Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (168)

Search Parameters:
Keywords = industrial cooling water system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 5558 KiB  
Review
A Comprehensive Review of Permeate Gap Membrane Distillation: Modelling, Experiments, Applications
by Eliza Rupakheti, Ravi Koirala, Sara Vahaji, Shruti Nirantar and Abhijit Date
Sustainability 2025, 17(14), 6294; https://doi.org/10.3390/su17146294 - 9 Jul 2025
Viewed by 442
Abstract
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key [...] Read more.
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key challenges such as temperature and concentration polarization. Various optimisation strategies, including Response Surface Morphology (RSM), Differential Evolution techniques, and Computational Fluid Dynamics (CFD) modelling, are explored to enhance PGMD performance. The study further discusses the latest advancements in system design, highlighting optimal configurations and the integration of PGMD with renewable energy sources. Factors influencing PGMD performance, such as operational parameters (flow rates, temperature, and feed concentration) and physical parameters (gap width, membrane properties, and cooling plate conductivity), are systematically analysed. Additionally, the techno-economic feasibility of PGMD for large-scale freshwater production is evaluated, with a focus on cost reduction strategies, energy efficiency, and hybrid system innovations. Finally, this review outlines the current limitations and future research directions for PGMD, emphasising novel system modifications, improved heat recovery techniques, and potential industrial applications. By consolidating recent advancements and identifying key challenges, this paper aims to guide future research and facilitate the broader adoption of PGMD in sustainable desalination and water purification processes. Full article
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 322
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
Prediction of Typical Power Plant Circulating Cooling Tower Blowdown Water Quality Based on Explicable Integrated Machine Learning
by Yongjie Wan, Xing Tian, Hanhua He, Peng Tong, Ruiying Gao, Xiaohui Ji, Shaojie Li, Shan Luo, Wei Li and Zhenguo Chen
Processes 2025, 13(6), 1917; https://doi.org/10.3390/pr13061917 - 17 Jun 2025
Viewed by 375
Abstract
This paper establishes an explicable integrated machine learning model for predicting the discharge water quality in a circulating cooling water system of a power plant. The performance differences between three deep learning models, a Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM), and [...] Read more.
This paper establishes an explicable integrated machine learning model for predicting the discharge water quality in a circulating cooling water system of a power plant. The performance differences between three deep learning models, a Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM), and a Convolutional Neural Network (CNN), and traditional machine learning models, namely eXtreme Gradient Boosting (XGboost) and Support Vector Machine (SVM), were evaluated and compared. The TCN model has high fitting accuracy and low error in predicting ammonia nitrogen, nitrate nitrogen, total nitrogen, chemical oxygen demand (COD), and total phosphorus in the effluent of a circulating cooling tower. Compared to other traditional machine learning models, the TCN has a larger R2 (maximum 0.911) and lower Root Mean Square Error (RMSE, minimum 0.158) and Mean Absolute Error (MAE, minimum 0.118), indicating the TCN has better feature extraction and fitting performance. Although the TCN takes additional time, it is generally less than 1 s, enabling the real-time prediction of drainage water quality. The main water quality indices have the greatest causal inference relationship with those of makeup water, followed by the concentration ratio, indicating that concentrations of ammonia nitrogen, nitrate nitrogen, total nitrogen, and COD have a more decisive impact. Shapley Additive Explanations (SHAP) analysis further reveals that the concentration ratio has a weaker decisive impact on circulating cooling water drainage quality. The results of this study facilitate the optimization of industrial water resource management and offer a feasible technical pathway for water resource utilization in power plants. Full article
Show Figures

Figure 1

8 pages, 1856 KiB  
Proceeding Paper
COP Enhancement of Peltier-Based Dehumidifiers
by Srithar Karuppiah, Venkatesan Raman, Rajkumar Natarajan and Saravanan Rajagopal
Eng. Proc. 2025, 95(1), 8; https://doi.org/10.3390/engproc2025095008 - 4 Jun 2025
Viewed by 460
Abstract
A vital procedure for eliminating moisture from the air, dehumidification is necessary for processes like desalination and air conditioning. The Peltier dehumidifier, sometimes referred to as a thermoelectric dehumidifier, removes moisture using the Peltier effect to generate a temperature differential across a Peltier [...] Read more.
A vital procedure for eliminating moisture from the air, dehumidification is necessary for processes like desalination and air conditioning. The Peltier dehumidifier, sometimes referred to as a thermoelectric dehumidifier, removes moisture using the Peltier effect to generate a temperature differential across a Peltier module. Nevertheless, inadequate heat removal from the hot side of the module and a low coefficient of performance (COP) are common problems with Peltier-based dehumidifiers. By combining baffles or turbulators with Peltier plates to increase heat transfer rates, this study overcomes these drawbacks and raises the dehumidifier’s COP and thermal enhancement factor (TEF). On the hot side of the Peltier module, airfoil-shaped baffles are used in the experimental setup to enhance heat dissipation and speed up turbulence. Performance significantly improved, as evidenced by the findings, with the TEF rising to 3.2. Furthermore, the COP improved from 0.06 to 0.45, and the water condensation rate rose to a high of 35 mL per hour. These improvements are ascribed to the higher heat transfer rates made possible by the baffles, which enable the more effective cooling of the Peltier module’s cold side. This study demonstrates how turbulators can increase Peltier-based dehumidifiers’ effectiveness and make them more practical for industrial settings, especially in areas with limited water supplies. According to the results, thermoelectric dehumidification systems can function much better overall if heat transmission on the Peltier module’s hot side is optimized. Full article
Show Figures

Figure 1

23 pages, 4010 KiB  
Article
Optimizing Power Consumption in Aquaculture Cooling Systems: A Bayesian Optimization and XGBoost Approach Under Limited Data
by Sina Ghaemi, Hessam Gholmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Appl. Sci. 2025, 15(11), 6273; https://doi.org/10.3390/app15116273 - 3 Jun 2025
Viewed by 391
Abstract
Driven by increased integration of renewable energy sources, the widespread decarbonization of power systems has led to energy price fluctuations that require greater adaptability and flexibility from grid users in order to maximize profits. Industrial loads equipped with flexible resources can optimize energy [...] Read more.
Driven by increased integration of renewable energy sources, the widespread decarbonization of power systems has led to energy price fluctuations that require greater adaptability and flexibility from grid users in order to maximize profits. Industrial loads equipped with flexible resources can optimize energy consumption rather than merely reacting to immediate events, thereby capitalizing on volatile energy prices. However, the absence of sufficient measured data in industrial processes limits the ability to fully harness this flexibility. To address this challenge, we presents a black-box optimization model for optimizing the energy consumption of cooling systems in the aquaculture industry using Extreme Gradient Boosting (XGBoost) and Bayesian Optimization (BO). XGBoost is employed to establish a nonlinear relationship between cooling system power consumption and available measured data. Based on this model, Bayesian Optimization with the Lower Confidence Bound (LCB) acquisition function is used to determine the optimal discharge temperature of water into breeding pools, minimizing day-ahead electricity costs. The proposed approach is validated using real-world data from a case study at the Port of Hirtshals, Denmark based on measurements from 2023. Our findings illustrate that leveraging the inherent flexibility of industrial processes can yield financial benefits while providing valuable signals for grid operators to adjust consumption behaviors through appropriate price mechanisms. Furthermore, machine learning techniques prove effective in optimizing energy consumption for industries with limited measured data, delivering accurate and practical estimations. Full article
(This article belongs to the Special Issue Design, Optimization and Control Strategy of Smart Grids)
Show Figures

Figure 1

26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 861
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 674
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 4975 KiB  
Article
A Numerical Approach to Evaluate the Geothermal Potential of a Flooded Open-Pit Mine: Example from the Carey Canadian Mine (Canada)
by Samuel Lacombe, Félix-Antoine Comeau and Jasmin Raymond
Energies 2025, 18(11), 2714; https://doi.org/10.3390/en18112714 - 23 May 2025
Viewed by 345
Abstract
Abandoned mines represent an innovative and under-exploited resource to meet current energy challenges, particularly because of their geothermal potential. Flooded open-pits, such as those located in the Thetford Mines region (Eastern Canada), provide large, thermally stable water reservoirs, ideal for the use of [...] Read more.
Abandoned mines represent an innovative and under-exploited resource to meet current energy challenges, particularly because of their geothermal potential. Flooded open-pits, such as those located in the Thetford Mines region (Eastern Canada), provide large, thermally stable water reservoirs, ideal for the use of geothermal cooling systems. Thermal short-circuiting that can impact the system performance affected by both free and forced convective heat transfer is hard to evaluate in these large water reservoirs subject to various heat sink and sources. Thus, this study’s objective was to evaluate the impact of natural heat transfer mechanisms on the performance of an open-loop geothermal system that could be installed in a flooded open-pit mine. Energy needs of an industrial plant using water from the flooded Carey Canadian mine were considered to develop a 3D numerical finite element model to evaluate the thermal impact associated with the operation of the system considering free and forced convection in the flooded open-pit, the natural flow of water into the pit, climatic variations at the surface and the terrestrial heat flux. The results indicate that the configuration of the proposed system meets the plant cooling needs over a period of 50 years and can provide a cooling power of approximately 2.3 MW. The simulations also demonstrated the importance of understanding the hydrological and hydrogeological systems impacting the performance of the geothermal operations expected in a flooded open-pit mine. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

15 pages, 2949 KiB  
Article
Evaluation of Temperature Regulation Efficiency of a Bilayer Coating on Glass with Evaporative and Radiative Cooling for Energy Management
by Huanying Zhang, Yonghang Yu, Dedong Ji, Chen Zhou and Shengyang Yang
Molecules 2025, 30(9), 2042; https://doi.org/10.3390/molecules30092042 - 3 May 2025
Viewed by 526
Abstract
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA [...] Read more.
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA radiation layer, where rutile TiO2 is incorporated into polyurethane acrylate (PUA) resin to enhance solar reflectivity. The second layer is a P(NVP-co-NMA) hydrogel, which evaporates water at high temperatures and absorbs moisture from the air at low temperatures, eliminating the need for additional water supply systems. The TiO2/PUA@P(NVP-co-NMA) coating demonstrates high solar reflectivity and infrared emissivity, effectively reducing indoor temperatures by dissipating heat through water evaporation and radiative cooling. Testing showed a temperature reduction of approximately 7.6 °C in a small house with this coating under simulated conditions. This material demonstrates favorable properties that may make it suitable for applications on building roofs and exterior walls, potentially addressing some limitations of conventional evaporative or radiative cooling systems. Its observed multi-effect cooling performance indicates promise for contributing to energy savings in sustainable building designs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 3195 KiB  
Proceeding Paper
Evaluation of Peltier Cooling Vest
by Vin Klein A. Talamayan, Mharlon Jefferson S. A. Yalung and Jessie R. Balbin
Eng. Proc. 2025, 92(1), 25; https://doi.org/10.3390/engproc2025092025 - 27 Apr 2025
Viewed by 1402
Abstract
We incorporated a Peltier cooling system into vests for personal comfort and applications in various workplaces. We tested the Peltier cooling vest using temperature sensors and evaluated the vest’s performance. The developed Peltier cooling vest included thermoelectric cooler modules to improve cooling efficiency [...] Read more.
We incorporated a Peltier cooling system into vests for personal comfort and applications in various workplaces. We tested the Peltier cooling vest using temperature sensors and evaluated the vest’s performance. The developed Peltier cooling vest included thermoelectric cooler modules to improve cooling efficiency and comfort by using water’s heat transfer and thermal conductivity. Through testing and subjective assessments, the effectiveness of the wearable cooling system and its potential for widespread adoption were validated. Furthermore, an intelligent control algorithm was developed to maintain target temperatures. The built-in temperature sensor enabled temperature stability in the set temperature range. The average cooling response time of the Peltier cooling vest was 9.42 min. In a lower temperature range of 16 to 24 °C, the vest maintained a stable temperature. A correlation between temperature and power consumption was observed. To improve the performance, built-in Bluetooth and a graphic user interface need to be integrated. Then, the Peltier cooling vest and its technology can be used in medical and industrial settings. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

23 pages, 720 KiB  
Article
Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market
by Nicholas Andrew Harvey and Eziaku Onyeizu Rasheed
Energies 2025, 18(9), 2190; https://doi.org/10.3390/en18092190 - 25 Apr 2025
Viewed by 551
Abstract
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load [...] Read more.
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load required by a structure are detailed. These technologies or solutions were then presented to heating, ventilation, air conditioning and refrigeration industry professionals in New Zealand to determine their viability and further establish market readiness towards integrating new, innovative, and sustainable solutions in New Zealand. A literature review was conducted to establish the performance of the selected solutions and understand their operational principles and the efficiency they provided. Qualitative research and data collected via semi-structured interviews provided the data for assessing the viability of the selected technologies in the New Zealand market. Following a thematic and hybrid-thematic analysis of the data, the technologies were ranked, and suggestions were made to help improve innovation and energy efficiency in the heating, ventilation, air conditioning, and refrigeration industry in New Zealand. Of the technologies selected, airtightness, heat recovery ventilation retrofits, materials and design principles, and photovoltaic hot water heating were identified as the most viable. The New Zealand market was deemed not to be in a good position to adopt new or alternative solutions. The main issues affecting New Zealand’s market readiness to assimilate innovative and energy-efficient solutions are a lack of new technologies, poor standards of education throughout the industry, a lack of regulation, and a lack of government incentives. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

33 pages, 5030 KiB  
Article
Performance Evaluation of Triply Periodic Minimal Surface Heat Exchangers Using Nanofluids at High Flow Rates for Enhanced Energy Efficiency
by Gulenay Alevay Kilic
Appl. Sci. 2025, 15(8), 4140; https://doi.org/10.3390/app15084140 - 9 Apr 2025
Cited by 1 | Viewed by 945
Abstract
Triply Periodic Minimal Surface (TPMS) heat exchangers have attracted significant attention for their high surface area and effective thermal performance. This study evaluates the performance of TPMS heat exchangers under turbulent flow conditions using aluminum (Al) and silver (Ag) materials with pure water [...] Read more.
Triply Periodic Minimal Surface (TPMS) heat exchangers have attracted significant attention for their high surface area and effective thermal performance. This study evaluates the performance of TPMS heat exchangers under turbulent flow conditions using aluminum (Al) and silver (Ag) materials with pure water and nanofluid as working fluids. The implementation of Ag TPMS structures resulted in approximately 15% enhancement in thermal performance compared to Al structures due to superior thermal conductivity. The introduction of nanofluid (0.6% volume concentration) improved overall heat transfer efficiency by 12% compared to pure water. Performance evaluation criteria (PEC) analysis demonstrated that Ag TPMS structures achieved up to 30% higher values than Al structures. Temperature homogeneity analyses revealed significant improvements, with Al TPMS structures showing a 24% reduction in temperature variation when using nanofluid, while Ag TPMS structures exhibited up to 40% better temperature uniformity. Computational fluid dynamics analyses validated the experimental findings with deviations less than 7%, confirming the model’s reliability. These results demonstrate the significant potential of TPMS structures in high-performance cooling applications and provide valuable insights for future heat exchanger designs. The enhanced efficiency of thermal management system (TMS) heat exchangers using nanofluids contributes to reduced energy consumption, supporting environmentally conscious decision-making in industrial and energy systems. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

16 pages, 3018 KiB  
Article
Biodigital Micro-Cellular Mashrabiya: Lattice Architectural Microbial Membranes for Sustainable Built Environments
by Yomna K. Abdallah and Alberto T. Estevez
J 2025, 8(2), 13; https://doi.org/10.3390/j8020013 - 3 Apr 2025
Viewed by 749
Abstract
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, [...] Read more.
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, filtration, and flow from the exterior to the interior of a building. This leads to the air flow being cooled by the water spray offered by the interior patio fountains, in addition to protecting the sanctity and privacy of a building’s inhabitants, which complies with religious beliefs and social considerations. This integral sustainable solution acts on multiple scales: material recycling and responsible use, as well as climatic and socio-cultural considerations similar to Gaudi’s approach with Trencadís technology, not far from the Arabic and Islamic architectural influence revived in the Catalan Modernism contemporary to his time. In these footsteps, we explore the Mashrabiya of our time: an interactive and living architectural membrane, a soft interface that reacts by growing, giving shade, filtrating air, and transforming in time. Despite attempts to design a contemporary concept of the Mashrabiya, none of them have adopted the living organism to form an interactive living lattice architectural system. In this work, we propose the biodigital micro-cellular Mashrabiya as a novel idea and a proof of concept based on employing the authors’ previously published research findings to utilize eco-friendly biopolymers inoculated with useful native–domestic microbial strains to act as soft and living membranes, where these organisms grow and vary in their chemical and physical characteristics, sustainable function, and industrial value. This study implements an analytical–descriptive methodology to analyze the key characteristics of a traditional Mashrabiya as an integral sustainable solution and how the proposed micro-cellular biodigital Mashrabiya system can fulfill these criteria to be integrated into the built environment, forging future research trajectories on the bio-/micro-environmental compatibility of this biomaterial-based biodigital Mashrabiya system by understanding these materials’ physical, chemical, and physiological traits and their sustainable value. In this work, a biodigital Mashrabiya is proposed based on employing previous research findings on experimentally analyzed biomaterials from a biomineralized calcium-phosphate-based hydrogel and bio-welded seashell–mycelium biocomposite in forging the lattice system of a biodigital Mashrabiya, analyzing the feasibility and sustainability impact of these systems for integration into the architectural built environment. Full article
Show Figures

Figure 1

19 pages, 2926 KiB  
Review
Research Status and Progress of Acoustic Fire Extinguishing Technology
by Xinyue Shi, Zhaojun Tian, Yi Lu and Qing Ye
Fire 2025, 8(4), 129; https://doi.org/10.3390/fire8040129 - 27 Mar 2025
Cited by 4 | Viewed by 2233
Abstract
Sound wave fire suppression, an emerging firefighting technology, demonstrates unique potential by regulating the physicochemical processes of flames. This paper systematically reviews the research progress in acoustic fire extinguishing technology. Through a literature review and systematic comparison of existing methodologies, it reveals the [...] Read more.
Sound wave fire suppression, an emerging firefighting technology, demonstrates unique potential by regulating the physicochemical processes of flames. This paper systematically reviews the research progress in acoustic fire extinguishing technology. Through a literature review and systematic comparison of existing methodologies, it reveals the core mechanisms of flame suppression: low-frequency sound waves (40–80 Hz) disrupt combustion stability via airflow disturbance, while high-frequency waves (>1 kHz) may rely on thermal effects or resonance mechanisms, with sound pressure and waveform significantly affecting extinguishing efficiency. Experimental results demonstrate that acoustic cavity focusing technology extends the effective fire suppression distance to 1.8 m while improving cooling efficiency by 10–20%. Integration with drone platforms and adaptive feedback systems enhances fire extinguishing energy efficiency by over 30%. When combined with water mist, this approach reduces suppression time to 30 s while mitigating sound pressure hazards. However, the critical parameters distinguishing sound-induced “flame enhancement” from “suppression” remain undefined, with insufficient research on adaptability to solid fuels and complex environments (microgravity, confined spaces), and a lack of high-temperature-resistant acoustic materials and multi-physics coupling models. Current fire suppression technologies predominantly rely on airflow disturbance-driven indirect mechanisms, whose stability remains questionable under extreme scenarios. Future advancements require breakthroughs in acoustic metamaterials, the integration of intelligent algorithms, and the collaborative optimization of multi-technology systems to facilitate the transition of acoustic wave-based fire suppression from laboratory settings to real-world industrial firefighting applications. Additionally, this study proposes an optimized solution that integrates acoustic waves with complementary fire suppression approaches, aiming to enhance overall firefighting effectiveness. Concurrently, an interdisciplinary research framework must be established to address the dual challenges of mechanistic elucidation and practical implementation. Full article
(This article belongs to the Special Issue Assessment and Prevention of Mine Fires and Gas Disasters)
Show Figures

Figure 1

24 pages, 8640 KiB  
Article
Numerical Study of Influence of Nanofluids on the Optimization of Heat Transfer in Immersion Cooling Systems
by Abdelilah Makaoui, Youssef Admi, Mohammed Amine Moussaoui and Ahmed Mezrhab
Processes 2025, 13(3), 620; https://doi.org/10.3390/pr13030620 - 21 Feb 2025
Viewed by 1567
Abstract
The present study evaluates the heat transfer performance of an immersion liquid cooling system, utilizing copper-water (Cu-water) nanofluids under various flow and geometric conditions, including different Reynolds and Rayleigh numbers, nanoparticle volume fractions, and block spacing configurations. To this end, numerical simulations were [...] Read more.
The present study evaluates the heat transfer performance of an immersion liquid cooling system, utilizing copper-water (Cu-water) nanofluids under various flow and geometric conditions, including different Reynolds and Rayleigh numbers, nanoparticle volume fractions, and block spacing configurations. To this end, numerical simulations were conducted to assess the impact of these parameters on the system’s temperature distribution and overall cooling efficiency. The findings indicate that augmenting the Reynolds number from 100 to 500, and the nanoparticle volume fraction from 0% to 5%, at a Rayleigh number of 105, results in substantial enhancements in heat transfer, with improvements reaching up to 193.8%. Furthermore, an increase in the Rayleigh number from 103 to 106, in conjunction with elevated nanoparticle concentrations at a Reynolds number of 500, yielded a heat transfer enhancement of up to 36.3%. These findings demonstrate that higher Reynolds and Rayleigh numbers promote better heat dissipation through increased convective flow and buoyancy-driven convection. Furthermore, the study underscores the pivotal function of block spacing in maximizing cooling efficacy. While closer spacing results in higher temperatures, wider spacing improves heat transfer efficiency by reducing thermal interference between blocks. The study emphasizes the synergistic effect of an enhanced thermal conductivity, strong convective flow, and optimal geometric configurations in maximizing cooling efficiency. These findings are of crucial importance for the design of more efficient thermal management systems, with applications in electronics cooling, energy systems, and industrial processes. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

Back to TopTop