Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = industrial 5G devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3479 KiB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 - 6 Aug 2025
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
Show Figures

Figure 1

18 pages, 1261 KiB  
Article
Firmware Attestation in IoT Swarms Using Relational Graph Neural Networks and Static Random Access Memory
by Abdelkabir Rouagubi, Chaymae El Youssofi and Khalid Chougdali
AI 2025, 6(7), 161; https://doi.org/10.3390/ai6070161 - 21 Jul 2025
Viewed by 439
Abstract
The proliferation of Internet of Things (IoT) swarms—comprising billions of low-end interconnected embedded devices—has transformed industrial automation, smart homes, and agriculture. However, these swarms are highly susceptible to firmware anomalies that can propagate across nodes, posing serious security threats. To address this, we [...] Read more.
The proliferation of Internet of Things (IoT) swarms—comprising billions of low-end interconnected embedded devices—has transformed industrial automation, smart homes, and agriculture. However, these swarms are highly susceptible to firmware anomalies that can propagate across nodes, posing serious security threats. To address this, we propose a novel Remote Attestation (RA) framework for real-time firmware verification, leveraging Relational Graph Neural Networks (RGNNs) to model the graph-like structure of IoT swarms and capture complex inter-node dependencies. Unlike conventional Graph Neural Networks (GNNs), RGNNs incorporate edge types (e.g., Prompt, Sensor Data, Processed Signal), enabling finer-grained detection of propagation dynamics. The proposed method uses runtime Static Random Access Memory (SRAM) data to detect malicious firmware and its effects without requiring access to firmware binaries. Experimental results demonstrate that the framework achieves 99.94% accuracy and a 99.85% anomaly detection rate in a 4-node swarm (Swarm-1), and 100.00% accuracy with complete anomaly detection in a 6-node swarm (Swarm-2). Moreover, the method proves resilient against noise, dropped responses, and trace replay attacks, offering a robust and scalable solution for securing IoT swarms. Full article
Show Figures

Figure 1

30 pages, 2049 KiB  
Review
Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review
by Luyu Ding, Chongxian Zhang, Yuxiao Yue, Chunxia Yao, Zhuo Li, Yating Hu, Baozhu Yang, Weihong Ma, Ligen Yu, Ronghua Gao and Qifeng Li
Sensors 2025, 25(14), 4515; https://doi.org/10.3390/s25144515 - 21 Jul 2025
Viewed by 620
Abstract
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, [...] Read more.
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, pressure sensors) offer unique advantages through continuous data streams that enhance behavioral traceability. Focusing specifically on contact sensing techniques, this review examines sensor characteristics and data acquisition challenges, methodologies for processing behavioral data and implementing identification algorithms, industrial applications enabled by recognition outcomes, and prevailing challenges with emerging research opportunities. Current behavior classification relies predominantly on traditional machine learning or deep learning approaches with high-frequency data acquisition. The fundamental limitation restricting advancement in this field is the difficulty in maintaining high-fidelity recognition performance at reduced acquisition rates, particularly for integrated multi-behavior identification. Considering that the computational demands and limited adaptability to complex field environments remain significant constraints, Tiny Machine Learning (Tiny ML) could present opportunities to guide future research toward practical, scalable behavioral monitoring solutions. In addition, algorithm development for functional applications post behavior recognition may represent a critical future research direction. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 444
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

20 pages, 1202 KiB  
Article
Enhanced Collaborative Edge Intelligence for Explainable and Transferable Image Recognition in 6G-Aided IIoT
by Chen Chen, Ze Sun, Jiale Zhang, Junwei Dong, Peng Zhang and Jie Guo
Sensors 2025, 25(14), 4365; https://doi.org/10.3390/s25144365 - 12 Jul 2025
Viewed by 302
Abstract
The Industrial Internet of Things (IIoT) has revolutionized industry through interconnected devices and intelligent applications. Leveraging the advancements in sixth-generation cellular networks (6G), the 6G-aided IIoT has demonstrated a superior performance across applications requiring low latency and high reliability, with image recognition being [...] Read more.
The Industrial Internet of Things (IIoT) has revolutionized industry through interconnected devices and intelligent applications. Leveraging the advancements in sixth-generation cellular networks (6G), the 6G-aided IIoT has demonstrated a superior performance across applications requiring low latency and high reliability, with image recognition being among the most pivotal. However, the existing algorithms often neglect the explainability of image recognition processes and fail to address the collaborative potential between edge computing servers. This paper proposes a novel method, IRCE (Intelligent Recognition with Collaborative Edges), designed to enhance the explainability and transferability in 6G-aided IIoT image recognition. By incorporating an explainable layer into the feature extraction network, IRCE provides visual prototypes that elucidate decision-making processes, fostering greater transparency and trust in the system. Furthermore, the integration of the local maximum mean discrepancy (LMMD) loss facilitates seamless transfer learning across geographically distributed edge servers, enabling effective domain adaptation and collaborative intelligence. IRCE leverages edge intelligence to optimize real-time performance while reducing computational costs and enhancing scalability. Extensive simulations demonstrate the superior accuracy, explainability, and adaptability of IRCE compared to those of the traditional methods. Moreover, its ability to operate efficiently in diverse environments highlights its potential for critical industrial applications such as smart manufacturing, remote diagnostics, and intelligent transportation systems. The proposed approach represents a significant step forward in achieving scalable, explainable, and transferable AI solutions for IIoT ecosystems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 2734 KiB  
Article
Fabrication and Performance Study of 3D-Printed Ceramic-in-Gel Polymer Electrolytes
by Xiubing Yao, Wendong Qin, Qiankun Hun, Naiyao Mao, Junming Li, Xinghua Liang, Ying Long and Yifeng Guo
Gels 2025, 11(7), 534; https://doi.org/10.3390/gels11070534 - 10 Jul 2025
Viewed by 268
Abstract
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at [...] Read more.
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at room temperature. The innovative application of 3D printing in the field of electrochemistry, particularly in solid-state electrolytes, endows energy storage devices with attractive characteristics. In this study, ceramic-in-gel polymer electrolytes (GPEs) based on PVDF-HFP/PAN@LLZTO were fabricated using a direct ink writing (DIW) 3D printing technique. Under the optimal printing conditions (printing speed of 40 mm/s and fill density of 70%), the printed electrolyte exhibited a uniform and dense sponge-like porous structure, achieving a high ionic conductivity of 5.77 × 10−4 S·cm−1, which effectively facilitated lithium-ion transport. A structural analysis indicated that the LLZTO fillers were uniformly dispersed within the polymer matrix, significantly enhancing the electrochemical stability of the electrolyte. When applied in a LiFePO4|GPEs|Li cell configuration, the electrolyte delivered excellent electrochemical performance, with high initial discharge capacities of 168 mAh·g−1 at 0.1 C and 166 mAh·g−1 at 0.2 C, and retained 92.8% of its capacity after 100 cycles at 0.2 C. This work demonstrates the great potential of 3D printing technology in fabricating high-performance GPEs. It provides a novel strategy for the structural design and industrial scalability of lithium-ion batteries. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

27 pages, 13752 KiB  
Article
Robust Watermarking of Tiny Neural Networks by Fine-Tuning and Post-Training Approaches
by Riccardo Adorante, Alessandro Carra, Marco Lattuada and Danilo Pietro Pau
Symmetry 2025, 17(7), 1094; https://doi.org/10.3390/sym17071094 - 8 Jul 2025
Viewed by 537
Abstract
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in [...] Read more.
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in cloud services and on resource-constrained edge devices. Consequently, safeguarding them is critically important. Neural network watermarking offers a practical solution to address this need by embedding a unique signature, either as a hidden bit-string or as a distinctive response to specially crafted “trigger” inputs. This allows owners to subsequently prove model ownership even if an adversary attempts to remove the watermark through attacks. In this manuscript, we adapt three state-of-the-art watermarking methods to “tiny” neural networks deployed on edge platforms by exploiting symmetry-related properties that ensure robustness and efficiency. In the context of machine learning, “tiny” is broadly used as a term referring to artificial intelligence techniques deployed in low-energy systems in the mW range and below, e.g., sensors and microcontrollers. We evaluate the robustness of the selected techniques by simulating attacks aimed at erasing the watermark while preserving the model’s original performances. The results before and after attacks demonstrate the effectiveness of these watermarking schemes in protecting neural network intellectual property without degrading the original accuracy. Full article
(This article belongs to the Section Computer)
Show Figures

Graphical abstract

21 pages, 1246 KiB  
Review
Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover
by Joel Henrique Ellwanger, Marina Ziliotto and José Artur Bogo Chies
J. Xenobiot. 2025, 15(4), 105; https://doi.org/10.3390/jox15040105 - 3 Jul 2025
Viewed by 595
Abstract
Climate change, mining activities, pollution and other human impacts on the natural environment cause significant changes in the concentrations and mixtures of metallic elements found in different ecosystems. Metals such as cadmium, copper, lead and mercury affect multiple aspects of host–pathogen interactions, influencing [...] Read more.
Climate change, mining activities, pollution and other human impacts on the natural environment cause significant changes in the concentrations and mixtures of metallic elements found in different ecosystems. Metals such as cadmium, copper, lead and mercury affect multiple aspects of host–pathogen interactions, influencing the risk of infectious diseases caused by various classes of pathogens. Notably, exposure to metals in doses and combinations toxic to the immune system can favor the dissemination of pathogens in natural environments, threatening the reproduction, well-being and survival of varied animal species. However, these problems remain neglected, since the influences of metals on infectious diseases are studied with a primary focus on human medicine. Therefore, this article aims to review the influence of metals/metalloids (e.g., arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc) on infectious and parasitic diseases in animals living in natural environments. The potential impact of metals on the risk of zoonotic spillover events is also discussed. Metal pollution tends to increase as the demand for elements used in the manufacture of industrial products, batteries, and electronic devices increases globally. This problem can aggravate the biodiversity crisis and facilitate the emergence of infectious diseases. Considering the interconnections between pollution and immunity, measures to limit metal pollution are necessary to protect human health and biodiversity from the risks posed by pathogens. This review helps fill the gap in the literature regarding the connections between metal pollution and various aspects of infectious diseases. Full article
Show Figures

Graphical abstract

22 pages, 557 KiB  
Article
Using Blockchain Ledgers to Record AI Decisions in IoT
by Vikram Kulothungan
IoT 2025, 6(3), 37; https://doi.org/10.3390/iot6030037 - 3 Jul 2025
Viewed by 867
Abstract
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In [...] Read more.
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In our approach, each AI inference comprising key inputs, model ID, and output is logged to a permissioned blockchain ledger, ensuring that every decision is traceable and auditable. IoT devices and edge gateways submit cryptographically signed decision records via smart contracts, resulting in an immutable, timestamped log that is tamper-resistant. This decentralized approach guarantees non-repudiation and data integrity while balancing transparency with privacy (e.g., hashing personal data on-chain) to meet data protection norms. Our design aligns with emerging regulations, such as the EU AI Act’s logging mandate and GDPR’s transparency requirements. We demonstrate the framework’s applicability in two domains: healthcare IoT (logging diagnostic AI alerts for accountability) and industrial IoT (tracking autonomous control actions), showing its generalizability to high-stakes environments. Our contributions include the following: (1) a novel architecture for AI decision provenance in IoT, (2) a blockchain-based design to securely record AI decision-making processes, and (3) a simulation informed performance assessment based on projected metrics (throughput, latency, and storage) to assess the approach’s feasibility. By providing a reliable immutable audit trail for AI in IoT, our framework enhances transparency and trust in autonomous systems and offers a much-needed mechanism for auditable AI under increasing regulatory scrutiny. Full article
(This article belongs to the Special Issue Blockchain-Based Trusted IoT)
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 301
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

27 pages, 10314 KiB  
Article
Immersive Teleoperation via Collaborative Device-Agnostic Interfaces for Smart Haptics: A Study on Operational Efficiency and Cognitive Overflow for Industrial Assistive Applications
by Fernando Hernandez-Gobertti, Ivan D. Kudyk, Raul Lozano, Giang T. Nguyen and David Gomez-Barquero
Sensors 2025, 25(13), 3993; https://doi.org/10.3390/s25133993 - 26 Jun 2025
Viewed by 494
Abstract
This study presents a novel investigation into immersive teleoperation systems using collaborative, device-agnostic interfaces for advancing smart haptics in industrial assistive applications. The research focuses on evaluating the quality of experience (QoE) of users interacting with a teleoperation system comprising a local robotic [...] Read more.
This study presents a novel investigation into immersive teleoperation systems using collaborative, device-agnostic interfaces for advancing smart haptics in industrial assistive applications. The research focuses on evaluating the quality of experience (QoE) of users interacting with a teleoperation system comprising a local robotic arm, a robot gripper, and heterogeneous remote tracking and haptic feedback devices. By employing a modular device-agnostic framework, the system supports flexible configurations, including one-user-one-equipment (1U-1E), one-user-multiple-equipment (1U-ME), and multiple-users-multiple-equipment (MU-ME) scenarios. The experimental set-up involves participants manipulating predefined objects and placing them into designated baskets by following specified 3D trajectories. Performance is measured using objective QoE metrics, including temporal efficiency (time required to complete the task) and spatial accuracy (trajectory similarity to the predefined path). In addition, subjective QoE metrics are assessed through detailed surveys, capturing user perceptions of presence, engagement, control, sensory integration, and cognitive load. To ensure flexibility and scalability, the system integrates various haptic configurations, including (1) a Touch kinaesthetic device for precision tracking and grounded haptic feedback, (2) a DualSense tactile joystick as both a tracker and mobile haptic device, (3) a bHaptics DK2 vibrotactile glove with a camera tracker, and (4) a SenseGlove Nova force-feedback glove with VIVE trackers. The modular approach enables comparative analysis of how different device configurations influence user performance and experience. The results indicate that the objective QoE metrics varied significantly across device configurations, with the Touch and SenseGlove Nova set-ups providing the highest trajectory similarity and temporal efficiency. Subjective assessments revealed a strong correlation between presence and sensory integration, with users reporting higher engagement and control in scenarios utilizing force feedback mechanisms. Cognitive load varied across the set-ups, with more complex configurations (e.g., 1U-ME) requiring longer adaptation periods. This study contributes to the field by demonstrating the feasibility of a device-agnostic teleoperation framework for immersive industrial applications. It underscores the critical interplay between objective task performance and subjective user experience, providing actionable insights into the design of next-generation teleoperation systems. Full article
(This article belongs to the Special Issue Recent Development of Flexible Tactile Sensors and Their Applications)
Show Figures

Figure 1

39 pages, 1839 KiB  
Review
The Integration of the Internet of Things (IoT) Applications into 5G Networks: A Review and Analysis
by Aymen I. Zreikat, Zakwan AlArnaout, Ahmad Abadleh, Ersin Elbasi and Nour Mostafa
Computers 2025, 14(7), 250; https://doi.org/10.3390/computers14070250 - 25 Jun 2025
Cited by 1 | Viewed by 1742
Abstract
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to [...] Read more.
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to thrive. This connectivity offers a diverse set of applications, including smart cities, self-driving cars, industrial automation, healthcare monitoring, and agricultural solutions. IoT devices can improve their reliability, real-time communication, and scalability by exploiting 5G’s advanced capabilities such as network slicing, edge computing, and enhanced mobile broadband. Furthermore, the convergence of IoT with 5G fosters interoperability, allowing for smooth communication across diverse devices and networks. This study examines the fundamental technical applications, obstacles, and future perspectives for integrating IoT applications with 5G networks, emphasizing the potential benefits while also addressing essential concerns such as security, energy efficiency, and network management. The results of this review and analysis will act as a valuable resource for researchers, industry experts, and policymakers involved in the progression of 5G technologies and their incorporation with IT solutions. Full article
Show Figures

Figure 1

14 pages, 9483 KiB  
Article
Optimizing an Urban Water Infrastructure Through a Smart Water Network Management System
by Evangelos Ntousakis, Konstantinos Loukakis, Evgenia Petrou, Dimitris Ipsakis and Spiros Papaefthimiou
Electronics 2025, 14(12), 2455; https://doi.org/10.3390/electronics14122455 - 17 Jun 2025
Viewed by 550
Abstract
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, [...] Read more.
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, cracking, and losses. Taking this into account, non-revenue water (i.e., water that is distributed to homes and facilities but not returning revenues) is estimated at almost 50%. To this end, intelligent water management via computational advanced tools is required in order to optimize water usage, to mitigate losses, and, more importantly, to ensure sustainability. To address this issue, a case study was developed in this paper, following a step-by-step methodology for the city of Heraklion, Greece, in order to introduce an intelligent water management system that integrates advanced technologies into the aging water distribution infrastructure. The first step involved the digitalization of the network’s spatial data using geographic information systems (GIS), aiming at enhancing the accuracy and accessibility of water asset mapping. This methodology allowed for the creation of a framework that formed a “digital twin”, facilitating real-time analysis and effective water management. Digital twins were developed upon real-time data, validated models, or a combination of the above in order to accurately capture, simulate, and predict the operation of the real system/process, such as water distribution networks. The next step involved the incorporation of a hydraulic simulation and modeling tool that was able to analyze and calculate accurate water flow parameters (e.g., velocity, flowrate), pressure distributions, and potential inefficiencies within the network (e.g., loss of mass balance in/out of the district metered areas). This combination provided a comprehensive overview of the water system’s functionality, fostering decision-making and operational adjustments. Lastly, automatic meter reading (AMR) devices could then provide real-time data on water consumption and pressure throughout the network. These smart water meters enabled continuous monitoring and recording of anomaly detections and allowed for enhanced control over water distribution. All of the above were implemented and depicted in a web-based environment that allows users to detect water meters, check water consumption within specific time-periods, and perform real-time simulations of the implemented water network. Full article
Show Figures

Figure 1

51 pages, 13105 KiB  
Review
Current Status and Trends of Wall-Climbing Robots Research
by Shengjie Lou, Zhong Wei, Jinlin Guo, Yu Ding, Jia Liu and Aiguo Song
Machines 2025, 13(6), 521; https://doi.org/10.3390/machines13060521 - 15 Jun 2025
Viewed by 1302
Abstract
A wall-climbing robot is an electromechanical device capable of autonomous or semi-autonomous movement on intricate vertical surfaces (e.g., walls, glass facades, pipelines, ceilings, etc.), typically incorporating sensing and adaptive control systems to enhance task performance. It is designed to perform tasks such as [...] Read more.
A wall-climbing robot is an electromechanical device capable of autonomous or semi-autonomous movement on intricate vertical surfaces (e.g., walls, glass facades, pipelines, ceilings, etc.), typically incorporating sensing and adaptive control systems to enhance task performance. It is designed to perform tasks such as inspection, cleaning, maintenance, and rescue while maintaining stable adhesion to the surface. Its applications span various sectors, including industrial maintenance, marine engineering, and aerospace manufacturing. This paper provides a systematic review of the physical principles and scalability of various attachment methods used in wall-climbing robots, with a focus on the applicability and limitations of different attachment mechanisms in relation to robot size and structural design. For specific attachment methods, the design and compatibility of motion and attachment mechanisms are analyzed to offer design guidance for wall-climbing robots tailored to different operational tasks. Additionally, this paper reviews localization and path planning methods for wall-climbing robots, comparing graph search, sampling-based, and feedback-based algorithms to guide strategy selection across varying environments and tasks. Finally, this paper outlines future development trends in wall-climbing robots, including the diversification of locomotion mechanisms, hybridization of attachment systems, and advancements in intelligent localization and path planning. This work provides a comprehensive theoretical foundation and practical reference for the design and application of wall-climbing robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

34 pages, 963 KiB  
Review
Synergizing Intelligence and Privacy: A Review of Integrating Internet of Things, Large Language Models, and Federated Learning in Advanced Networked Systems
by Hongming Yang, Hao Liu, Xin Yuan, Kai Wu, Wei Ni, J. Andrew Zhang and Ren Ping Liu
Appl. Sci. 2025, 15(12), 6587; https://doi.org/10.3390/app15126587 - 11 Jun 2025
Viewed by 926
Abstract
Bringing together the Internet of Things (IoT), LLMs, and Federated Learning (FL) offers exciting possibilities, creating a synergy to build smarter, privacy-preserving distributed systems. This review explores the merging of these technologies, particularly within edge computing environments. We examine current architectures and practical [...] Read more.
Bringing together the Internet of Things (IoT), LLMs, and Federated Learning (FL) offers exciting possibilities, creating a synergy to build smarter, privacy-preserving distributed systems. This review explores the merging of these technologies, particularly within edge computing environments. We examine current architectures and practical methods enabling this fusion, such as efficient low-rank adaptation (LoRA) for fine-tuning large models and memory-efficient Split Federated Learning (SFL) for collaborative edge training. However, this integration faces significant hurdles: the resource limitations of IoT devices, unreliable network communication, data heterogeneity, diverse security threats, fairness considerations, and regulatory demands. While other surveys cover pairwise combinations, this review distinctively analyzes the three-way synergy, highlighting how IoT, LLMs, and FL working in concert unlock capabilities unattainable otherwise. Our analysis compares various strategies proposed to tackle these issues (e.g., federated vs. centralized, SFL vs. standard FL, DP vs. cryptographic privacy), outlining their practical trade-offs. We showcase real-world progress and potential applications in domains like Industrial IoT and smart cities, considering both opportunities and limitations. Finally, this review identifies critical open questions and promising future research paths, including ultra-lightweight models, robust algorithms for heterogeneity, machine unlearning, standardized benchmarks, novel FL paradigms, and next-generation security. Addressing these areas is essential for responsibly harnessing this powerful technological blend. Full article
Show Figures

Figure 1

Back to TopTop