Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = indole Schiff base derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2567 KB  
Article
1H-Indoles from Deoxybenzoin Schiff Bases by Deprotonation—SNAr Cyclization
by Nash E. Nevels and Richard A. Bunce
Molecules 2025, 30(19), 3894; https://doi.org/10.3390/molecules30193894 - 26 Sep 2025
Viewed by 423
Abstract
A transition metal-free synthesis of 1,2,5-trisubstituted 1H-indoles by a deprotonation–SNAr cyclization sequence from 1-aryl-2-(2-fluoro-5-nitrophenyl)ethan-1-one (deoxy-benzoin) Schiff bases is reported. The starting deoxybenzoins were prepared by Friedel-Crafts acylation of activated aromatic compounds by 2-(2-fluoro-5-nitrophenyl)acetyl chloride with AlCl3 or the [...] Read more.
A transition metal-free synthesis of 1,2,5-trisubstituted 1H-indoles by a deprotonation–SNAr cyclization sequence from 1-aryl-2-(2-fluoro-5-nitrophenyl)ethan-1-one (deoxy-benzoin) Schiff bases is reported. The starting deoxybenzoins were prepared by Friedel-Crafts acylation of activated aromatic compounds by 2-(2-fluoro-5-nitrophenyl)acetyl chloride with AlCl3 or the corresponding acid with (CH3SO2)2O. The Schiff bases were generated by slow distillation of toluene (18–24 h) from a heated solution of each deoxybenzoin (1 equiv) with a benzyl- or phenethylamine, a high-boiling aliphatic amine, or an aniline derivative (5 equiv). Subsequent addition of N,N-dimethylformamide, 2 equiv of anhydrous K2CO3, and heating at 90–95 °C for 18–24 h completed the synthesis. Benzyl-, phenethyl-, and high-boiling amines gave excellent yields while the heating requirements for the initial condensation made volatile aliphatic amines difficult to use and gave low yields. Aniline reactivities correlated with substituent-derived base strength, although modified conditions allowed some yields to be improved. Several anticipated competing processes had minimal impact on the outcome of the cyclizations. Full article
Show Figures

Graphical abstract

19 pages, 1423 KB  
Article
Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis
by Seema K. Bhagwat, Sachin V. Patil, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Irving David Pérez-Landa, Enrique Delgado-Alvarado, Fabiola Hernández-Rosas and Tushar Janardan Pawar
Molecules 2025, 30(17), 3651; https://doi.org/10.3390/molecules30173651 - 8 Sep 2025
Viewed by 1251
Abstract
Type 2 diabetes mellitus (T2DM) remains a global health challenge, prompting the development of novel α-glucosidase inhibitors (AGIs) to regulate postprandial hyperglycemia. This study reports the design, synthesis, and evaluation of indole-based Schiff base derivatives (4aj) bearing a fixed [...] Read more.
Type 2 diabetes mellitus (T2DM) remains a global health challenge, prompting the development of novel α-glucosidase inhibitors (AGIs) to regulate postprandial hyperglycemia. This study reports the design, synthesis, and evaluation of indole-based Schiff base derivatives (4aj) bearing a fixed methoxy group at the C5 position. This substitution was strategically introduced to enhance lipophilicity, electronic delocalization, and π-stacking within the enzyme active site. Among the series, compound 4g (3-bromophenyl) exhibited the highest inhibitory activity (IC50 = 10.89 µM), outperforming the clinical reference acarbose (IC50 = 48.95 µM). The mechanism was supported by in silico analyses, such as the Density Functional Theory (DFT), molecular electrostatic potential (MEP) mapping, and molecular dynamics simulations, and CNN-based docking revealed that 4g engages in stable hydrogen bonding and π–π interactions with key residues (Asp327, Asp542, and Phe649), suggesting a potent and selective mode of inhibition. In silico ADMET predictions indicated favorable pharmacokinetic properties. Together, these results establish C5–methoxy substitution as a viable strategy to enhance α-glucosidase inhibition in indole-based scaffolds. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Figure 1

16 pages, 3490 KB  
Article
Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation
by Eid E. Salama, Mohamed F. Youssef, Ahmed Aboelmagd, Ahmed T. A. Boraei, Mohamed S. Nafie, Matti Haukka, Assem Barakat and Ahmed A. M. Sarhan
Pharmaceuticals 2023, 16(12), 1724; https://doi.org/10.3390/ph16121724 - 13 Dec 2023
Cited by 10 | Viewed by 2699
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer [...] Read more.
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds’ cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation. Full article
(This article belongs to the Special Issue Heterocyclic Compounds in Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 1829 KB  
Article
Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities
by Caixia Wang, Liangxin Fan, Zhenliang Pan, Sufang Fan, Lijun Shi, Xu Li, Jinfang Zhao, Lulu Wu, Guoyu Yang and Cuilian Xu
Molecules 2022, 27(20), 6858; https://doi.org/10.3390/molecules27206858 - 13 Oct 2022
Cited by 27 | Viewed by 3761
Abstract
A series of novel indole Schiff base derivatives (2a2t) containing a 1,3,4-thiadiazole scaffold modified with a thioether group were synthesized, and their structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HR-MS. In addition, the antifungal [...] Read more.
A series of novel indole Schiff base derivatives (2a2t) containing a 1,3,4-thiadiazole scaffold modified with a thioether group were synthesized, and their structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HR-MS. In addition, the antifungal activity of synthesized indole derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum (F. oxysporum), Fusariummoniliforme (F.moniliforme), Curvularia lunata (C. lunata), and Phytophthora parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 89%, and 76.5% at a concentration of 500 μg/mL against F. graminearum, F. oxysporum, F.moniliforme, and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition rates of 81.9% and 83.7% at a concentration of 500 μg/mL against C. lunata. In addition, compound 2j has been recognized as a potential compound for further investigation in the field of fungicides. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

14 pages, 1480 KB  
Article
Synthesis, In Silico Studies, and Evaluation of Syn and Anti Isomers of N-Substituted Indole-3-carbaldehyde Oxime Derivatives as Urease Inhibitors against Helicobacter pylori
by Ishani P. Kalatuwawege, Medha J. Gunaratna and Dinusha N. Udukala
Molecules 2021, 26(21), 6658; https://doi.org/10.3390/molecules26216658 - 3 Nov 2021
Cited by 11 | Viewed by 4799
Abstract
Gastrointestinal tract infection caused by Helicobacter pylori is a common virulent disease found worldwide, and the infection rate is much higher in developing countries than in developed ones. In the pathogenesis of H. pylori in the gastrointestinal tract, the secretion of the urease [...] Read more.
Gastrointestinal tract infection caused by Helicobacter pylori is a common virulent disease found worldwide, and the infection rate is much higher in developing countries than in developed ones. In the pathogenesis of H. pylori in the gastrointestinal tract, the secretion of the urease enzyme plays a major role. Therefore, inhibition of urease is a better approach against H. pylori infection. In the present study, a series of syn and anti isomers of N-substituted indole-3-carbaldehyde oxime derivatives was synthesized via Schiff base reaction of appropriate carbaldehyde derivatives with hydroxylamine hydrochloride. The in vitro urease inhibitory activities of those derivatives were evaluated against that of Macrotyloma uniflorum urease using the modified Berthelot reaction. Out of the tested compounds, compound 8 (IC50 = 0.0516 ± 0.0035 mM) and compound 9 (IC50 = 0.0345 ± 0.0008 mM) were identified as the derivatives with potent urease inhibitory activity with compared to thiourea (IC50 = 0.2387 ± 0.0048 mM). Additionally, in silico studies for all oxime compounds were performed to investigate the binding interactions with the active site of the urease enzyme compared to thiourea. Furthermore, the drug-likeness of the synthesized oxime compounds was also predicted. Full article
Show Figures

Graphical abstract

19 pages, 750 KB  
Article
Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity
by Syahrul Imran, Muhammad Taha, Nor Hadiani Ismail, Khalid Mohammed Khan, Farzana Naz, Memona Hussain and Saima Tauseef
Molecules 2014, 19(8), 11722-11740; https://doi.org/10.3390/molecules190811722 - 6 Aug 2014
Cited by 95 | Viewed by 8791
Abstract
In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 326 was carried out in three steps. First, the [...] Read more.
In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 326 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

29 pages, 759 KB  
Article
Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives
by Seham Y. Hassan
Molecules 2013, 18(3), 2683-2711; https://doi.org/10.3390/molecules18032683 - 28 Feb 2013
Cited by 144 | Viewed by 14148
Abstract
A series of 2-pyrazolines 59 have been synthesized from α,β-unsaturated ketones 24. New 2-pyrazoline derivatives 1315 bearing benzenesulfonamide moieties were then synthesized by condensing the appropriate chalcones 24 with 4-hydrazinyl benzenesulfonamide hydrochloride. Ethyl [...] Read more.
A series of 2-pyrazolines 59 have been synthesized from α,β-unsaturated ketones 24. New 2-pyrazoline derivatives 1315 bearing benzenesulfonamide moieties were then synthesized by condensing the appropriate chalcones 24 with 4-hydrazinyl benzenesulfonamide hydrochloride. Ethyl [1,2,4] triazolo[3,4-c][1,2,4]triazino[5,6-b]-5H-indole-5-ethanoate (26) and 1-(5H-[1,2,4]triazino[5,6-b] indol-3-yl)-3-methyl-1H-pyrazol-5(4H)-one (32) were synthesized from 3-hydrazinyl-5H-[1,2,4]triazino[5,6-b]indole (24). On the other hand ethyl[1,2,4]triazolo[3,4-c][1,2,4]triazino[5,6-b]-5,10-dihydroquinoxaline- 5-ethanoate (27) and 1-(5,10-dihydro-[1,2,4]triazino[5,6-b]quinoxalin-3-yl)-3-methyl-1H-pyrazol-5(4H)-one (33) were synthesized from 3-hydrazinyl-5,10-dihydro-[1,2,4]triazino[5,6-b]quinoxaline (25) by reaction with diethyl malonate or ethyl acetoacetate, respectively. Condensation of 6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-2-carbaldehyde (1') with compound 24 or 25 afforded the corresponding Schiff's bases 36 and 37, respectively. Reaction of the Schiff's base 37 with benzoyl hydrazine or acetic anhydride afforded benzohydrazide derivative 39 and the cyclized compound 40, respectively. Furthermore, the pyrazole derivatives 4244 were synthesized by cyclization of hydrazine derivative 25 with the prepared chalcones 24. All the newly synthesized compounds have been characterized on the basis of IR and 1H-NMR spectral data as well as physical data. Antimicrobial activity against the organisms E. coli ATCC8739 and P. aeruginosa ATCC 9027 as examples of Gram-negative bacteria, S. aureus ATCC 6583P as an example of Gram-positive bacteria and C. albicans ATCC 2091 as an example of a yeast-like fungus have been studied using the Nutrient Agar (NA) and Sabouraud Dextrose Agar (SDA) diffusion methods. The best performance was found for the compounds 16, 17, 19 and 20. Full article
(This article belongs to the Special Issue Heterocycles)
Show Figures

Graphical abstract

11 pages, 355 KB  
Article
Acute Toxicity and Gastroprotective Effect of the Schiff Base Ligand 1H-Indole-3-ethylene-5-nitrosalicylaldimine and Its Nickel (II) Complex on Ethanol Induced Gastric Lesions in Rats
by Mohamed Mustafa Ibrahim, Hapipah Mohd Ali, Mahmood Ameen Abdullah and Pouya Hassandarvish
Molecules 2012, 17(10), 12449-12459; https://doi.org/10.3390/molecules171012449 - 22 Oct 2012
Cited by 27 | Viewed by 8160
Abstract
The present study was performed to evaluate the gastroprotective activity of Schiff base ligand derived from the condensation reaction of tryptamine (an indole derivative) and 5-nitrosalicylaldehyde (TNS) and its nickel (II) complex against ethanol-induced gastric ulcer in rats. The compounds were orally administered [...] Read more.
The present study was performed to evaluate the gastroprotective activity of Schiff base ligand derived from the condensation reaction of tryptamine (an indole derivative) and 5-nitrosalicylaldehyde (TNS) and its nickel (II) complex against ethanol-induced gastric ulcer in rats. The compounds were orally administered with low (30 mg/kg) and high (60 mg/kg) doses to ulcer-induced Sprague-Dawley rats. Macroscopically, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with either cimetidine or TNS and its nickel (II) complex each resulted in significant protection against gastric mucosal injury. Flattening of gastric mucosal folds was also observed in rats pretreated with TNS and its nickel complex. Histological studies of the gastric wall of ulcer control group revealed severe damage of gastric mucosa, along with edema and leucocytes infiltration of the submucosal layer compared to rats pre-treated with either cimetidine or TNS and its nickel (II) compound, where there was marked gastric protection along with reduction of edema and leucocytes infiltration of the submucosal layer. Acute toxicity study done on mice with a higher dose of 5 g/kg of TNS and its nickel (II) complex did not manifest any toxicological signs. Research finding suggest that TNS and its nickel (II) complex could be considered as effective gastroprotective compounds. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop