Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = industrial biotransformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1677 KiB  
Review
Sustainable, Targeted, and Cost-Effective Laccase-Based Bioremediation Technologies for Antibiotic Residues in the Ecosystem: A Comprehensive Review
by Rinat Ezra, Gulamnabi Vanti and Segula Masaphy
Biomolecules 2025, 15(8), 1138; https://doi.org/10.3390/biom15081138 - 7 Aug 2025
Abstract
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. [...] Read more.
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. However, the elimination of toxic end products generated by physicochemical methods and the need for industrial applications pose significant challenges. Hence, environmentally sustainable, green, and readily available approaches for the transformation and degradation of these antibiotic compounds are being sought. Herein, we review the impact of sustainable fungal laccase-based bioremediation strategies. Fungal laccase enzyme is considered one of the most active enzymes for biotransformation and biodegradation of antibiotic residue in vitro. For industrial applications, the low laccase yields in natural and genetically modified hosts may constitute a bottleneck. Methods to screen for high-laccase-producing sources, optimizing cultivation conditions, and identifying key genes and metabolites involved in extracellular laccase activity are reviewed. These include advanced transcriptomics, proteomics, and metagenomics technologies, as well as diverse laccase-immobilization technologies with different inert carrier/support materials improving enzyme performance whilst shifting from experimental assays to in situ monitoring of residual toxicity. Still, more basic and applied research on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics that are recalcitrant and prevalent, is needed. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

22 pages, 1419 KiB  
Article
Bioconversion of Olive Pomace: A Solid-State Fermentation Strategy with Aspergillus sp. for Detoxification and Enzyme Production
by Laura A. Rodríguez, María Carla Groff, Sofía Alejandra Garay, María Eugenia Díaz, María Fabiana Sardella and Gustavo Scaglia
Fermentation 2025, 11(8), 456; https://doi.org/10.3390/fermentation11080456 - 6 Aug 2025
Abstract
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which [...] Read more.
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which limit its direct reuse due to phytotoxicity. A native strain of Aspergillus sp., isolated from OP, was employed as the biological agent, while grape pomace (GP) was added as a co-substrate to enhance substrate structure. Fermentations were conducted at two scales, Petri dishes (20 g) and a fixed-bed bioreactor (FBR, 2 kg), under controlled conditions (25 °C, 7 days). Key parameters monitored included dry and wet weight loss, pH, color, phenolic content, and enzymatic activity. Significant reductions in color and polyphenol content were achieved, reaching 68% in Petri dishes and 88.1% in the FBR, respectively. In the FBR, simultaneous monitoring of dry and wet weight loss enabled the estimation of fungal biotransformation, revealing a hysteresis phenomenon not previously reported in SSF studies. Enzymes such as xylanase, endopolygalacturonase, cellulase, and tannase exhibited peak activities between 150 and 180 h, with maximum values of 424.6 U·g−1, 153.6 U·g−1, 67.43 U·g−1, and 6.72 U·g−1, respectively. The experimental data for weight loss, enzyme production, and phenolic reduction were accurately described by logistic and first-order models. These findings demonstrate the high metabolic efficiency of the fungal isolate under SSF conditions and support the feasibility of scaling up this process. The proposed strategy offers a low-cost and sustainable solution for OP valorization, aligning with circular economy principles by transforming agro-industrial residues into valuable bioproducts. Full article
Show Figures

Figure 1

23 pages, 3357 KiB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Viewed by 583
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

37 pages, 2967 KiB  
Review
Photosynthetic Microorganisms and Biogenic Synthesis of Nanomaterials for Sustainable Agriculture
by Svetlana Codreanu, Liliana Cepoi, Ludmila Rudi and Tatiana Chiriac
Nanomaterials 2025, 15(13), 990; https://doi.org/10.3390/nano15130990 - 26 Jun 2025
Viewed by 508
Abstract
Sustainable agriculture faces increasing challenges, necessitating innovative approaches to advance resource efficiency with minimal ecological consequences. One promising solution is nanobiotechnology, which takes advantage of natural systems for the eco-friendly synthesis of functional nanomaterials. Prokaryotic cyanobacteria and eukaryotic microalgae, due to their rapid [...] Read more.
Sustainable agriculture faces increasing challenges, necessitating innovative approaches to advance resource efficiency with minimal ecological consequences. One promising solution is nanobiotechnology, which takes advantage of natural systems for the eco-friendly synthesis of functional nanomaterials. Prokaryotic cyanobacteria and eukaryotic microalgae, due to their rapid growth, adaptability to diverse environments, and capacity for biosynthesis of valuable compounds, are model organisms highly suitable for medical, biotechnological, industrial, agricultural, and environmental applications. These photosynthetic microorganisms have demonstrated their efficacy in the biosynthesis of nanomaterials, which has potential benefits in various agricultural applications. The use of cyanobacteria- and microalgae-based nanomaterials in improving agricultural practices represents an emerging field of nanotechnology that requires ongoing research and responsible application management. To present a complete and timely foundation for this field, a systematic review of relevant research from the last five years was performed, exploring the contribution of cyanobacteria and microalgae to the advancement of nanobiotechnology as an efficient biotransformative tool for sustainable agriculture. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

18 pages, 1426 KiB  
Review
Corn Steep Liquor as an Efficient Bioresource for Functional Components Production by Biotransformation Technology
by Ying Chang, Xin-Qi Zhao, Xin Zhang and Yan Jiao
Foods 2025, 14(13), 2158; https://doi.org/10.3390/foods14132158 - 20 Jun 2025
Viewed by 674
Abstract
Corn is an important crop that can be used to produce many bioactive compounds. These functional components have been widely applied in the pharmaceutical, cosmetic, and food industries. Corn steep liquor (CSL) is a by-product of deep processing of corn that contains a [...] Read more.
Corn is an important crop that can be used to produce many bioactive compounds. These functional components have been widely applied in the pharmaceutical, cosmetic, and food industries. Corn steep liquor (CSL) is a by-product of deep processing of corn that contains a lot of protein, peptides, amino acids, vitamins, and other nutrients, which is considered to be a rich and cheap source of plant nutrients. However, CSL is not widely used and factories are required to treat CSL as waste water directly; therefore, the question of how to turn CSL waste into a valuable product is likely to become a hot topic. In order to fully explore the potential utilization value of CSL, this review comprehensively summarizes the structural composition and nutritional characteristics of CSL, and its application and prospect in the biotransformation of industrialized organic acids, polysaccharides, lipids, enzymes, natural pigments, and novel functional components through the microbial fermentation pathway. Furthermore, specific methods for bioconverting various active substances using CSL were proposed, and the influences of various production conditions on the yield of the bioactive substances were fully analyzed and discussed. This article provides a reference for the efficient utilization of corn steep liquor as a by-product of corn processing. Full article
Show Figures

Figure 1

25 pages, 7385 KiB  
Article
Anaerobic Digestion of Food Waste and Granular Inoculum: Study on Temperature Effect and Substrate-to-Inoculum Ratio on Biogas Production
by Madalina Ivanovici, Gabriela-Alina Dumitrel, Vasile Daniel Gherman, Teodor Todinca, Ana-Maria Pana and Valentin Laurentiu Ordodi
Fermentation 2025, 11(6), 348; https://doi.org/10.3390/fermentation11060348 - 15 Jun 2025
Viewed by 837
Abstract
The development of food waste anaerobic digestion (AD) is a contemporary research topic addressed in the scientific community to meet the requirements of food waste valorization and proper substrate configuration for an efficient AD process. In this study, multiple AD experiments were performed [...] Read more.
The development of food waste anaerobic digestion (AD) is a contemporary research topic addressed in the scientific community to meet the requirements of food waste valorization and proper substrate configuration for an efficient AD process. In this study, multiple AD experiments were performed on food waste together with industrial inoculum using laboratory-scale bioreactors. Food waste consisted mainly of fruits and vegetables (80.9%) and boiled rice (19.1%). The effect of operating temperature (33 °C, 37 °C, 41 °C, 45 °C) and the ratio between food waste mixture and inoculum-FIR (1:1, 3:2 and 2:1, w/w) on the production and composition of biogas, and the conversion yield for CH4 and organic carbon, were investigated. The best results were obtained at an FIR of 2:1 and a temperature of 37 °C, with a total biogas production of 468.59 NL h−1 kg−1VSadded (51% v/v CH4 conc.) and a conversion yield of 36.42% for CH4. A modified Gompertz model was applied on the accumulated CH4 and biogas to evaluate the process performance. The model parameters were investigated in conjunction with the physico-chemical characteristics of the substrate, inoculum taxonomic profile, pH measurements, and TG-DTA analysis. The conducted analyses emphasized the susceptibility of the selected substrate towards easy degradation and improved biotransformation reactions when temperature and FIR were increased. Full article
Show Figures

Figure 1

8 pages, 2202 KiB  
Conference Report
The 11th International Congress on Biocatalysis (biocat2024), Hamburg, Germany, 25–29 August 2024
by Victoria Bueschler, Paul Bubenheim, Barbara Klippel, Ana Malvis Romero, Daniel Ohde, Anna-Lena Heins, Johannes Gescher, Franziska Rohweder and Andreas Liese
Catalysts 2025, 15(6), 574; https://doi.org/10.3390/catal15060574 - 10 Jun 2025
Viewed by 669
Abstract
The “11th International Congress on Biocatalysis (biocat2024)” was part of a biennial series that unites the fields of biology and chemistry, attracting researchers from the life sciences, engineering, and computer science. This international forum provides an opportunity for scientists worldwide to connect, seek [...] Read more.
The “11th International Congress on Biocatalysis (biocat2024)” was part of a biennial series that unites the fields of biology and chemistry, attracting researchers from the life sciences, engineering, and computer science. This international forum provides an opportunity for scientists worldwide to connect, seek collaboration for future projects, and gain insights into contemporary topics and innovative techniques. Biocat covers a range of compelling subjects and recent advancements in biocatalysis, including enzyme discovery, evolution, and applications. This congress focused on six key topics: AI and computational methods, structure–function analysis and enzyme engineering, enzymatic and whole-cell biotransformations, reaction cascades (electro-, chemo-, and photoenzymatic synergies), bioprocess engineering and the design of smart reactors, and facing climate change through sustainability and a circular bioeconomy. In 2024, we welcomed 344 expert delegates alongside 21 internal attendees, including 154 women and 1 non-binary participant, bringing the total number of participants to an impressive 365. Established researchers and emerging scientists from academia and industry delivered a total of 119 presentations, comprising 59 standard lectures, 60 lightning talks, and 195 posters. Six industry exhibitors showcased their latest products and services, providing an excellent opportunity to strengthen the connection between science and industry. Furthermore, the biocat award, recognized as one of the most prestigious honors in biotechnology, was presented for the eleventh time in the categories of “Science in Academia”, “Lifetime Achievement,” and “Industry”. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

12 pages, 2306 KiB  
Article
Rhodococcus rhodochrous IEGM 1362 Immobilized in Macroporous PVA Cryogel as an Effective Biocatalyst for the Production of Bioactive (–)-Isopulegol Compounds
by Polina Y. Maltseva, Natalia A. Plotnitskaya, Alexandra A. Chudinova, Irina V. Ilyina, Konstantin P. Volcho, Nariman F. Salakhutdinov and Irina B. Ivshina
Pharmaceuticals 2025, 18(6), 839; https://doi.org/10.3390/ph18060839 - 3 Jun 2025
Viewed by 527
Abstract
Background: This study explored the biotransformation of (–)-isopulegol using immobilized cells of Rhodococcus rhodochrous IEGM 1362 to optimize the production of new bioactive compounds. Methods: An efficient biocatalyst based on R. rhodochrous IEGM 1362 cells immobilized in a macroporous polyvinyl alcohol [...] Read more.
Background: This study explored the biotransformation of (–)-isopulegol using immobilized cells of Rhodococcus rhodochrous IEGM 1362 to optimize the production of new bioactive compounds. Methods: An efficient biocatalyst based on R. rhodochrous IEGM 1362 cells immobilized in a macroporous polyvinyl alcohol (PVA) cryogel matrix was developed for the production of bioactive derivatives of (–)-isopulegol. The biological characteristics of the immobilized cells were investigated using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy methods. Results: The use of the biocatalyst increased the overall yield of target products from 54% with free cells to 87% with immobilized cells in a single cycle. Major derivatives identified included (1R,2S,5R)-5-(hydroxymethyl)-2-(prop-1-en-2-yl)cyclohexanol and (1R,3R,4S)-3-hydroxy-4-(prop-1-en-2-yl)cyclohexanecarboxylic acid, both exhibiting potential pharmacological activity. The biocatalyst retained functional activity toward monoterpenoid over 13 exploitation cycles, meeting industrial biotechnology requirements. Immobilized cells were characterized by the absence of endogenous reserve inclusions (in particular lipids) and a high intracellular iron content. Conclusions: The developed immobilized biocatalyst is promising for scaling up the production of biologically active compounds. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

43 pages, 1107 KiB  
Review
Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins
by Stoycho D. Stoev
Foods 2025, 14(11), 1960; https://doi.org/10.3390/foods14111960 - 31 May 2025
Viewed by 641
Abstract
The relationships between mycotoxins content in food commodities or feedstuffs and the foodborne diseases is well known. So far, the available data mainly include chemical methods of mycotoxins decontamination for agricultural commodities or raw materials, including mycotoxin binders. Therefore, the possible use of [...] Read more.
The relationships between mycotoxins content in food commodities or feedstuffs and the foodborne diseases is well known. So far, the available data mainly include chemical methods of mycotoxins decontamination for agricultural commodities or raw materials, including mycotoxin binders. Therefore, the possible use of some natural and cost-effective supplements such as herbs, fungi, microorganisms, or plants with powerful and safe protection against mycotoxin-induced health ailments is the main subject of this review paper. Various antagonistic microorganisms or yeast with fungicidal properties, as well as some herbs or plants that suppress fungal development and the subsequent production of target mycotoxins and/or have protective effect against mycotoxins, are deeply studied in the literature, and practical suggestions are given in this regard. The protection by degradation, biotransformation, or binding of mycotoxins by using natural additives such as herbs or plants to feedstuffs or foods has also been thoroughly investigated and analyzed as a possible approach for ameliorating the target adverse effects of mycotoxins. Possible beneficial dietary changes have also been studied to potentially alleviate mycotoxin toxicity. Practical advice are provided for possible application of the same natural supplements in real-life practice for combating mycotoxin-induced health ailments. Natural feed supplements and bioactive compounds appeared to be safe emerging approaches to preventing health ailments caused by mycotoxins. However, the available data mainly address some in vitro studies, and more in vivo experiments are necessary for introducing such approaches in the real-life practice or industry. Generally, target herbal supplements, antioxidants, or polyenzyme complements could be used as powerful protectors in addition to natural mycotoxin binders. Bioactive agents and enzymatic degradation are reported to be very successful in regard to PAT and OTA, whereas antagonistic microorganisms/fungi/yeasts have a successful application against AFs and PAT-producing fungi. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

15 pages, 3112 KiB  
Article
Efficient Production of (R)-3-Aminobutyric Acid by Biotransformation of Recombinant E. coli
by Hongtao Zhang, Qing Xu, Jiajia Lv, Jiaxing Zhang, Tongyi Dou, Shengping You, Rongxin Su and Wei Qi
Catalysts 2025, 15(5), 466; https://doi.org/10.3390/catal15050466 - 9 May 2025
Viewed by 703
Abstract
(R)-3-aminobutyric acid is an important raw material for dolutegravir production, which is a key antiretroviral medicine for AIDS treatment. Currently, the industrial production of (R)-3-aminobutyric acid relies on chiral resolution methods, which are plagued by high pollution and low yield efficiency. Here, we [...] Read more.
(R)-3-aminobutyric acid is an important raw material for dolutegravir production, which is a key antiretroviral medicine for AIDS treatment. Currently, the industrial production of (R)-3-aminobutyric acid relies on chiral resolution methods, which are plagued by high pollution and low yield efficiency. Here, we report an efficient pathway for (R)-3-aminobutyric acid production via engineered aspartase-driven biotransformation in recombinant E. coli. The engineered aspartase mutants, obtained through rational design based on catalytic mechanisms, were specifically employed to catalyze the production of (R)-3-aminobutyric acid from crotonic acid. The engineered T187L/N142R/N326L aspartase mutant exhibited the highest enzyme activity of 1516 U/mg. Through cell permeabilization, the system achieved (R)-3-aminobutyric acid yield of 287.6 g/L (96% productivity) within 24 h. Subsequent scale-up in a 7 L fermenter achieved a final product yield of 284 g/L (95% productivity) within 24 h. Economic balance showed that the cost of industrial production (¥116.21/kg) is about 1/4 of the laboratory production (¥479.76/kg). In summary, the engineered aspartase-mediated bioconversion pathway using recombinant E. coli offers an industrially viable approach for (R)-3-aminobutyric acid production, featuring mild reaction conditions, environmental sustainability, streamlined processing, high yield, and cost-effective substrates. Full article
(This article belongs to the Special Issue Biocatalysis—Enzymes in Industrial Applications)
Show Figures

Graphical abstract

13 pages, 2419 KiB  
Article
Enhancement of Enzyme Activity by Alternating Magnetic Field and Near-Infrared Irradiation
by Fang Wang, Yuchen Liu, Qikai Dong, Zihan Li, Senrong Liang, Tianyi Zhang, Liangtao Xu and Renjun Gao
Catalysts 2025, 15(4), 386; https://doi.org/10.3390/catal15040386 - 16 Apr 2025
Viewed by 591
Abstract
The enhancement of enzyme activity has garnered significant attention in biotransformation processes and applications. This enhancement is achieved through the use of specific nanomaterials (NMs) with unique physicochemical characteristics responsive to external stimuli. In this study, an enzyme–Fe3O4 nano-biocatalytic system [...] Read more.
The enhancement of enzyme activity has garnered significant attention in biotransformation processes and applications. This enhancement is achieved through the use of specific nanomaterials (NMs) with unique physicochemical characteristics responsive to external stimuli. In this study, an enzyme–Fe3O4 nano-biocatalytic system (NBS) was developed to enable real-time activation of enzymatic catalysis under alternating magnetic field (AMF) and near-infrared (NIR) irradiation using dual-functional Fe3O4 magnetic nanoparticles (MNPs). When exposed to an AMF, Fe3O4 MNPs generate molecular vibrations through mechanisms such as Néel or Brown relaxation while acting as a photothermal agent in response to NIR irradiation. The synergistic effect of AMF and NIR irradiation significantly enhanced energy transfer between the enzyme and Fe3O4 MNPs, resulting in a maximum 4.3-fold increase in enzyme activity. Furthermore, the system reduced aldol reaction time by 66% (from 4 h to 1.5 h) while achieving 90% product yield. Additionally, factors such as nanoparticle size and NIR power were found to play a critical role in the efficiency of this real-time regulation strategy. The results also demonstrate that the enzyme–Fe3O4 nanocomposites (NCs) significantly enhanced catalytic efficiency and reduced the reaction time for aldol reactions. This study demonstrates an efficient NBS controlled via the synergistic effects of AMF and NIR irradiation, enabling spatiotemporal control of biochemical reactions. This work also provides a breakthrough strategy for dynamic biocatalysis, with potential applications in industrial biomanufacturing, on-demand drug synthesis, and precision nanomedicine. Full article
(This article belongs to the Special Issue Enzyme Catalysis and Enzyme Engineering)
Show Figures

Figure 1

21 pages, 4658 KiB  
Article
Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere
by Malak Alshammary, Essam Kotb, Ibtisam M. Ababutain, Amira H. Alabdalall, Sumayh A. Aldakeel, Sumayah I. Alsanie, Salwa Alhamad, Hussah Alshwyeh and Ahmed M. Albarrag
Biology 2025, 14(4), 402; https://doi.org/10.3390/biology14040402 - 11 Apr 2025
Cited by 1 | Viewed by 761
Abstract
Laccase production was evaluated in 108 fungal isolates recovered from the eastern coast of Saudi Arabia, a critical element in environmental biodegradation and biotransformation. The most active isolate was identified as Curvularia lunata MLK46 (GenBank accession no. PQ100161). It exhibited maximal productivity at [...] Read more.
Laccase production was evaluated in 108 fungal isolates recovered from the eastern coast of Saudi Arabia, a critical element in environmental biodegradation and biotransformation. The most active isolate was identified as Curvularia lunata MLK46 (GenBank accession no. PQ100161). It exhibited maximal productivity at pH 6.5, 30 °C, and incubation for 5 d, with 1% sodium nitrate and 1% galactose as the preferred nitrogen and carbon sources, respectively. Productivity was enhanced by NaCl, CuSO4, and FeCl3 supplementation, with a maximum at 0.3 mM, 0.2 mM, and 61.7 mM concentrations, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the purified enzyme through diethylaminoethyl (DEAE)-Sepharose chromatography revealed a prominent band at 71.1 kDa with maximum activity at pH 6 and stability at pH 6–9. Furthermore, it was optimally active at 50 °C and thermally stable at 50–80 °C with a half-life time (T1/2) of 333.7 min to 80.6 min, respectively. Its activity was also enhanced by many metallic ions, especially Fe3+ ions; however, it was inhibited by Hg2+ and Ag+ ions. The enzyme demonstrated significant degradation of specific substrates such as 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine, and 2,6-dichlorophenol, with a kinetic efficiency constant which ranged from 40.95 mM−1 s−1 to 238.20 mM−1 s−1. UV spectrophotometry confirmed efficient oxidation peaks by electron transition against guaiacol (at 300 nm), o-dianisidine (at 480 nm), ABTS (at 420 nm), and 2,6-dichlorophenol (at 600 nm). The results collectively demonstrate the potential of laccase from C. lunata MLK46 as a promising agent for the effective biodegradation of several industrial pollutants under extreme conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 599 KiB  
Article
Cocoa Pod Husk Valorization Through Rhizopus stolonifer Solid-State Fermentation: Enhancement in Antioxidant Activity
by Patrick Barros Tiburcio, Dão Pedro de Carvalho Neto, Carlos Ricardo Soccol and Adriane Bianchi Pedroni Medeiros
Microorganisms 2025, 13(4), 716; https://doi.org/10.3390/microorganisms13040716 - 22 Mar 2025
Cited by 1 | Viewed by 951
Abstract
Cocoa pod husk (CPH), a significant agricultural byproduct of cocoa production, presents an opportunity for sustainable valorization through biotechnological methods. This study aimed to enhance the nutritional, antioxidant, and therapeutic properties of CPH using solid-state fermentation (SSF) with Rhizopus stolonifer. Physicochemical characterization [...] Read more.
Cocoa pod husk (CPH), a significant agricultural byproduct of cocoa production, presents an opportunity for sustainable valorization through biotechnological methods. This study aimed to enhance the nutritional, antioxidant, and therapeutic properties of CPH using solid-state fermentation (SSF) with Rhizopus stolonifer. Physicochemical characterization confirmed CPH’s suitability for SSF, providing a nutrient-rich and favorable environment for fungal growth. The fermentation process significantly improved protein recovery (11.327 ± 0.859 mg g−1) and antioxidant activity, with ORAC (51.68 ± 0.35 mmol TE g−1) and DPPH (7.09 ± 0.05 µmol TE g−1) assays demonstrating marked increases in redox potential, particularly at 144 h and 96 h of fermentation, respectively. GC-MS analysis revealed the generation of bioactive compounds in fermented CPH (CPHF), including methyl 3-hydroxybutyrate, 10,12-Tricosadiynoic acid, and palmitic acid, which are known for their antioxidant, anti-inflammatory, and therapeutic properties. Additionally, phenolic compounds are biotransformed into more bioavailable forms, further enhancing the functional value of the material. This work demonstrates that SSF can effectively transform CPH from an agricultural waste product into a high-value biomaterial with potential applications in functional food, nutraceutical, and pharmaceutical industries. By addressing waste management challenges and promoting the development of innovative bio-based products, this study highlights the promising role of SSF in advancing sustainable and circular biotechnological solutions. Full article
(This article belongs to the Special Issue Microbial Manufacture of Natural Products)
Show Figures

Figure 1

14 pages, 3343 KiB  
Article
Characterization of a GH43 Bifunctional Glycosidase from Endophytic Chaetomium globosum and Its Potential Application in the Biotransformation of Ginsenosides
by Yao Lu, Qiang Jiang, Yamin Dong, Runzhen Ji, Yiwen Xiao, Du Zhu and Boliang Gao
BioTech 2025, 14(1), 18; https://doi.org/10.3390/biotech14010018 - 12 Mar 2025
Viewed by 760
Abstract
The GH43 family of glycosidases represents an important class of industrial enzymes that are widely utilized across the food, pharmaceutical, and various other sectors. In this study, we identified a GH43 family glycoside hydrolytic enzyme, Xyaf313, derived from the plant endophytic fungus [...] Read more.
The GH43 family of glycosidases represents an important class of industrial enzymes that are widely utilized across the food, pharmaceutical, and various other sectors. In this study, we identified a GH43 family glycoside hydrolytic enzyme, Xyaf313, derived from the plant endophytic fungus Chaetomium globosum DX-THS3, which is capable of transforming several common ginsenosides. The enzyme function analysis reveals that Xyaf313 exhibits dual functionality, displaying both α-L-arabinofuranosidase and β-D-xylosidase activity. When acting as an α-L-arabinofuranosidase, Xyaf313 achieves optimal enzyme activity of 23.96 U/mg at a temperature of 50 °C and a pH of 7. In contrast, its β-D-xylosidase activity results in a slight reduction in enzyme activity to 23.24 U/mg, with similar optimal temperature and pH conditions to those observed for the α-L-arabinofuranosidase activity. Furthermore, Xyaf313 demonstrates considerable resistance to most metal ions and common chemical reagents. Notably, while the maximum enzyme activity of Xyaf313 occurs at 50 °C, it maintains high activity at room temperature (30 °C), with relative enzyme activity exceeding 90%. Measurements of ginsenoside transformation show that Xyaf313 can convert common ginsenosides Rc, Rb1, Rb2, and Rb3 into Rd, underscoring its potential for pharmaceutical applications. Overall, our findings contribute to the identification of a new class of bifunctional GH43 glycoside hydrolases, highlight the significance of plant endophytic fungi as a promising resource for the screening of carbohydrate-decomposing enzymes, and present new candidate enzymes for the biotransformation of ginsenosides. Full article
Show Figures

Figure 1

14 pages, 4601 KiB  
Article
Bioconversion of Alpha-Cembratriene-4,6-diol into High-Value Compound Farnesal Through Employment of a Novel Stenotrophomonas maltophilia H3-1 Strain
by Shen Huang, Jiaming Cheng, Huibo Hu, Aamir Rasool, Robina Manzoor and Duobin Mao
Molecules 2025, 30(5), 1090; https://doi.org/10.3390/molecules30051090 - 27 Feb 2025
Viewed by 608
Abstract
Alpha-cembratriene-4,6-diol (α-CBT-diol) is a complex diterpenoid primarily found in Solanaceae (i.e., tobacco leaves), Pinaceae, and marine corals. Due to its intricate chemical structure, it serves as a precursor for several aroma compounds, including farnesal. Farnesal and its derivatives have applications across various [...] Read more.
Alpha-cembratriene-4,6-diol (α-CBT-diol) is a complex diterpenoid primarily found in Solanaceae (i.e., tobacco leaves), Pinaceae, and marine corals. Due to its intricate chemical structure, it serves as a precursor for several aroma compounds, including farnesal. Farnesal and its derivatives have applications across various fields, such as the fragrance and flavor industry, pharmaceuticals, agriculture, and cosmetics. In this study, Stenotrophomonas maltophilia H3-1, a strain capable of efficiently biodegrading α-CBT-diol into farnesal, was isolated from soil and identified through 16S rDNA sequence analysis. S. maltophilia H3-1 biodegraded 93.3% of α-CBT-diol (300 mg/L) within 36 h when grown under optimized culture conditions, including a temperature of 40 °C, pH of 8, 2 g/L maltose, and 2 g/L ammonium sulfate. Theoretically, this strain can produce 201 mg/L of farnesal during the biotransformation of α-CBT-diol. The putative α-CBT-diol bioconversion pathway expressed in S. maltophilia H3-1 is also proposed. This is the first study to report the bioconversion of α-CBT-diol into the high-value compound farnesal using a novel S. maltophilia H3-1 strain. It highlights that other compounds found in tobacco can also be bioconverted into valuable products. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

Back to TopTop