteal cells during pregnancy and the specificity of related functional pathways, indicate that these cells play a crucial role in the reproductive process of cows. These findings also highlight the importance of ovarian cells in pathways such as “cell cycle”, “homologous recombination”, and “progesterone-mediated oocyte maturation”, as well as the cell communication mechanisms in regulating ovarian function and reproductive performance. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 261
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

22 pages, 1288 KiB  
Article
How Multicriteria Environmental Assessment Alters Sustainability Rankings: Case Study of Hempcrete and Prefabricated Walls
by Tinkara Ošlovnik and Matjaž Denac
Sustainability 2025, 17(15), 7032; https://doi.org/10.3390/su17157032 - 2 Aug 2025
Viewed by 174
Abstract
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been [...] Read more.
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been preferential in comparison to other traditional building materials due to its lower global warming impact. Claims regarding the environmental benefits of hemp-containing construction materials based on the single impact category could be misleading; therefore, life cycle assessment (LCA) studies including multiple environmental indicators should be implemented. This study aims to compare two alternative wall designs regarding their environmental impacts. The comparative LCA study for hempcrete and prefabricated walls used in residential buildings was assessed using IPCC and ReCiPe life cycle impact assessment methods. The study highlighted a significant discrepancy depending on the number of environmental indicators considered, as well as between characterised and weighted LCA results. A hempcrete wall was recognised as a slightly (13.63%) better alternative when assessed by the single-issue IPCC method, while its total burden assessed by the ReCiPe method was recognised to be significantly (2.78 times) higher. Based on the results from this case study, regulators could re-evaluate the appropriateness of reporting LCA results solely on the midpoint level, particularly when limited to a single impact indicator, while producers in the construction sector should recognise the threat of greenwashing when reporting using a single impact indicator only. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 229
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 167
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

Back to TopTop