Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover
Abstract
1. Introduction
2. Methodological Notes
3. Impacts of Metal Exposure on Infection-Related Outcomes in Animals
3.1. Impacts on Insects (Bees)
3.2. Impacts on Mollusks
3.3. Impacts on Fish
3.4. Impacts of Reptiles
3.5. Impacts on Birds
3.6. Impacts on Non-Human Mammals
4. Synthesizing the Mechanisms
5. Potential Impacts of Metals on Zoonotic Spillover Events
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: A review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Zhao, F.J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Berry, M.J.; Ralston, N.V. Mercury toxicity and the mitigating role of selenium. Ecohealth 2008, 5, 456–459. [Google Scholar] [CrossRef]
- Nriagu, J.O. A History of Global Metal Pollution. Science 1996, 272, 223–224. [Google Scholar] [CrossRef]
- Naccarato, A.; Vommaro, M.L.; Amico, D.; Sprovieri, F.; Pirrone, N.; Tagarelli, A.; Giglio, A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. Toxics 2023, 11, 499. [Google Scholar] [CrossRef] [PubMed]
- Naccarato, A.; Vommaro, M.L.; Elliani, R.; Babczyńska, A.; Tagarelli, A.; Giglio, A. Tyre and road wear particles as carriers of metals and rare earth elements: Evidence of bioaccumulation in Tenebrio molitor. J. Hazard. Mater. 2025, 494, 138556. [Google Scholar] [CrossRef]
- Polukarova, M.; Gaggini, E.L.; Rødland, E.; Sokolova, E.; Bondelind, M.; Gustafsson, M.; Strömvall, A.M.; Andersson-Sköld, Y. Tyre wear particles and metals in highway roadside ditches: Occurrence and potential transport pathways. Environ. Pollut. 2025, 372, 125971. [Google Scholar] [CrossRef]
- Jasansky, S.; Lieber, M.; Giljum, S.; Maus, V. An open database on global coal and metal mine production. Sci. Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.A.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef] [PubMed]
- Vergilio, C.S.; Lacerda, D.; Oliveira, B.C.V.; Sartori, E.; Campos, G.M.; Pereira, A.L.S.; Aguiar, D.B.; Souza, T.D.S.; Almeida, M.G.; Thompson, F.; et al. Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Sci. Rep. 2020, 10, 5936. [Google Scholar] [CrossRef] [PubMed]
- Domingues, V.S.; Colmenero, C.; Vinograd, M.; Oliveira-da-Costa, M.; Balbueno, R. Mercury Dynamics and Bioaccumulation Risk Assessment in Three Gold Mining-Impacted Amazon River Basins. Toxics 2024, 12, 599. [Google Scholar] [CrossRef]
- Luo, X.; Ren, B.; Hursthouse, A.S.; Thacker, J.R.M.; Wang, Z. Soil from an Abandoned Manganese Mining Area (Hunan, China): Significance of Health Risk from Potentially Toxic Element Pollution and Its Spatial Context. Int. J. Environ. Res. Public Health 2020, 17, 6554. [Google Scholar] [CrossRef]
- Muimba-Kankolongo, A.; Lubaba Nkulu, C.B.; Mwitwa, J.; Kampemba, F.M.; Nabuyanda, M.M. Impacts of Trace Metals Pollution of Water, Food Crops, and Ambient Air on Population Health in Zambia and the DR Congo. J. Environ. Public Health 2022, 2022, 4515115. [Google Scholar] [CrossRef]
- Das, P.K.; Das, B.P.; Dash, P. Chromite mining pollution, environmental impact, toxicity and phytoremediation: A review. Environ. Chem. Lett. 2021, 19, 1369–1381. [Google Scholar] [CrossRef]
- Olías, M.; Nieto, J.M. Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain). Environments 2015, 2, 295–316. [Google Scholar] [CrossRef]
- Saunders, R.L.; Sprague, J.B. Effects of copper-zinc mining pollution on a spawning migration of atlantic salmon. Water Res. 1967, 1, 419–432. [Google Scholar] [CrossRef]
- Soe, P.S.; Kyaw, W.T.; Arizono, K.; Ishibashi, Y.; Agusa, T. Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 6290. [Google Scholar] [CrossRef]
- Beck, K.; Mariani, M.; Fletcher, M.; Schneider, L.; Aquino-López, M.; Gadd, P.; Heijnis, H.; Saunders, K.; Zawadzki, A. The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia. Environ. Pollut. 2020, 265, 114695. [Google Scholar] [CrossRef]
- Winde, F.; Sandham, L.A. Uranium pollution of South African streams—An overview of the situation in gold mining areas of the Witwatersrand. Geo J. 2004, 61, 131–149. [Google Scholar] [CrossRef]
- Ramani, S.; Dragun, Z.; Kapetanović, D.; Kostov, V.; Jordanova, M.; Erk, M.; Hajrulai-Musliu, Z. Surface Water Characterization of Three Rivers in the Lead/Zinc Mining Region of Northeastern Macedonia. Arch. Environ. Contam. Toxicol. 2014, 66, 514–528. [Google Scholar] [CrossRef]
- Stamatis, G.; Voudouris, K.; Karefilakis, F. Groundwater Pollution by Heavy Metals in Historical Mining Area of Lavrio, Attica, Greece. Water Air Soil. Pollut. 2001, 128, 61–83. [Google Scholar] [CrossRef]
- Maravelias, C.; Hatzakis, A.; Katsouyanni, K.; Trichopoulos, D.; Koutselinis, A.; Ewers, U.; Brockhaus, A. Exposure to lead and cadmium of children living near a lead smelter at Lavrion, Greece. Sci. Total Environ. 1989, 84, 61–70. [Google Scholar] [CrossRef] [PubMed]
- OMS-Organização Mundial da Saúde. Children and digital dumpsites. In E-Waste Exposure and Child Health; Organização Mundial da Saúde: Geneva, Switzerland, 2022. [Google Scholar]
- Ackland, M.L.; Bornhorst, J.; Dedoussis, G.V.; Dietert, R.R.; Nriagu, J.O.; Pacyna, J.M.; Pettifor, J.M. Metals in the Environment as Risk Factors for Infectious Diseases: Gaps and Opportunities. In Trace Metals and Infectious Diseases; Nriagu, J.O., Skaar, E.P., Eds.; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Harthill, M. Review: Micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol. Trace Elem. Res. 2011, 143, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Lipner, E.M.; French, J.P.; Nelson, S.; Falkinham Iii, J.O.; Mercaldo, R.A.; Blakney, R.A.; Daida, Y.G.; Frankland, T.B.; Messier, K.P.; Honda, J.R.; et al. Vanadium in groundwater aquifers increases the risk of MAC pulmonary infection in O’ahu, Hawai’i. Environ. Epidemiol. 2022, 6, e220. [Google Scholar] [CrossRef]
- Skaar, E.P.; Raffatellu, M. Metals in infectious diseases and nutritional immunity. Metallomics 2015, 7, 926–928. [Google Scholar] [CrossRef]
- Weiss, G.; Carver, P.L. Role of divalent metals in infectious disease susceptibility and outcome. Clin. Microbiol. Infect. 2018, 24, 16–23. [Google Scholar] [CrossRef]
- Bichet, C.; Scheifler, R.; Cœurdassier, M.; Julliard, R.; Sorci, G.; Loiseau, C. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 2013, 8, e53866. [Google Scholar] [CrossRef]
- Kosoy, M.; Biggins, D. Plague and Trace Metals in Natural Systems. Int. J. Environ. Res. Public Health 2022, 19, 9979. [Google Scholar] [CrossRef]
- Weinberg, E.D. The influence of soil on infectious disease. Experientia 1987, 43, 81–87. [Google Scholar] [CrossRef]
- NIH—National Institutes of Health, National Library of Medicine, National Center for Biotechnology Information. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 16 April 2025).
- Google. Google Scholar. Available online: https://scholar.google.com/ (accessed on 16 April 2025).
- Szentgyörgyi, H.; Blinov, A.; Eremeeva, N.; Luzyanin, S.; Grześ, I.M.; Woyciechowski, M. Bumblebees (Bombidae) along pollution gradient–Heavy metal accumulation, species diversity, and Nosema bombi infection level. Pol. J. Ecol. 2011, 59, 599–610. [Google Scholar]
- Evans, D.W.; Irwin, S.W.B.; Fitzpatrick, S. The effect of digenean (Platyhelminthes) infections on heavy metal concentrations in Littorina littorea. J. Mar. Biol. Assoc. UK 2001, 81, 349–350. [Google Scholar] [CrossRef]
- Baudrimont, M.; de Montaudouin, X.; Palvadeau, A. Impact of digenean parasite infection on metallothionein synthesis by the cockle (Cerastoderma edule): A multivariate field monitoring. Mar. Pollut. Bull. 2006, 52, 494–502. [Google Scholar] [CrossRef]
- Sharaf El-Din, A.T.; Mohamed, M.A.; Mohamed, A.H.; El-Hommossany, K.M.; Habib, M.R. Relationship between Some Heavy Metals and Schistosoma mansoni Infection Rates in Biomphalaria alexandrina Snails Collected from Different Egyptian Localities. World Appl. Sci. J. 2010, 11, 38–43. [Google Scholar]
- Pippi, J.H.C.; Hare, G.M. Relationship of River Pollution to Bacterial Infection in Salmon (Salmo salar) and Suckers (Catostomus commersoni). Trans. Am. Fish. Soc. 1969, 4, 685–690. [Google Scholar] [CrossRef]
- Hassanine, R.; Al-Hasawi, Z. Acanthocephalan Worms Mitigate the Harmful Impacts of Heavy Metal Pollution on Their Fish Hosts. Fishes 2021, 6, 49. [Google Scholar] [CrossRef]
- Marijić, V.F.; Smrzlić, I.V.; Raspor, B. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Sci. Total Environ. 2013, 463–464, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, J.H.; Wepener, V.; Nachev, M.; Zimmermann, S.; Malherbe, W.; Sures, B.; Smit, N.J. The role of fish helminth parasites in monitoring metal pollution in aquatic ecosystems: A case study in the world’s most productive platinum mining region. Parasitol. Res. 2020, 119, 2783–2798. [Google Scholar] [CrossRef]
- Mijošek, T.; Šariri, S.; Kljaković-Gašpić, Z.; Fiket, Ž.; Filipović Marijić, V. Interrelation between environmental conditions, acanthocephalan infection and metal(loid) accumulation in fish intestine: An in-depth study. Environ. Pollut. 2024, 356, 124358. [Google Scholar] [CrossRef]
- Soliman, M.F. Heavy metal pollution across sites affecting the intestinal helminth communities of the Egyptian lizard, Chalcides ocellatus (Forskal, 1775). Environ. Monit. Assess. 2012, 184, 7677–7685. [Google Scholar] [CrossRef]
- Khan, E.A.; Greve, M.; Russell, I.; Ciesielski, T.M.; Lundregan, S.; Jensen, H.; Rønning, B.; Bones, A.M.; Asimakopoulos, A.G.; Waugh, C.A.; et al. Lead exposure is related to higher infection rate with the gapeworm in Norwegian house sparrows (Passer. domesticus). Environ. Pollut. 2024, 344, 123443. [Google Scholar] [CrossRef]
- Mashima, T.Y.; Fleming, W.J.; Stoskopf, M.K. Metal concentrations in oldsquaw (Clangula hyemalis) during an outbreak of avian cholera, Chesapeake Bay, 1994. Ecotoxicology 1998, 7, 107–111. [Google Scholar] [CrossRef]
- Gasparini, J.; Jacquin, L.; Laroucau, K.; Vorimore, F.; Aubry, E.; Castrec-Rouëlle, M.; Frantz, A. Relationships between metals exposure and epidemiological parameters of two pathogens in urban pigeons. Bull. Environ. Contam. Toxicol. 2014, 92, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Bennett, P.M.; Jepson, P.D.; Law, R.J.; Jones, B.R.; Kuiken, T.; Baker, J.R.; Rogan, E.; Kirkwood, J.K. Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environ. Pollut. 2001, 112, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Tersago, K.; De Coen, W.; Scheirs, J.; Vermeulen, K.; Blust, R.; Van Bockstaele, D.; Verhagen, R. Immunotoxicology in wood mice along a heavy metal pollution gradient. Environ. Pollut. 2004, 132, 385–394. [Google Scholar] [CrossRef]
- Jankovská, I.; Langrová, I.; Bejcek, V.; Miholová, D.; Vadlejch, J.; Petrtyl, M. Heavy metal accumulation in small terrestrial rodents infected by cestodes or nematodes. Parasite 2008, 15, 581–588. [Google Scholar] [CrossRef]
- Brožová, A.; Jankovská, I.; Miholová, D.; Scháňková, Š.; Truněčková, J.; Langrová, I.; Kudrnáčová, M.; Vadlejch, J. Heavy metal concentrations in the small intestine of red fox (Vulpes vulpes) with and without Echinococcus multilocularis infection. Environ. Sci. Pollut. Res. Int. 2015, 22, 3175–3179. [Google Scholar] [CrossRef]
- Jankovská, I.; Miholová, D.; Bejcek, V.; Vadlejch, J.; Sulc, M.; Száková, J.; Langrová, I. Influence of parasitism on trace element contents in tissues of red fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Arch. Environ. Contam. Toxicol. 2010, 58, 469–477. [Google Scholar] [CrossRef]
- Becker, D.J.; Speer, K.A.; Korstian, J.M.; Volokhov, D.V.; Droke, H.F.; Brown, A.M.; Baijnauth, C.L.; Padgett-Stewart, T.; Broders, H.G.; Plowright, R.K.; et al. Disentangling interactions among mercury, immunity and infection in a Neotropical bat community. J. Appl. Ecol. 2021, 58, 879–889. [Google Scholar] [CrossRef]
- Uwizeyimana, H.; Wang, M.; Chen, W.; Khan, K. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ. Toxicol. Pharmacol. 2017, 55, 20–29. [Google Scholar] [CrossRef]
- Jiang, D.; Tan, M.; Guo, Q.; Yan, S. Transfer of heavy metal along food chain: A mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest. Manag. Sci. 2021, 77, 1115–1120. [Google Scholar] [CrossRef]
- Sorvari, J.; Rantala, L.M.; Rantala, M.J.; Hakkarainen, H.; Eeva, T. Heavy metal pollution disturbs immune response in wild ant populations. Environ. Pollut. 2007, 145, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Hrdina, A.; Iatsenko, I. The roles of metals in insect-microbe interactions and immunity. Curr. Opin. Insect Sci. 2022, 49, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lang, M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Sures, B.; Siddall, R.; Taraschewski, H. Parasites as accumulation indicators of heavy metal pollution. Parasitol. Today 1999, 15, 16–21. [Google Scholar] [CrossRef]
- Abd Allah, A.T.; Wanas, M.Q.S.; Thompson, S.N. Effects of heavy metals on survival and growth of Biomphalaria glabrata say (Gastropoda: Pulmonata) and interaction with Schistosome infection. J. Molluscan Stud. 1997, 63, 79–86. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Energy allocation patterns in Biomphalaria alexandrina snails in response to cadmium exposure and Schistosoma mansoni infection. Exp. Parasitol. 2006, 112, 31–36. [Google Scholar] [CrossRef]
- Bagheri, S.; Gholamhosseini, A.; Hoseinifar, S.H.; Banaee, M. Investigation of the effects of heavy metals (copper, cobalt, manganese, selenium, and zinc) on fish immune systems—An overview. Ann. Anim. Sci. 2024, 24, 1025–1035. [Google Scholar] [CrossRef]
- Sures, B.; Siddall, R. Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. Int. J. Parasitol. 2003, 33, 65–70. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Brazil’s heavy metal pollution harms humans and ecosystems. Sci. One Health 2023, 2, 100019. [Google Scholar] [CrossRef]
- Das, K.; Siebert, U.; Gillet, A.; Dupont, A.; Di-Poï, C.; Fonfara, S.; Mazzucchelli, G.; De Pauw, E.; De Pauw-Gillet, M.C. Mercury immune toxicity in harbour seals: Links to in vitro toxicity. Environ. Health 2008, 7, 52. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Coll, N.; Ortiz-Santaliestra, M.E.; Mougeot, F.; Vidal, D.; Mateo, R. Sublethal Pb exposure produces season-dependent effects on immune response, oxidative balance and investment in carotenoid-based coloration in red-legged partridges. Environ. Sci. Technol. 2015, 49, 3839–3850. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, L.; Wang, M.; Sun, W.; Yu, S.; Turner, J.R.; Yu, Q. Cadmium ingestion exacerbates Salmonella infection, with a loss of goblet cells through activation of Notch signaling pathways by ROS in the intestine. J. Hazard. Mater. 2020, 391, 122262. [Google Scholar] [CrossRef] [PubMed]
- Sures, B.; Scheef, G.; Klar, B.; Kloas, W.; Taraschewski, H. Interaction between cadmium exposure and infection with the intestinal parasite Moniliformis moniliformis (Acanthocephala) on the stress hormone levels in rats. Environ. Pollut. 2002, 119, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Hsu, K.S.; Goodale, B.C.; Ely, K.H.; Hampton, T.H.; Stanton, B.A.; Enelow, R.I. Single-cell RNA-seq Analysis Reveals That Prenatal Arsenic Exposure Results in Long-term, Adverse Effects on Immune Gene Expression in Response to Influenza A Infection. Toxicol. Sci. 2020, 176, 312–328. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Ziliotto, M.; Chies, J.A.B. Toxicogenomics of Arsenic, Lead and Mercury: The Toxic Triad. Pollutants 2025, 5, 18. [Google Scholar] [CrossRef]
- Murdoch, C.C.; Skaar, E.P. Nutritional immunity: The battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef]
- Sures, B. Environmental parasitology. Interactions between parasites and pollutants in the aquatic environment. Parasite 2008, 15, 434–438. [Google Scholar] [CrossRef]
- Sures, B. Host–parasite interactions in polluted environments. J. Fish. Biol. 2008, 73, 2133–2142. [Google Scholar] [CrossRef]
- Afzal, A.; Mahreen, N. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Front. Pharmacol. 2024, 15, 1375137. [Google Scholar] [CrossRef] [PubMed]
- Ziliotto, M.; Chies, J.A.B.; Ellwanger, J.H. Toxicogenomics of persistent organic pollutants: Potential impacts on biodiversity and infectious diseases. Anthropocene 2024, 48, 100450. [Google Scholar] [CrossRef]
- Rothenburger, J.L.; Himsworth, C.H.; Nemeth, N.M.; Pearl, D.L.; Jardine, C.M. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species. Ecohealth 2017, 14, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Floryszak-Wieczorek, J.; Sobieszczuk-Nowicka, E.; Mattoo, A.; Arasimowicz-Jelonek, M. Fungal and oomycete pathogens and heavy metals: An inglorious couple in the environment. IMA Fungus 2022, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Dai, Z.; Guo, X.; Lin, J.; Wang, X.; He, D.; Zeng, R.; Meng, J.; Luo, J.; Delgado-Baquerizo, M.; Moreno-Jiménez, E.; et al. Metallic micronutrients are associated with the structure and function of the soil microbiome. Nat. Commun. 2023, 14, 8456. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; da Veiga, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An. Acad. Bras. Cienc. 2020, 92, e20191375. [Google Scholar] [CrossRef]
- Douine, M.; Bonifay, T.; Lambert, Y.; Mutricy, L.; Galindo, M.S.; Godin, A.; Bourhy, P.; Picardeau, M.; Saout, M.; Demar, M.; et al. Zoonoses and gold mining: A cross-sectional study to assess yellow fever immunization, Q fever, leptospirosis and leishmaniasis among the population working on illegal mining camps in French Guiana. PLoS Negl. Trop. Dis. 2022, 16, e0010326. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Fearnside, P.M.; Ziliotto, M.; Valverde-Villegas, J.M.; da Veiga, A.B.G.; Vieira, G.F.; Bach, E.; Cardoso, J.C.; Müller, N.F.D.; Lopes, G.; et al. Synthesizing the connections between environmental disturbances and zoonotic spillover. An. Acad. Bras. Cienc. 2022, 94, e20211530. [Google Scholar] [CrossRef]
- Keck, F.; Peller, T.; Alther, R.; Barouillet, C.; Blackman, R.; Capo, E.; Chonova, T.; Couton, M.; Fehlinger, L.; Kirschner, D.; et al. The global human impact on biodiversity. Nature, 2025; in press. [Google Scholar] [CrossRef]
- Mahon, M.B.; Sack, A.; Aleuy, O.A.; Barbera, C.; Brown, E.; Buelow, H.; Civitello, D.J.; Cohen, J.M.; de Wit, L.A.; Forstchen, M.; et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 2024, 629, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Chies, J.A.B. Zoonotic spillover: Understanding basic aspects for better prevention. Genet. Mol. Biol. 2021, 44, e20200355. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Eby, P.; Hudson, P.J.; Smith, I.L.; Westcott, D.; Bryden, W.L.; Middleton, D.; Reid, P.A.; McFarlane, R.A.; Martin, G.; et al. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 2015, 282, 20142124. [Google Scholar] [CrossRef] [PubMed]
- Jolles, A.E.; Beechler, B.R.; Dolan, B.P. Beyond mice and men: Environmental change, immunity and infections in wild ungulates. Parasite Immunol. 2015, 37, 255–266. [Google Scholar] [CrossRef]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Beck, M.A. Trace Minerals, Immune Function, and Viral Evolution. In Military Strategies for Sustainment of Nutrition and Immune Function in the Field; Institute of Medicine (US), Committee on Military Nutrition Research; National Academies Press: Washington DC, WA, USA, 1999. [Google Scholar]
- Trevejo, R.T.; Barr, M.C.; Robinson, R.A. Important emerging bacterial zoonotic infections affecting the immunocompromised. Vet. Res. 2005, 36, 493–506. [Google Scholar] [CrossRef]
- Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107, 7–15. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Ziliotto, M.; Kulmann-Leal, B.; Chies, J.A.B. Iron deficiency and soil-transmitted helminth infection: Classic and neglected connections. Parasitol. Res. 2022, 121, 3381–3392. [Google Scholar] [CrossRef]
- Griffiths, B.M.; Luther, D.C.; Pollock, H.S. Mineral Licks: An Overlooked Model System for Species Interactions. Biotropica 2025, 57, e70003. [Google Scholar] [CrossRef]
- Harada, M. The Global Lessons of Minamata Disease: An Introduction to Minamata Studies. In Taking Life and Death Seriously-Bioethics from Japan; Takahashi, T., Ed.; Emerald Group Publishing Limited: Leeds, UK, 2005; Volume 8, pp. 299–335. [Google Scholar] [CrossRef]
- Balogh, S.J.; Tsui, T.; Blum, J.D.; Matsuyama, A.; Woerndle, G.E.; Yano, S.; Tada, A. Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environ. Sci. Technol. 2015, 49, 5399–5406. [Google Scholar] [CrossRef]
- Neuwirth, L.S.; Whigham, K. “Only Time Will Tell”: The Underexplored Impacts of Lead Poisoning and COVID-19 on Pre-Existing ACEs in New York. Youth 2023, 3, 1212–1224. [Google Scholar] [CrossRef]
- De Alencar, L.L.; Henriques, G.S.; Cozzolino, S.M.F. Ferro. In Biodisponibilidade de Nutrientes, 7th ed.; Cozzolino, S.M.F. (Org.). Manole: Barueri, Brazil, 2024; Chapter 29; pp. 483–504. [Google Scholar]
- Duarte, G.B.S.; Vale, S.H.L.; Reis, B.Z.; Cozzolino, S.M.F. Zinco. In Biodisponibilidade de Nutrientes, 7th ed.; Cozzolino, S.M.F. (Org.). Manole: Barueri, Brazil, 2024; Chapter 31; pp. 299–335. [Google Scholar]
- WHO—World Health Organization. Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 24 June 2025).
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Bernardino, C.A.R.; Mahler, C.F.; Preussler, K.H.; Novo, L.A.B. State of the Art of Phytoremediation in Brazil—Review and Perspectives. Water Air Soil. Pollut. 2016, 227, 272. [Google Scholar] [CrossRef]
- Wang, J.; Aghajani Delavar, M. Techno-economic analysis of phytoremediation: A strategic rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Triple planetary crisis and emerging zoonotic diseases: Consider degrowth as a solution. Earth Critical Zone 2025, 100030. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G.; Jackson, T.; O’Neill, D.W.; Schor, J.B.; Steinberger, J.K.; Victor, P.A.; Ürge-Vorsatz, D. Degrowth can work-here’s how science can help. Nature 2022, 612, 400–403. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2017, 5, 156–163. [Google Scholar] [CrossRef]
Region and/or Country | Mining Enterprise | Type of Pollution | Reference |
---|---|---|---|
Hunan, China | Manganese mining | Metal pollution | Luo et al. [12] |
Zambia and the Democratic Republic of Congo | Copper–cobalt mining | High concentrations of trace elements | Muimba-Kankolongo et al. [13] |
Odisha, India | Chromite mining | Chromium pollution | Das et al. [14] |
Huelva, Spain | Copper mining | Acid mine drainage | Olías and Nieto [15] |
New Brunswick, Canada | Copper–zinc mining | Copper–zinc pollution | Saunders and Sprague [16] |
Myanmar and other Southeast Asian countries, Asia | Artisanal and small-scale gold mining | Mercury pollution | Soe et al. [17] |
Tasmania, Australia | Copper mining | Metal pollution | Beck et al. [18] |
Witwatersrand basin, South Africa | Gold mining | Uranium and other metals pollution | Winde and Sandham [19] |
Kratovo-Zletovo and Sasa-Toranica, Republic of North Macedonia | Lead–zinc mining | High concentrations of trace elements | Ramani et al. [20] |
Attica, Greece | Silver mining | Metal pollution | Stamatis et al. [21] |
Lead–zinc mining and smelting industrial complex | Lead pollution | Maravelias et al. [22] |
Animal Group | Popular Name | Main Findings | Reference |
---|---|---|---|
Insect | Bumblebee | Although bees from a specific polluted site exhibited a higher infection rate, metal pollution indexes showed no significant correlation with Nosema bombi infection levels. | Szentgyörgyi et al. [34] |
Mollusk | Periwinkle | Littorina littorea periwinkles infected with digenean parasites showed reduced metal levels (i.e., Fe, Cu, Ni) compared to uninfected periwinkles. | Evans et al. [35] |
Cockles | No major significant difference in metal levels between cockles parasitized with Labratrema minimus and those without infection. | Baudrimont et al. [36] | |
Snail | Cadmium, Pb, Cu and Hg water levels affected the Schistosoma mansoni infection rate in the offspring of Biomphalaria alexandrina snails (the snails were collected in water bodies in nature, but snails were reared in the laboratory and their first generations were used in infection experiments). | Sharaf El-Din et al. [37] | |
Fish | Atlantic salmon | A bacterial epizootic outbreak (Aeromonas liquefaciens) affecting Atlantic salmon (Salmo salar) and suckers (Catostomus commersonii) was associated with metal pollution (Cu and Zn) and high river temperatures. | Pippi and Hare [38] |
Marbled spinefoot | Cadmium and Pb concentrations in the liver of fish (Siganus rivulatus) infected with Sclerocollum rubrimaris were lower compared to uninfected fish. | Hassanine and Al-Hasawi [39] | |
Chub | Chub (Squalius cephalus) infected with Pomphorhynchus laevis showed lower levels of Cu, Cd and Pb compared to uninfected fish. | Marijić et al. [40] | |
Common carp and sharptooth catfish | Common carp (Cyprinus carpio) infected with the cestode Atractolytocestus huronensis showed a tendency of lower metal concentrations compared to uninfected fish. Sharptooth catfish (Clarias gariepinus) with a higher infection load by the nematode Contracaecum sp. showed lower tissue levels of metals compared with those fish with reduced parasite load. | Erasmus et al. [41] | |
Brown trout | Acanthocephalans (Dentitruncus truttae) showed higher metal content (e.g., As, Cr, Mn, Pb, Cd, Tl) than fish (Salmo trutta) in intestinal tissues. A higher parasite load was associated with lower metal accumulation in fish. | Mijošek et al. [42] | |
Reptile | Lizard | Nematode and cestode infection intensity in Chalcides ocellatus lizards correlated positively with Cu, Cd and Pb levels. | Soliman [43] |
Bird | Sparrow | Lead concentrations were positively correlated with Plasmodium relictum prevalence in Passer domesticus sparrows. Cadmium was negatively associated with infection prevalence. | Bichet et al. [29] |
Elevated Pb levels were associated with increased gapeworm infection rate. Mercury also showed moderate association. A lower concentration of V was observed in infected birds. | Khan et al. [44] | ||
Oldsquaw | High levels of Cd in tissues were associated with an outbreak of avian cholera in oldsquaws (Clangula hyemalis). Selenium and Hg liver concentrations were lower in infected birds. | Mashima et al. [45] | |
Pigeon | High levels of Zn in feathers were associated with protection against Chlamydiaceae and Haemosporidian pathogens in urban pigeons (Columba livia). Elevated Pb levels were associated with increased Haemosporidian infection intensity. | Gasparini et al. [46] | |
Mammal | Harbor porpoise | Harbor porpoises (Phocoena phocoena) that died from infectious diseases had higher average liver metal levels compared to controls that died from physical trauma. | Bennet et al. [47] |
Wood mice | Resistance of wood mice (Apodemus sylvaticus) to parasites decreased with increasing exposure to metals. | Tersago et al. [48] | |
Rodents | The classes of parasites with which small rodents (Microtus agrestris and Apodemus flavicolis) are infected (cestodes: Paranoplocephala spp. versus nematodes: Mastophorus muris) influence the levels of metals in rodent tissues. | Jankovská et al. [49] | |
Red fox | Foxes (Vulpes vulpes) infected with Echinococcus multilocularis showed reduced levels of Cd and Pb and increased levels of other metals, especially Fe, compared to non-infected foxes. | Brožová et al. [50] | |
Foxes (Vulpes vulpes) infected with the intestinal parasites (Toxascaris leonina and Mesocestoides spp.) showed decreased Pb levels compared to non-infected foxes. The levels of other metals were also affected by infection status. | Jankovská et al. [51] | ||
Bat | Mercury was associated with varying bacterial infection outcomes across bat species within a bat community in Belize. | Becker et al. [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellwanger, J.H.; Ziliotto, M.; Chies, J.A.B. Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover. J. Xenobiot. 2025, 15, 105. https://doi.org/10.3390/jox15040105
Ellwanger JH, Ziliotto M, Chies JAB. Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover. Journal of Xenobiotics. 2025; 15(4):105. https://doi.org/10.3390/jox15040105
Chicago/Turabian StyleEllwanger, Joel Henrique, Marina Ziliotto, and José Artur Bogo Chies. 2025. "Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover" Journal of Xenobiotics 15, no. 4: 105. https://doi.org/10.3390/jox15040105
APA StyleEllwanger, J. H., Ziliotto, M., & Chies, J. A. B. (2025). Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover. Journal of Xenobiotics, 15(4), 105. https://doi.org/10.3390/jox15040105