Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (829)

Search Parameters:
Keywords = induced pluripotent stem cells (iPSC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2407 KB  
Review
Modeling Late-Onset Sporadic Alzheimer’s Disease Using Patient-Derived Cells: A Review
by Alisar Katbe, Ismaïla Diagne and Gilbert Bernier
Neurol. Int. 2026, 18(1), 17; https://doi.org/10.3390/neurolint18010017 - 14 Jan 2026
Viewed by 101
Abstract
Late-onset sporadic Alzheimer’s disease (LOAD) is the most common form of dementia. The disease is characterized by progressive loss of memory and behavioral changes followed by neurodegeneration of all cortical areas. While the contribution of genetic and environmental factors is important, advanced aging [...] Read more.
Late-onset sporadic Alzheimer’s disease (LOAD) is the most common form of dementia. The disease is characterized by progressive loss of memory and behavioral changes followed by neurodegeneration of all cortical areas. While the contribution of genetic and environmental factors is important, advanced aging remains the most important disease risk factor. Because LOAD does not naturally occur in most animal species, except humans, studies have traditionally relied on the use of transgenic mouse models recapitulating early-onset familial Alzheimer’s disease (EOAD). Hence, the development of more representative LOAD models through reprograming of patient-derived cells into neuronal, glial, and immune cells became a necessity to better understand the disease’s origin and pathophysiology. Herein, and focusing on neurons, we review current work in the field and compare results obtained with two different reprograming methods to generate LOAD patient’s neuronal cells: the induced pluripotent stem cell and induced neuron technologies. We also evaluate if these models can faithfully mimic cellular and molecular pathologies observed in LOAD patients’ brains. Full article
(This article belongs to the Special Issue Advances in Molecular Mechanisms of Neurodegenerative Diseases)
Show Figures

Graphical abstract

21 pages, 5820 KB  
Article
Transcriptomic Profile of Directed Differentiation of iPSCs into Hepatocyte-like Cells
by Irina Panchuk, Valeriia Kovalskaia, Konstantin Kochergin-Nikitsky, Valentina Yakushina, Natalia Balinova, Oxana Ryzhkova, Alexander Lavrov and Svetlana Smirnikhina
Int. J. Mol. Sci. 2026, 27(2), 633; https://doi.org/10.3390/ijms27020633 - 8 Jan 2026
Viewed by 171
Abstract
The liver is the central organ in metabolism; however, modeling hepatic diseases remains limited by current experimental models. Animal models frequently fail to predict human liver physiology, while primary hepatocytes rapidly dedifferentiate in culture. We performed comprehensive transcriptomic profiling of induced pluripotent stem [...] Read more.
The liver is the central organ in metabolism; however, modeling hepatic diseases remains limited by current experimental models. Animal models frequently fail to predict human liver physiology, while primary hepatocytes rapidly dedifferentiate in culture. We performed comprehensive transcriptomic profiling of induced pluripotent stem cells (iPSCs) differentiation into hepatocyte-like cells (HLCs) under two-dimensional (2D) and three-dimensional (3D) culture conditions. RNA sequencing analysis revealed the sequential activation of lineage-specific markers across major developmental stages: definitive endoderm (FOXA2, SOX17, CXCR4, CER1, GATA4), posterior foregut (PROX1, GATA6), and hepatoblasts (HNF4A, AFP). Comparative analysis demonstrated a markedly enhanced hepatic gene expression of 3D organoids, as demonstrated by a 33-fold increase in HNF4A expression and elevated levels of mature hepatocyte markers, including ALB, SERPINA1, and UGT2B15. However, the 3D cultures retained fetal characteristics (290-fold higher AFP expression) and exhibited significantly impaired metabolic function, with CYP3A4 expression levels reduced by 2000-fold compared to the adult human liver. This partial maturation was further supported by a moderate correlation with adult liver tissue (ρ = 0.57). We demonstrated high reproducibility across five biologically distinct iPSCs lines, including those derived from patients with rare monogenic disorders. The establishment of quantitative benchmarks provides a crucial tool for standardizing in vitro liver models. Furthermore, we delineate the specific limitations of the current model, highlighting the need for further protocol optimization to enhance metabolic maturation and P450 enzyme activity. Functional validation of metabolic activity (CYP enzyme assays, albumin secretion) was not performed; therefore, conclusions regarding hepatocyte functionality are based on transcriptomic evidence. Full article
Show Figures

Figure 1

28 pages, 1177 KB  
Review
Extracellular Vesicles in Osteogenesis: Comparative Analysis of Stem Cell Sources, Conditioning Strategies, and In Vitro Models Toward Advanced Bone Regeneration
by Luca Dalle Carbonare, Arianna Minoia, Michele Braggio, Francesca Cristiana Piritore, Anna Vareschi, Mattia Cominacini, Alberto Gandini, Franco Antoniazzi, Daping Cui, Maria Grazia Romanelli and Maria Teresa Valenti
Cells 2026, 15(1), 27; https://doi.org/10.3390/cells15010027 - 23 Dec 2025
Viewed by 534
Abstract
Extracellular vesicles (EVs) derived from stem cells have emerged as promising mediators of osteogenesis, suggesting cell-free alternatives for bone tissue engineering and regenerative medicine. This review provides a comprehensive analysis of the main stem cell sources used for EV production, including bone marrow [...] Read more.
Extracellular vesicles (EVs) derived from stem cells have emerged as promising mediators of osteogenesis, suggesting cell-free alternatives for bone tissue engineering and regenerative medicine. This review provides a comprehensive analysis of the main stem cell sources used for EV production, including bone marrow mesenchymal stem cells (BM-MSCs), adipose-derived stem cells (ADSCs), umbilical cord MSCs (UC-MSCs), induced pluripotent stem cells (iPSCs), and alternative stromal populations. Particular attention is given to the ways in which different conditioning and differentiation strategies, such as osteogenic induction, hypoxia, and mechanical stimulation, modulate EV cargo composition and enhance their therapeutic potential. We further discuss the in vitro models employed to evaluate EV-mediated bone regeneration, ranging from 2D cultures to complex 3D spheroids, scaffold-based systems, and bone organoids. Overall, this review emphasizes the current challenges related to standardization, scalable production, and clinical translation. It also outlines future directions, including bioengineering approaches, advanced preclinical models, and the integration of multi-omics approaches and artificial intelligence to optimize EV-based therapies. By integrating current knowledge, this work aims to guide researchers toward more consistent and physiologically relevant strategies to harness EVs for effective bone regeneration. Finally, this work uniquely integrates a comparative analysis of EVs from multiple stem cell sources with engineering strategies and emerging clinical perspectives, thereby providing an updated and translational framework for their application in bone regeneration. Full article
Show Figures

Figure 1

14 pages, 1661 KB  
Article
Karyotypic Profiling of Induced Pluripotent Stem Cells Derived from a Xeroderma Pigmentosum Group C Patient
by Almaqdad Alsalloum, Natalia Mingaleva, Ekaterina Gornostal, Zoia Antysheva, Peter Sparber, Mikhail Skoblov, Victoria Pozhitnova, Tatiana Belysheva, Aygun Levashova, Ekaterina Kuznetsova, Yulia Suvorova, Julia Krupinova, Viktor Bogdanov, Alexej Abyzov, Olga Mityaeva and Pavel Volchkov
Cells 2025, 14(24), 1985; https://doi.org/10.3390/cells14241985 - 14 Dec 2025
Viewed by 420
Abstract
Xeroderma Pigmentosum group C (XP-C) is an autosomal recessive disorder caused by mutations in the XPC gene, leading to defective nucleotide excision repair. This defect leads to genomic instability and a profound cancer predisposition. To model this disease, we generated induced pluripotent stem [...] Read more.
Xeroderma Pigmentosum group C (XP-C) is an autosomal recessive disorder caused by mutations in the XPC gene, leading to defective nucleotide excision repair. This defect leads to genomic instability and a profound cancer predisposition. To model this disease, we generated induced pluripotent stem cells (iPSCs) from an XP-C patient carrying a novel homozygous nonsense mutation in the XPC gene (c.1830C>A). The resulting iPSCs demonstrated typical pluripotent characteristics, including expression of key markers and trilineage differentiation capability. However, genomic assessment revealed progressive karyotypic instability during extended culture. While initial whole-genome sequencing detected no major chromosomal abnormalities, subsequent G-banding analysis identified acquired trisomy 12 in two lines (CL12 and CL27) and a derivative X chromosome in a third line (CL30). These abnormalities were absent in early-passage analyses, indicating that they were acquired and selected for during extended culture. The acquisition of a derivative X chromosome in CL30, alongside recurrent trisomy 12, represents a unique cytogenetic signature likely attributable to the underlying XPC defect. We hypothesize that the loss of GG-NER creates a permissive genomic environment, accelerating the accumulation of DNA damage and chromosomal missegregation under replicative stress. This temporal divergence in genomic integrity highlights how culture pressures drive chromosomal evolution in XP-C iPSCs independently of initial reprogramming. Our findings emphasize that XP-C iPSCs require continuous genomic surveillance and provide a model for investigating how DNA repair deficiencies interact with in vitro culture stress. Full article
(This article belongs to the Special Issue Advances in Human Pluripotent Stem Cells)
Show Figures

Figure 1

12 pages, 2658 KB  
Article
Simultaneous Measurement of Contractile Force and Ca2+ Concentration Distribution in Human iPS Cell-Derived Cardiomyocytes
by Ryota Ikegami, Takuya Tsukagoshi, Kenei Matsudaira, Hidetoshi Takahashi, Thanh-Vinh Nguyen, Kentaro Noda, Ken’ichi Koyanagi and Isao Shimoyama
Sensors 2025, 25(24), 7478; https://doi.org/10.3390/s25247478 - 9 Dec 2025
Viewed by 1374
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold significant promise for regenerative medicine but exhibit immaturity relative to native cardiomyocytes. To make hiPSC-CMs more similar to mature cardiomyocytes, extensive research is being conducted from biochemical, electrochemical, mechanical, and physical perspectives. Quantitatively assessing their maturation [...] Read more.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold significant promise for regenerative medicine but exhibit immaturity relative to native cardiomyocytes. To make hiPSC-CMs more similar to mature cardiomyocytes, extensive research is being conducted from biochemical, electrochemical, mechanical, and physical perspectives. Quantitatively assessing their maturation is essential to evaluate improvements in cardiac cell function and clarify the impact of previous research. In this study, we present a high-speed sensing system that enables simultaneous, real-time measurement of cardiomyocyte contractile force, and intra- and extra-cellular Ca2+ dynamics. To enhance measurement precision, a visualization technique is incorporated to identify individual cardiomyocytes. This simultaneous evaluation system for cardiomyocyte contractility and various ion concentrations has the potential to become an effective and powerful foundational technology for assessing cardiomyocyte maturation and the regenerative medicine applications of IPSC-CMs. The ability to convert cardiomyocyte contractile force into single-cell force implies a more universal evaluation of the mechanical properties. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

21 pages, 1585 KB  
Perspective
Advanced Cellular Models for Neurodegenerative Diseases and PFAS-Related Environmental Risks
by Davide Rotondo, Laura Lagostena, Valeria Magnelli and Francesco Dondero
NeuroSci 2025, 6(4), 125; https://doi.org/10.3390/neurosci6040125 - 8 Dec 2025
Viewed by 881
Abstract
Per- and polyfluoroalkyl substances are persistent environmental contaminants increasingly implicated in neurotoxicity. Establishing causality and mechanisms relevant to Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis requires human-relevant systems that capture exposure, barrier function, and brain circuitry. We review advanced cellular platforms—iPSC-derived neuronal and [...] Read more.
Per- and polyfluoroalkyl substances are persistent environmental contaminants increasingly implicated in neurotoxicity. Establishing causality and mechanisms relevant to Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis requires human-relevant systems that capture exposure, barrier function, and brain circuitry. We review advanced cellular platforms—iPSC-derived neuronal and glial cultures, cerebral and midbrain organoids, and chip-based microphysiological systems—that model disease-relevant phenotypes (Aβ/tau pathology, dopaminergic vulnerability, myelination defects) under controlled PFAS exposures and defined genetic risk backgrounds. Modular, fluidically coupled BBB-on-chip → brain-organoid microphysiological systems have been reported, enabling chronic, low-dose PFAS perfusion under physiological shear, real-time barrier integrity readouts such as transepithelial/transendothelial electrical resistance (TEER), quantification of PFAS partitioning and translocation, and downstream neuronal–glial responses assessed by electrophysiology and multi-omics. Across platforms, convergent PFAS-responsive processes emerge—mitochondrial dysfunction and oxidative stress, lipid/ceramide dysregulation, neuroinflammatory signaling, and synaptic/network impairments—providing a mechanistic scaffold for biomarker discovery and gene–environment interrogation with isogenic lines. We outline principles for exposure design (environmentally relevant ranges, longitudinal paradigms), multimodal endpoints (omics, electrophysiology, imaging), and cross-lab standardization to improve comparability. Together, these models advance the quantitative evaluation of PFAS neurotoxicity and support translation into risk assessment and therapeutic strategies. Full article
Show Figures

Figure 1

19 pages, 2797 KB  
Article
Isolated Monoclonal Human Urine-Derived Stem Cells Showed Differential Therapeutic Effects on Renal Ischemia–Reperfusion Injury in Mice
by Guiyang Huo, Jie Geng, Xuanhe Liu, Guangrui Huang and Anlong Xu
Biomedicines 2025, 13(12), 2911; https://doi.org/10.3390/biomedicines13122911 - 27 Nov 2025
Viewed by 529
Abstract
Objectives: To investigate the characteristics of monoclonal human urine-derived stem cells (hUSCs) obtained through different culture protocols and compare their therapeutic effects on renal ischemia–reperfusion injury in mice. Methods: Monoclones of hUSCs derived from the urine of healthy volunteers were isolated [...] Read more.
Objectives: To investigate the characteristics of monoclonal human urine-derived stem cells (hUSCs) obtained through different culture protocols and compare their therapeutic effects on renal ischemia–reperfusion injury in mice. Methods: Monoclones of hUSCs derived from the urine of healthy volunteers were isolated and cultured using two different culture media. Flow cytometry, qRT-PCR and RNA sequencing were employed to characterize each monoclonal clone of multipotent stem cells across multiple passages. To evaluate their therapeutic effects on unilateral renal ischemia–reperfusion injury in BALB/c mice, 5 × 105 hUSCs from each monoclonal clone were intravenously administered to mice via the tail vein, followed by assessments using Masson staining, qRT-PCR and renal tissue transcriptomics analysis. Results: Four monoclonal strains were successfully isolated from four fresh urine samples of a healthy young male volunteer: three cultured in EGM-MV medium and one in our modified medium. All four strains demonstrated stable expression of mesenchymal stem cell-related markers over eight passages of expansion. Bioinformatics analysis of multiple cell transcriptome datasets revealed that these four cell strains are more closely related to kidney tissue than to bone marrow mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (ADMSCs), induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), and urothelial cells. Additionally, significant differences were observed in the expression of genes associated with kidney development among the four monoclonal strains. Furthermore, the therapeutic effects of different monoclonal clones on renal ischemia–reperfusion injury in mice showed notable variability. Conclusions: The isolated monoclonal urine-derived stem cells in this study were showed closer transcriptomic similarity to renal progenitor cells than to other mesenchymal stem cell types and possessed differential therapeutic effects on acute kidney injury. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 6187 KB  
Article
Generation of Induced Pluripotent Stem Cells and Neuroepithelial Stem Cells from a Family with the Pathogenic Variant p.Q337X in Progranulin
by Katarzyna Gaweda-Walerych, Adam Figarski, Sylwia Gawlik-Zawiślak, Marta Woźniak, Anna Chołoniewska, Natalia Mierzwa, Eliza Lutostańska, Jakub Szymanowski and Michalina Wężyk
Int. J. Mol. Sci. 2025, 26(23), 11242; https://doi.org/10.3390/ijms262311242 - 21 Nov 2025
Viewed by 620
Abstract
Pathogenic GRN variants that reduce progranulin (PGRN) levels cause frontotemporal dementia (FTD). To facilitate model development, we generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of two family members carrying the GRN c.1009C>T (p.Q337X) pathogenic variant—one symptomatic and one asymptomatic—as well as [...] Read more.
Pathogenic GRN variants that reduce progranulin (PGRN) levels cause frontotemporal dementia (FTD). To facilitate model development, we generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of two family members carrying the GRN c.1009C>T (p.Q337X) pathogenic variant—one symptomatic and one asymptomatic—as well as a non-carrier first-degree relative serving as a genetically matched control. The obtained iPSC lines were validated for pluripotency markers (Nanog, Sox2, Oct4, and TRA1-1-81), genomic integrity, and differentiation potential. The obtained iPSC lines were subsequently directed toward neuroepithelial stem (NES) cells. NES identity was confirmed by the expression of lineage-specific markers, including Nestin and Sox2 (assessed by immunocytochemistry), as well as SOX1, PLAGL1, and MKI67 (evaluated by real-time PCR). Furthermore, GRN mRNA levels were significantly reduced in iPSC and NES lines derived from mutation carriers compared to control cells. The established iPSC and NES cell lines represent a platform for modeling progranulin-deficient FTD. The symptomatic and asymptomatic carrier-derived lines obtained from the same family offer a unique opportunity to study disease progression across clinical phases. The control line, derived from a related (first-degree) non-carrier, minimizes genetic background variability. Their utility of the established cell lines extends to therapeutic drug screening and further differentiation into neuronal, non-neuronal, and organoid models. Full article
Show Figures

Figure 1

25 pages, 1188 KB  
Review
Mitochondria-Enriched Extracellular Vesicles (EVs) for Cardiac Bioenergetics Restoration: A Scoping Review of Preclinical Mechanisms and Source-Specific Strategies
by Dhienda C. Shahannaz, Tadahisa Sugiura and Taizo Yoshida
Int. J. Mol. Sci. 2025, 26(22), 11052; https://doi.org/10.3390/ijms262211052 - 15 Nov 2025
Cited by 1 | Viewed by 1506
Abstract
Mitochondrial dysfunction is a pivotal contributor to cardiac disease progression, making it a critical target in regenerative interventions. Extracellular vesicles (EVs) have recently emerged as powerful mediators of mitochondrial transfer and cardiomyocyte repair. This review highlights recent advancements in EV bioengineering and their [...] Read more.
Mitochondrial dysfunction is a pivotal contributor to cardiac disease progression, making it a critical target in regenerative interventions. Extracellular vesicles (EVs) have recently emerged as powerful mediators of mitochondrial transfer and cardiomyocyte repair. This review highlights recent advancements in EV bioengineering and their applications in cardiac mitochondrial rescue, with a particular focus on EVs derived from induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). Drawing upon a growing body of preclinical evidence, we examine the mechanisms of mitochondrial content delivery, EV uptake dynamics, and comparative bioenergetic restoration outcomes across EV sources. Special emphasis is placed on therapeutic outcomes such as adenosine triphosphate (ATP) restoration, reactive oxygen species (ROS) modulation, and improvements in contractility and infarct size. The convergence of mitochondrial biology, stem cell-derived EV platforms, and engineering innovations positions mitochondria-enriched EVs as a promising non-cellular regenerative modality for cardiovascular disease. Full article
(This article belongs to the Special Issue Heart Failure: From Pathogenesis to Innovative Treatments)
Show Figures

Figure 1

21 pages, 2379 KB  
Article
Deamidation at N53 Causes SOD1 Structural Instability and Excess Zn Incorporation
by Eric Zanderigo, Phyllis Schram, Owen Rogers, Mikayla McLaughlin, Colin A. Smith and Alison L. O’Neil
BioChem 2025, 5(4), 39; https://doi.org/10.3390/biochem5040039 - 13 Nov 2025
Viewed by 515
Abstract
Background/Objectives: Approximately 20% of familial ALS (fALS) cases are linked to mutations in Cu/Zn superoxide dismutase (SOD1). Through a gain function, SOD1 misfolding exerts a toxic effect on motor neurons, leading to their degradation and ALS symptomology in both fALS cases and [...] Read more.
Background/Objectives: Approximately 20% of familial ALS (fALS) cases are linked to mutations in Cu/Zn superoxide dismutase (SOD1). Through a gain function, SOD1 misfolding exerts a toxic effect on motor neurons, leading to their degradation and ALS symptomology in both fALS cases and sporadic ALS (sALS) cases with no known genetic cause. To further our understanding of SOD1-ALS etiology, identifying motor neuron-specific SOD1 post-translational modifications (PTMs) and studying their structural influence is necessary. To this end, we have conducted a study on the influence of the deamidation of Asn53, a PTM proximal to key stabilizing motifs in SOD1, which has scarcely been addressed in the literature to date. Methods: Deamidation to N53 was identified by tandem mass spectrometry of SOD1 immunoprecipitated from motor neuron (MN) cultures derived from wild-type (WT) human induced pluripotent stem cells (iPSCs). WT SOD1 and N53D SOD1, a mutant mimicking the deamidation, were expressed in Escherichia coli and purified for in vitro analyses. Differences between species were measured by experiments probing metal cofactors, relative monomer populations, and aggregation propensity. Furthermore, molecular dynamics experiments were conducted to model and determine the influence of the PTM on SOD1 structure. Results: In contrast to WT, N53D SOD1 showed non-native incorporation of metal cofactors, coordinating more Zn2+ cofactors than total Zn-binding sites, and more readily adopted monomeric forms, unfolded, and aggregated with heating, possibly while releasing coordinated metals. Conclusions: Deamidation to N53 in SOD1 encourages the adoption of non-native conformers, and its detection in WT MN cultures suggests relevance to sALS pathophysiology. Full article
Show Figures

Graphical abstract

46 pages, 1109 KB  
Review
Engineered Human Dental Pulp Stem Cells with Promising Potential for Regenerative Medicine
by Emi Inada, Issei Saitoh, Masahiko Terajima, Yuki Kiyokawa, Naoko Kubota, Haruyoshi Yamaza, Kazunori Morohoshi, Shingo Nakamura and Masahiro Sato
BioTech 2025, 14(4), 88; https://doi.org/10.3390/biotech14040088 - 3 Nov 2025
Cited by 1 | Viewed by 1995
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering hold great potential for treating a wide range of tissue and organ defects. Stem cells are ideal candidates for regenerative medicine because they are undifferentiated cells with the capacity for self-renewal, rapid proliferation, [...] Read more.
The fields of regenerative medicine and stem cell-based tissue engineering hold great potential for treating a wide range of tissue and organ defects. Stem cells are ideal candidates for regenerative medicine because they are undifferentiated cells with the capacity for self-renewal, rapid proliferation, multilineage differentiation, and expression of pluripotency-associated genes. Human dental pulp stem cells (DPSCs) consist of various cell types (including stem cells) and possess multilineage differentiation potential. Owing to their easy isolation and rapid proliferation, DPSCs and their derivatives are considered promising candidates for repairing injured tissues. Recent advances in gene engineering have enabled cells to express specific genes of interest, leading to the secretion of medically important proteins or the alteration of cell behavior. For example, transient expression of Yamanaka’s factors in DPSCs can induce transdifferentiation into induced pluripotent stem cells (iPSCs). These gene-engineered cells represent valuable candidates for regenerative medicine, including stem cell therapies and tissue engineering. However, challenges remain in their development and application, particularly regarding safety, efficacy, and scalability. This review summarizes current knowledge on gene-engineered DPSCs and their derivatives and explores possible clinical applications, with a special focus on oral regeneration. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

27 pages, 1591 KB  
Review
Human-Induced Pluripotent Stem Cell Models for Amyloid Cardiomyopathy: From Mechanistic Insights to Therapeutic Discovery
by Yufeng Liu and Muhammad Riaz
J. Cardiovasc. Dev. Dis. 2025, 12(11), 434; https://doi.org/10.3390/jcdd12110434 - 2 Nov 2025
Viewed by 1294
Abstract
Amyloid cardiomyopathy (ACM), driven by transthyretin (TTR) and immunoglobulin light chain (LC) amyloid fibrils, remains a major clinical challenge due to limited mechanistic understanding and insufficient preclinical models. Human-induced pluripotent stem cells (iPSCs) have emerged as a transformative platform to model ACM, offering [...] Read more.
Amyloid cardiomyopathy (ACM), driven by transthyretin (TTR) and immunoglobulin light chain (LC) amyloid fibrils, remains a major clinical challenge due to limited mechanistic understanding and insufficient preclinical models. Human-induced pluripotent stem cells (iPSCs) have emerged as a transformative platform to model ACM, offering patient-specific and genetically controlled systems. In this review, we summarize recent advances in the use of iPSC-derived cardiomyocytes (iPSC-CMs) in both two-dimensional (2D) monolayer cultures and three-dimensional (3D) constructs—including spheroids, organoids, cardiac microtissues, and engineered heart tissues (EHTs)—for disease modeling, mechanistic research, and drug discovery. While 2D culture of iPSC-CMs reproduces hallmark proteotoxic phenotypes such as sarcomeric disorganization, oxidative stress, and apoptosis in ACM, 3D models provide enhanced physiological relevance through incorporating multicellularity, extracellular matrix interactions, and mechanical load-related features. Genome editing with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 further broadens the scope of iPSC-based models, enabling isogenic comparisons and the dissection of mutation-specific effects, particularly in transthyretin-related amyloidosis (ATTR). Despite limitations such as cellular immaturity and challenges in recapitulating aging-associated phenotypes, ongoing refinements in differentiation, maturation, and dynamic training of iPSC-cardiac models hold great promise for overcoming these barriers. Together, these advances position iPSC-based systems as powerful human-relevant platforms for modeling and elucidating disease mechanisms and accelerating therapeutic development to prevent ACM. Full article
(This article belongs to the Section Acquired Cardiovascular Disease)
Show Figures

Graphical abstract

12 pages, 1798 KB  
Article
Mitochondrial Base Editing of the m.8993T>G Mutation Restores Bioenergetics and Neural Differentiation in Patient iPSCs
by Luke Yin, Angel Yin and Marjorie Jones
Genes 2025, 16(11), 1298; https://doi.org/10.3390/genes16111298 - 1 Nov 2025
Viewed by 703
Abstract
Background: Point mutations in mitochondrial DNA (mtDNA) cause a range of neurometabolic disorders that currently have no curative treatments. The m.8993T>G mutation in the Homo sapiens MT-ATP6 gene leads to neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) when heteroplasmy exceeds approximately [...] Read more.
Background: Point mutations in mitochondrial DNA (mtDNA) cause a range of neurometabolic disorders that currently have no curative treatments. The m.8993T>G mutation in the Homo sapiens MT-ATP6 gene leads to neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) when heteroplasmy exceeds approximately 70%. Methods: We engineered a split DddA-derived cytosine base editor (DdCBE), each half fused to programmable TALE DNA-binding domains and a mitochondrial targeting sequence, to correct the m.8993T>G mutation in patient-derived induced pluripotent stem cells (iPSCs). Seven days after plasmid delivery, deep amplicon sequencing showed 35 ± 3% on-target C•G→T•A conversion at position 8993, reducing mutant heteroplasmy from 80 ± 2% to 45 ± 3% with less than 0.5% editing at ten predicted off-target loci. Results: Edited cells exhibited a 25% increase in basal oxygen consumption rate, a 50% improvement in ATP-linked respiration, and a 2.3-fold restoration of ATP synthase activity. Directed neural differentiation yielded 85 ± 2% Nestin-positive progenitors compared to 60 ± 2% in unedited controls. Conclusions: Edits remained stable over 30 days in culture. These results establish mitochondrial base editing as a precise and durable strategy to ameliorate biochemical and cellular defects in NARP patient cells. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1409 KB  
Communication
Proteomics of Duchenne Muscular Dystrophy Patient iPSC-Derived Skeletal Muscle Cells Reveal Differential Expression of Cytoskeletal and Extracellular Matrix Proteins
by Sarah-Marie Gallert, Mitja Fölsch, Lampros Mavrommatis, Urs Kindler, Karin Schork, Martin Eisenacher, Matthias Vorgerd, Beate Brand-Saberi, Britta Eggers, Katrin Marcus and Holm Zaehres
Cells 2025, 14(21), 1688; https://doi.org/10.3390/cells14211688 - 28 Oct 2025
Viewed by 1085
Abstract
Proteomics of dystrophic muscle samples is limited by the amount of protein that can be extracted from patient biopsies. Cells and tissues derived from patient-derived induced pluripotent stem cells (iPSCs) can be an expandable alternative source. We have patterned iPSCs from three Duchenne [...] Read more.
Proteomics of dystrophic muscle samples is limited by the amount of protein that can be extracted from patient biopsies. Cells and tissues derived from patient-derived induced pluripotent stem cells (iPSCs) can be an expandable alternative source. We have patterned iPSCs from three Duchenne muscular dystrophy (DMD) patient lines into skeletal muscle cells using a two-dimensional as well as our three-dimensional organoid differentiation system. Probes with sufficient protein amounts could be extracted and prepared for mass spectrometry. In total, 3007 proteins in 2D and 2709 proteins in 3D were detected in DMD patient probes. A total of 83 proteins in 2D and 338 proteins in 3D can be described as differentially expressed between DMD and control patient probes in a post hoc test. We have identified and we propose Myosin-9, Collagen 18A, Tropomyosin 1, BASP1, RUVBL1, and NCAM1 as proteins specifically altered in their expression in DMD for further investigation. Proteomics of skeletal muscle organoids resulted in greater consistency of results between cell lines in comparison to the two-dimensional myogenic differentiation protocol. Full article
Show Figures

Figure 1

22 pages, 6783 KB  
Article
Parsing Glomerular and Tubular Structure Variability in High-Throughput Kidney Organoid Culture
by Kristiina Uusi-Rauva, Anniina Pirttiniemi, Antti Hassinen, Ras Trokovic, Sanna Lehtonen, Jukka Kallijärvi, Markku Lehto, Vineta Fellman and Per-Henrik Groop
Methods Protoc. 2025, 8(5), 125; https://doi.org/10.3390/mps8050125 - 19 Oct 2025
Viewed by 1108
Abstract
High variability in stem cell research is a well-known limiting phenomenon, with technical variation across experiments and laboratories often surpassing variation caused by genotypic effects of induced pluripotent stem cell (iPSC) lines. Evaluation of kidney organoid protocols and culture conditions across laboratories remains [...] Read more.
High variability in stem cell research is a well-known limiting phenomenon, with technical variation across experiments and laboratories often surpassing variation caused by genotypic effects of induced pluripotent stem cell (iPSC) lines. Evaluation of kidney organoid protocols and culture conditions across laboratories remains scarce in the literature. We used the original air-medium interface protocol to evaluate kidney organoid success rate and reproducibility with several human iPSC lines, including a novel patient-derived GRACILE syndrome iPSC line. Organoid morphology was assessed with light microscopy and immunofluorescence-stained maturing glomerular and tubular structures. The protocol was further adapted to four microplate-based high-throughput approaches utilizing spheroid culture steps. Quantitative high-content screening analysis of the nephrin-positive podocytes and ECAD-positive tubular cells revealed that the choice of approach and culture conditions were significantly associated with structure development. The culture approach, iPSC line, experimental replication, and initial cell number explained 35–77% of the variability in the logit-transformed proportion of nephrin and ECAD-positive area, when fitted into multiple linear models. Our study highlights the benefits of high-throughput culture and multivariate techniques to better distinguish sources of technical and biological variation in morphological analysis of organoids. Our microplate-based high-throughput approach is easily adaptable for other laboratories to combat organoid size variability. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

Back to TopTop