Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = industrial and municipal waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 404
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

26 pages, 1894 KiB  
Article
Illegal Waste Dumps and Water Quality: Environmental and Logistical Challenges for Sustainable Development—A Case Study of the Ružín Reservoir (Slovakia)
by Oľga Glova Végsöová and Martin Straka
Environments 2025, 12(8), 251; https://doi.org/10.3390/environments12080251 - 22 Jul 2025
Viewed by 621
Abstract
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO [...] Read more.
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO3) reaching 5.8 mg/L compared to the set limit of 2.5 mg/L and phosphorus concentrations exceeding the permissible values by a factor of five, thereby escalating the risk of eutrophication and loss of ecological stability of the aquatic ecosystem. The accumulation of heavy metals is also a problem—lead (Pb) concentrations reach up to 9.7 μg/L, which exceeds the safe limit by a factor of ten. Despite the measures implemented, such as scum barriers, there is continuous contamination of the aquatic environment, with illegal waste dumps and uncontrolled runoff of agrochemicals playing a significant role. The research results underline the critical need for a more effective environmental policy and more rigorous monitoring of toxic substances in real time. These findings highlight not only the urgency of more effective environmental policy and stricter real-time monitoring of toxic substances, but also the necessity of integrating environmental logistics into the design of sustainable solutions. Logistical approaches including the optimization of waste collection, coordination of stakeholders and creation of infrastructural conditions can significantly contribute to reducing environmental burdens and ensure the continuity of environmental management in ecologically sensitive areas. Full article
Show Figures

Figure 1

29 pages, 27846 KiB  
Review
Recycling and Mineral Evolution of Multi-Industrial Solid Waste in Green and Low-Carbon Cement: A Review
by Zishu Yue and Wei Zhang
Minerals 2025, 15(7), 740; https://doi.org/10.3390/min15070740 - 15 Jul 2025
Viewed by 275
Abstract
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. [...] Read more.
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. This review aims to investigate the current technological advances in utilizing industrial solid waste for cement production, with a focus on promoting resource recycling, phase transformations during hydration, and environmental management. The feasibility of incorporating coal-based solid waste, metallurgical slags, tailings, industrial byproduct gypsum, and municipal solid waste incineration into active mixed material for cement is discussed. This waste is utilized by replacing conventional raw materials or serving as active mixed material due to their content of oxygenated salt minerals and oxide minerals. The results indicate that the formation of hydration products can be increased, the mechanical strength of cement can be improved, and a notable reduction in CO2 emissions can be achieved through the appropriate selection and proportioning of mineral components in industrial solid waste. Further research is recommended to explore the synergistic effects of multi-waste combinations and to develop economically efficient pretreatment methods, with an emphasis on balancing the strength, durability, and environmental performance of cement. This study provides practical insights into the environmentally friendly and efficient recycling of industrial solid waste and supports the realization of carbon peak and carbon neutrality goals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

22 pages, 2129 KiB  
Article
Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge
by Rodolfo Daniel Silva-Martínez, Oscar Aguilar-Juárez, Lourdes Díaz-Jiménez, Blanca Estela Valdez-Guzmán, Brenda Aranda-Jaramillo and Salvador Carlos-Hernández
Fermentation 2025, 11(7), 398; https://doi.org/10.3390/fermentation11070398 - 11 Jul 2025
Viewed by 506
Abstract
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are [...] Read more.
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are established to lay the groundwork for further development of feasible industrial-scale projects. In this study, the biochemical hydrogen potential of OFMSW using a 7 L batch reactor at mesophilic conditions was evaluated. Parameters such as pH, redox potential, temperature, alkalinity, total solids, and substrate/inoculum ratio were adjusted and monitored. Biogas composition was analyzed by gas chromatography. The microbial characterization of SS and post-reaction percolate liquids was determined through metagenomics analyses. Results show a biohydrogen yield of 38.4 NmLH2/gVS OFMSW, which forms ~60% of the produced biogas. Aeration was proven to be an efficient inoculum pretreatment method, mainly to decrease the levels of methanogenic archaea and metabolic competition, and at the same time maintain the required total solid (TS) contents for high-solids conditions. The microbial community analysis reveals that biohydrogen production was carried out by specific anaerobic and aerobic bacteria, predominantly dominated by the phylum Firmicutes, including the genus Bacillus (44.63% of the total microbial community), Clostridium, Romboutsia, and the phylum Proteobacteria, with the genus Proteus. Full article
(This article belongs to the Special Issue Valorization of Food Waste Using Solid-State Fermentation Technology)
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 913
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

16 pages, 866 KiB  
Article
Integrated Cover Crop and Fertilization Strategies for Sustainable Organic Zucchini Production in Mediterranean Climate
by Francesco Montemurro, Mariangela Diacono, Vincenzo Alfano, Alessandro Persiani, Michele Mascia, Fabrizio Pisanu, Elisabetta Fois, Gioia Sannino and Roberta Farina
Horticulturae 2025, 11(7), 809; https://doi.org/10.3390/horticulturae11070809 - 8 Jul 2025
Viewed by 333
Abstract
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening [...] Read more.
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening using a roller crimper, RC), compared to a control without cover (CT). This agroecological practice was tested in combination with the following different fertilizer treatments: T1. compost produced by co-composting coal mining wastes with municipal organic wastes compost plus urea; T2. compost produced with the same matrices as T1, replacing urea with lawn mowing residues; T3. non-composted mixture of the industrial matrices; T4. on-farm compost obtained from crop residues. The GM management showed the highest marketable yield and aboveground biomass of zucchini, with both values higher by approximately 38% than those recorded in CT. The T1, T2, and T3 treatments showed higher SOC values compared to T4 in both years, with a gradual increase in SOC over time. The residual effect of fertilization on SOC showed a smaller reduction in T3 and T4 than in T1 and T2, in comparison with the levels recorded during the fertilization years, indicating a higher persistence of the applied organic matter in these treatments. The findings of this study pointed out that combining organic fertilization and cover cropping is an effective agroecological practice to maintain adequate zucchini yields and enhance SOC levels in the Mediterranean environment. Full article
Show Figures

Graphical abstract

14 pages, 1053 KiB  
Article
Agro-Food and Lignocellulosic Urban Wastes as Sugar-Rich Substrates for Multi-Product Oil-Based Biorefineries
by Alberto Rodríguez-López, María José Negro, José Luis Fernández-Rojo, Ignacio Ballesteros and Antonio D. Moreno
Appl. Sci. 2025, 15(13), 7240; https://doi.org/10.3390/app15137240 - 27 Jun 2025
Viewed by 318
Abstract
The effective use of biowaste resources becomes crucial for the development of bioprocessing alternatives to current oil- and chemical-based value chains. Targeting the development of multi-product biorefinery approaches benefits the viability and profitability of these process schemes. Certain oleaginous microorganisms, such as oleaginous [...] Read more.
The effective use of biowaste resources becomes crucial for the development of bioprocessing alternatives to current oil- and chemical-based value chains. Targeting the development of multi-product biorefinery approaches benefits the viability and profitability of these process schemes. Certain oleaginous microorganisms, such as oleaginous red yeast, can co-produce industrially relevant bio-based products. This work aims to explore the use of industrial and urban waste as cost-effective feedstock for producing microbial oil and carotenoids using Rhodosporidium toruloides. The soluble fraction, resulting from homogenization, crushing, and centrifugation of discarded vegetable waste, was used as substrate under a pulse-feeding strategy with a concentrated enzymatic hydrolysate from municipal forestry residue obtained after steam explosion pretreatment (190 °C, 10 min, and 40 mg H2SO4/g residue). Additionally, the initial nutrient content was investigated to enhance process productivity values. The promising results of these cultivation strategies yield a final cell concentration of 36.4–55.5 g/L dry cell weight (DCW), with an intracellular lipid content of up to 42–45% (w/w) and 665–736 µg/g DCW of carotenoids. These results demonstrate the potential for optimizing the use of waste resources to provide effective alternative uses to current biowaste management practices, also contributing to the market of industrially relevant products with lower environmental impacts. Full article
(This article belongs to the Special Issue Waste Valorization, Green Technologies and Circular Economy)
Show Figures

Figure 1

14 pages, 969 KiB  
Article
The Influence of the Use of Pyrolysis Oil as a Binder on the Physicochemical Properties of Pellets
by Bryan Romankiewicz and Błażej Gaze
Materials 2025, 18(13), 2935; https://doi.org/10.3390/ma18132935 - 20 Jun 2025
Viewed by 676
Abstract
The article presents the results of research on the effect of pyrolysis oil used as a binder in the pelletization process. The materials used to produce pyrolysis bio-oil were municipal organic waste and residues from greenhouse tomato production. The research assessed the mechanical [...] Read more.
The article presents the results of research on the effect of pyrolysis oil used as a binder in the pelletization process. The materials used to produce pyrolysis bio-oil were municipal organic waste and residues from greenhouse tomato production. The research assessed the mechanical strength, physicochemical properties, and modifications of the energy and emission parameters of the produced pellets. As a result, formed fuels were obtained, whose physicochemical properties, among others, were improved in terms of combustion heat (the value increased by up to 15.7%). After selected binders were used, the mechanical strength of the fuels also increased, which in the best variant increased by 2.87%. In all research cycles, valuable data was obtained that can be used, for example, in companies producing formed fuels, as well as in the agri-food industry, where a large amount of waste is generated, the properties of which have not previously allowed their use for energy purposes. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

19 pages, 3219 KiB  
Article
Development and Mechanical Analysis of Geopolymers Formed with Mining Residue and Fly Ash from Municipal Solid Waste Incineration Obtained After the Neutralisation Stage
by Antonia Terrones-Saeta, Juan María Terrones-Saeta, Jorge Suárez-Macías, Francisco Javier Iglesias-Godino and Francisco Antonio Corpas-Iglesias
Polymers 2025, 17(12), 1704; https://doi.org/10.3390/polym17121704 - 19 Jun 2025
Viewed by 256
Abstract
Renewable energy sources are presented as a key solution to today’s energy needs, but they also generate waste that can have a negative impact on the environment. In particular, fly ash from the incineration of municipal solid waste (MSW), classified as hazardous by [...] Read more.
Renewable energy sources are presented as a key solution to today’s energy needs, but they also generate waste that can have a negative impact on the environment. In particular, fly ash from the incineration of municipal solid waste (MSW), classified as hazardous by European regulations, is often deposited in landfills due to its lack of usefulness. This research proposes its valorisation in geopolymers, combining it with mining to create a sustainable material with a high industrial waste content. Firstly, all the wastes involved were characterised, which allowed for the development of a high-quality geopolymer from mining residue activated with 5% NaOH. This material was enriched with up to 50% fly ash (in increasing percentages) with the aim of making it inert, retaining it in the geopolymer matrix, and observing its effect on the final material. The physical and mechanical properties of the geopolymers obtained were evaluated, demonstrating that they do not produce contaminating leachates. The results indicate the feasibility of developing a geopolymer with up to 20% fly ash, obtaining a building material comparable to traditional ceramics, suitable for commercialisation, with a lower environmental impact and in line with the principles of the circular economy. Full article
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 467
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 1939 KiB  
Article
Tailings Reuse in Low-Permeability Reactive Geochemical Barriers
by Roberto Rodríguez-Pacheco, Joanna Butlanska and Aldo Onel Oliva-González
Processes 2025, 13(6), 1870; https://doi.org/10.3390/pr13061870 - 13 Jun 2025
Viewed by 325
Abstract
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the [...] Read more.
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the studied tailings is primarily composed of oxides and hydroxides of iron, aluminum, and silica. Based on their grain size, these wastes are geotechnically classified as low plasticity silts, with permeability ranging from 10−8 m/s to less than 10−9 m/s. Batch and column flow tests, along with metal transport tests using heavy metal-contaminated wastewater, reveal that these tailings have an adsorption capacity for metals such as nickel (Ni) and zinc (Zn) ranging from 2000 to 6000 mg/kg of solid. This high adsorption capacity surpasses that of many clayey soils used for sealing municipal, industrial, mining, and metallurgical waste deposits. Additionally, these wastes can neutralize the acidity of wastewater. The results indicate that the mineralogical composition and pH of these tailings are key factors determining their adsorption characteristics and mechanisms. Due to their characteristics, these tailings could be evaluated for use as low-permeability reactive geochemical barriers (LPRGB) in the conditioning of repositories for the storage of industrial, urban, mining and metallurgical waste. This would allow large volumes of tailings to be repurposed effectively. Full article
Show Figures

Figure 1

23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1855
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

20 pages, 2051 KiB  
Review
Unfired Bricks from Wastes: A Review of Stabiliser Technologies, Performance Metrics, and Circular Economy Pathways
by Yuxin (Justin) Wang and Hossam Abuel-Naga
Buildings 2025, 15(11), 1861; https://doi.org/10.3390/buildings15111861 - 28 May 2025
Cited by 1 | Viewed by 711
Abstract
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance [...] Read more.
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance metrics, and sustainability indicators across a wide variety of unfired brick systems. It thus provides a coherent reference framework to support further development and industrial translation. Emphasis is placed on the role of stabilisers—including cement, lime, geopolymers, and microbial or bio-based stabilisers—in improving mechanical strength, moisture resistance, and durability. Performance data are analysed in relation to compressive strength, water absorption, drying shrinkage, thermal conductivity, and resistance to freeze–thaw and wet–dry cycles. The findings indicate that properly stabilised unfired bricks can achieve compressive strengths above 20 MPa and water absorption rates below 10%, with notable improvements in insulation and acoustic properties. Additionally, life-cycle comparisons reveal up to 90% reductions in CO2 emissions and energy use relative to fired clay bricks. Despite technical and environmental advantages, broader adoption remains limited due to standardisation gaps and market unfamiliarity. The paper concludes by highlighting the importance of hybrid stabiliser systems, targeted certification frameworks, and waste valorisation policies to support the transition toward low-carbon, resource-efficient construction practices. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

Back to TopTop