Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,200)

Search Parameters:
Keywords = industrial motors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 27
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 - 1 Aug 2025
Viewed by 161
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

21 pages, 9715 KiB  
Article
Fault-Tolerant Control of Non-Phase-Shifted Dual Three-Phase PMSM Joint Motor for Open Phase Fault with Minimized Copper Loss and Reduced Torque Ripple
by Xian Luo, Guangyu Pu, Wenhao Han, Huaqi Li and Hanlin Zhan
Energies 2025, 18(15), 4020; https://doi.org/10.3390/en18154020 - 28 Jul 2025
Viewed by 254
Abstract
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control [...] Read more.
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control method with improved fault-tolerant performance. In this paper, a novel fault-tolerant control (FTC) method for NPSDTP-PMSM is proposed, which concurrently simultaneously reduces copper loss and suppresses torque ripple under single and dual open phase fault. Firstly, the mathematical model of NPSDTP-PMSM is established, where the ZSC self-suppressing mechanism is revealed. Based on which, investigations on open phase fault and the copper loss characteristics for NPSDTP-PMSM are conducted. Subsequently, a novel fault-tolerant control method is proposed for NPSDTP-PMSM, where the torque ripple is reduced by mutual cancellation of harmonic torques from two winding sets and minimized copper loss is achieved based on the convex characteristic of copper loss. Experimental validation on an integrated robotic joint motor platform confirms the effectiveness of the proposed method. Full article
Show Figures

Figure 1

40 pages, 6766 KiB  
Review
Advances in Structural Reliability Analysis of Solid Propellant Grain: A Comprehensive Review
by Chenghu Tang, Hongfu Qiang, Tingjing Geng, Xueren Wang and Feng Zhang
Polymers 2025, 17(15), 2039; https://doi.org/10.3390/polym17152039 - 26 Jul 2025
Viewed by 241
Abstract
Solid propellant grain, as a typical polymer, are the thrust generation devices and core load-bearing components of solid rocket motor (SRM) and are also known as SRM grain. They are constantly exposed to extreme service environments such as high temperatures, high pressures, and [...] Read more.
Solid propellant grain, as a typical polymer, are the thrust generation devices and core load-bearing components of solid rocket motor (SRM) and are also known as SRM grain. They are constantly exposed to extreme service environments such as high temperatures, high pressures, and dynamic shocks, and have a relatively high failure rate in the field use of SRM. Its life and reliability are the shortcomings that restrict the improvement of weapons and equipment capability in China at present. This paper summarizes the typical fault types of SRM grain at present, and compares and analyzes the research progress of reliability design and analysis technology, reliability optimization technology, life test technology and reliability evaluation technology of SRM grain at home and abroad; This paper analyzes the deficiencies and reasons in the research and application of SRM grain reliability technology in China, and points out the technical difficulties and challenges faced by the integrated design of performance and reliability of SRM independent innovation design according to the needs of the forward research and development system of SRM. Based on the existing design level and industrial foundation in China, the basic research suggestions that should be carried out to consolidate the design ability of SRM grain in China are given. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 4576 KiB  
Article
Detection, Isolation, and Identification of Multiplicative Faults in a DC Motor and Amplifier Using Parameter Estimation Techniques
by Sanja Antić, Marko Rosić, Branko Koprivica, Alenka Milovanović and Milentije Luković
Appl. Sci. 2025, 15(15), 8322; https://doi.org/10.3390/app15158322 - 26 Jul 2025
Viewed by 209
Abstract
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic [...] Read more.
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic amplifier. To simulate such scenarios, a complete laboratory platform was developed for real-time FDII, using relay-based switching and custom LabVIEW software 2009. This platform enables real-time experimentation and represents an important component of the study. Two estimation-based fault detection (FD) algorithms were implemented: the Sliding Window Algorithm (SWA) for discrete-time models and a modified Sliding Integral Algorithm (SIA) for continuous-time models. The modification introduced to the SIA limits the data length used in least squares estimation, thereby reducing the impact of transient effects on parameter accuracy. Both algorithms achieved high model output-to-measured signal agreement, up to 98.6% under nominal conditions and above 95% during almost all fault scenarios. Moreover, the proposed fault isolation and identification methods, including a decision algorithm and an indirect estimation approach, successfully isolated and identified faults in key components such as amplifier resistors (R1, R9, R12), capacitor (C8), and motor parameters, including armature resistance (Ra), inertia (J), and friction coefficient (B). The decision algorithm, based on continuous-time model coefficients, demonstrated reliable fault isolation and identification, while the reduced Jacobian-based approach in the discrete model enhanced fault magnitude estimation, with deviations typically below 10%. Additionally, the platform supports remote experimentation, offering a valuable resource for advancing model-based FDII research and engineering education. Full article
Show Figures

Figure 1

18 pages, 1729 KiB  
Article
Research on Monitoring and Control Systems for Belt Conveyor Electric Drives
by Yuriy Kozhubaev, Diana Novak, Viktor Karpukhin, Roman Ershov and Haodong Cheng
Automation 2025, 6(3), 34; https://doi.org/10.3390/automation6030034 - 23 Jul 2025
Viewed by 273
Abstract
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. [...] Read more.
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. This paper introduces an integrated control approach combining vector control methodology with active disturbance rejection control (ADRC) for velocity regulation and model predictive control (MPC) for current tracking. The ADRC framework actively compensates for load disturbances and parameter variations during speed control, while MPC achieves precise current regulation with minimal tracking error. Validation involved comprehensive MATLAB/Simulink R2024a simulations modeling PMSM behavior under mining-specific operating conditions. The results demonstrate substantial improvements in dynamic response characteristics and disturbance rejection capabilities compared to conventional control strategies. The proposed methodology effectively addresses critical challenges in mining conveyor applications, enhancing operational reliability and system longevity. Full article
Show Figures

Figure 1

36 pages, 9902 KiB  
Article
Digital-Twin-Enabled Process Monitoring for a Robotic Additive Manufacturing Cell Using Wire-Based Laser Metal Deposition
by Alberto José Alvares, Efrain Rodriguez and Brayan Figueroa
Processes 2025, 13(8), 2335; https://doi.org/10.3390/pr13082335 - 23 Jul 2025
Viewed by 360
Abstract
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs [...] Read more.
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs in robotic metal additive manufacturing (AM) remains challenging because of the complexity of the wire-based laser metal deposition (LMD) process, the need for real-time monitoring, and the demand for advanced defect detection to ensure high-quality prints. This work proposes a structured DT architecture for a robotic wire-based LMD cell, following a standard framework. Three DT implementations were developed. First, a real-time 3D simulation in RoboDK, integrated with a 2D Node-RED dashboard, enabled motion validation and live process monitoring via MQTT (message queuing telemetry transport) telemetry, minimizing toolpath errors and collisions. Second, an Industrial IoT-based system using KUKA iiQoT (Industrial Internet of Things Quality of Things) facilitated predictive maintenance by analyzing motor loads, joint temperatures, and energy consumption, allowing early anomaly detection and reducing unplanned downtime. Third, the Meltio dashboard provided real-time insights into the laser temperature, wire tension, and deposition accuracy, ensuring adaptive control based on live telemetry. Additionally, a prescriptive analytics layer leveraging historical data in FireStore was integrated to optimize the process performance, enabling data-driven decision making. Full article
Show Figures

Graphical abstract

26 pages, 6714 KiB  
Article
End-of-Line Quality Control Based on Mel-Frequency Spectrogram Analysis and Deep Learning
by Jernej Mlinarič, Boštjan Pregelj and Gregor Dolanc
Machines 2025, 13(7), 626; https://doi.org/10.3390/machines13070626 - 21 Jul 2025
Viewed by 212
Abstract
This study presents a novel approach to the end-of-line (EoL) quality inspection of brushless DC (BLDC) motors by implementing a deep learning model that combines MEL diagrams, convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs). The suggested system utilizes raw vibration [...] Read more.
This study presents a novel approach to the end-of-line (EoL) quality inspection of brushless DC (BLDC) motors by implementing a deep learning model that combines MEL diagrams, convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs). The suggested system utilizes raw vibration and sound signals, recorded during the EoL quality inspection process at the end of an industrial manufacturing line. Recorded signals are transformed directly into Mel-frequency spectrograms (MFS) without pre-processing. To remove non-informative frequency bands and increase data relevance, a six-step data reduction procedure was implemented. Furthermore, to improve fault characterization, a reference spectrogram was generated from healthy motors. The neural network was trained on a highly imbalanced dataset, using oversampling and Bayesian hyperparameter optimization. The final classification algorithm achieved classification metrics with high accuracy (99%). Traditional EoL inspection methods often rely on threshold-based criteria and expert analysis, which can be inconsistent, time-consuming, and poorly scalable. These methods struggle to detect complex or subtle patterns associated with early-stage faults. The proposed approach addresses these issues by learning discriminative patterns directly from raw sensor data and automating the classification process. The results confirm that this approach can reduce the need for human expert engagement during commissioning, eliminate redundant inspection steps, and improve fault detection consistency, offering significant production efficiency gains. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

17 pages, 2319 KiB  
Article
Coordinating the Redundant DOFs of Humanoid Robots
by Pietro Morasso
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Viewed by 154
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with [...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions. Full article
Show Figures

Figure 1

15 pages, 2481 KiB  
Review
Transfer Learning for Induction Motor Health Monitoring: A Brief Review
by Prashant Kumar
Energies 2025, 18(14), 3823; https://doi.org/10.3390/en18143823 - 18 Jul 2025
Viewed by 313
Abstract
With advancements in computational resources, artificial intelligence has gained significant attention in motor health monitoring. These sophisticated deep learning algorithms have been widely used for induction motor health monitoring due to their autonomous feature extraction abilities and end-to-end learning capabilities. However, in real-world [...] Read more.
With advancements in computational resources, artificial intelligence has gained significant attention in motor health monitoring. These sophisticated deep learning algorithms have been widely used for induction motor health monitoring due to their autonomous feature extraction abilities and end-to-end learning capabilities. However, in real-world scenarios, challenges such as limited labeled data and diverse operating conditions have led to the application of transfer learning for motor health monitoring. Transfer learning utilizes pretrained models to address new tasks with limited labeled data. Recent advancements in this domain have significantly improved fault diagnosis, condition monitoring, and the predictive maintenance of induction motors. This study reviews state-of-the-art transfer learning techniques, including domain adaptation, fine-tuning, and feature-based transfer for induction motor health monitoring. The key methodologies are analyzed, highlighting their contributions to improving fault detection, diagnosis, and prognosis in industrial applications. Additionally, emerging trends and future research directions are discussed to guide further advancements in this rapidly evolving field. Full article
Show Figures

Figure 1

15 pages, 1795 KiB  
Article
Minimum-Energy Trajectory Planning for an Underactuated Serial Planar Manipulator
by Domenico Dona’, Jason Bettega, Iacopo Tamellin, Paolo Boscariol and Roberto Caracciolo
Robotics 2025, 14(7), 98; https://doi.org/10.3390/robotics14070098 - 18 Jul 2025
Viewed by 258
Abstract
Underactuated robotic systems are appealing for industrial use due to their reduced actuator number, which lowers energy consumption and system complexity. Underactuated systems are, however, often affected by residual vibrations. This paper addresses the challenge of generating energy-optimal trajectories while imposing theoretical null [...] Read more.
Underactuated robotic systems are appealing for industrial use due to their reduced actuator number, which lowers energy consumption and system complexity. Underactuated systems are, however, often affected by residual vibrations. This paper addresses the challenge of generating energy-optimal trajectories while imposing theoretical null residual (and yet practical low) vibration in underactuated systems. The trajectory planning problem is cast as a constrained optimal control problem (OCP) for a two-degree-of-freedom revolute–revolute planar manipulator. The proposed method produces energy-efficient motion while limiting residual vibrations under motor torque limitations. Experiments compare the proposed trajectories to input shaping techniques (ZV, ZVD, NZV, NZVD). Results show energy savings that range from 12% to 69% with comparable and negligible residual oscillations. Full article
(This article belongs to the Special Issue Adaptive and Nonlinear Control of Robotics)
Show Figures

Figure 1

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 228
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Surface Defect Detection of Magnetic Tiles Based on YOLOv8-AHF
by Cheng Ma, Yurong Pan and Junfu Chen
Electronics 2025, 14(14), 2857; https://doi.org/10.3390/electronics14142857 - 17 Jul 2025
Viewed by 230
Abstract
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with [...] Read more.
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with defects. The YOLOv8-AHF algorithm is proposed to improve the ability of network feature information extraction and solve the problem of missed detection or poor detection results in surface defect detection due to the small volume of permanent magnet motor tiles, which reduces the deviation between the predicted box and the true box simultaneously. Firstly, a hybrid module of a combination of atrous convolution and depthwise separable convolution (ADConv) is introduced in the backbone of the model to capture global and local features in magnet tile detection images. In the neck section, a hybrid attention module (HAM) is introduced to focus on the regions of interest in the magnetic tile surface defect images, which improves the ability of information transmission and fusion. The Focal-Enhanced Intersection over Union loss function (Focal-EIoU) is optimized to effectively achieve localization. We conducted comparative experiments, ablation experiments, and corresponding generalization experiments on the magnetic tile surface defect dataset. The experimental results show that the evaluation metrics of YOLOv8-AHF surpass mainstream single-stage object detection algorithms. Compared to the You Only Look Once version 8 (YOLOv8) algorithm, the performance of the YOLOv8-AHF algorithm was improved by 5.9%, 4.1%, 5%, 5%, and 5.8% in terms of mAP@0.5, mAP@0.5:0.95, F1-Score, precision, and recall, respectively. This algorithm achieved significant performance improvement in the task of detecting surface defects on magnetic tiles. Full article
Show Figures

Figure 1

35 pages, 1464 KiB  
Systematic Review
Assessing Transparency of Robots, Exoskeletons, and Assistive Devices: A Systematic Review
by Nicol Moscatelli, Cristina Brambilla, Valentina Lanzani, Lorenzo Molinari Tosatti and Alessandro Scano
Sensors 2025, 25(14), 4444; https://doi.org/10.3390/s25144444 - 17 Jul 2025
Viewed by 321
Abstract
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are [...] Read more.
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are heterogeneous. It follows that there is a need to clarify, summarize, and assess how transparency is commonly defined and measured. Thus, the goal of this review is to systematically examine how transparency is conceptualized and evaluated across studies. To this end, we performed a structured search across three major scientific databases. After a thorough screening process, 20 out of 400 identified articles were further examined and included in this review. Despite being recognized as a desirable and essential characteristic of READs in many domains of application, our findings reveal that transparency is still inconsistently defined and evaluated, which limits comparability across studies and hinders the development of standardized evaluation frameworks. Indeed, our screening found significant heterogeneity in both terminology and evaluation methods. The majority of the studies used either a mechanical or a kinematic definition, mostly focusing on the intrinsic behavior of the device and frequently giving little attention to the device impact of the user and on the user’s perception. Furthermore, user-centered or physiological assessments could be examined further, since evaluation metrics are usually based on kinematic and robot mechanical metrics. Only a few studies have examined the underlying motor control strategies, using more in-depth methods such as muscle synergy analysis. These findings highlight the need for a shared taxonomy and a standardized framework for transparency evaluation. Such efforts would enable more reliable comparisons between studies and support the development of more effective and user-centered READs. Full article
(This article belongs to the Special Issue Wearable Sensors, Robotic Systems and Assistive Devices)
Show Figures

Figure 1

Back to TopTop