Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = indium–gallium–zinc oxide (IGZO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3563 KiB  
Article
Effects of Deposition Power and Annealing Temperature on Indium Zinc Oxide (IZO) Film’s Properties and Their Applications to the Source–Drain Electrodes of Amorphous Indium Gallium Zinc Oxide (a-IGZO) Thin-Film Transistors (TFTs)
by Yih-Shing Lee, Chih-Hsiang Chang, Bing-Shin Le, Vo-Truong Thao Nguyen, Tsung-Cheng Tien and Horng-Chih Lin
Nanomaterials 2025, 15(11), 780; https://doi.org/10.3390/nano15110780 - 22 May 2025
Viewed by 848
Abstract
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), [...] Read more.
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), highest mobility (11.12 cm2/V·s), and highest carrier concentration (4.61 × 1020 cm−3). The average transmittance and optical energy gap were 82.57% and 3.372 eV, respectively. The electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) using IZO source-drain (S–D) electrodes with various sputtering powers and annealing temperatures were investigated. The optimal sputtering power of 125 W and annealing temperature of 300 °C for the IZO S–D electrodes resulted in the highest field-effect mobility (~12.31 cm2/V·s) and on current (~2.09 × 10−6 A). This improvement is attributed to enhanced carrier concentration and mobility, which result from the high In/Zn ratio, the larger grain size, and low RMS roughness in the IZO films. The parasitic contact resistance (RSD) and channel resistance (RCH) were analyzed using the total resistance method. RSD decreased with increasing IZO S–D sputtering power, while RCH reached a minimum at 125 W. Both resistances decreased significantly as the annealing temperature increased from 200 °C to 300 °C. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

12 pages, 14936 KiB  
Article
Relation Between Thickness and TFTs Properties of HfO2 Dielectric Layer Synthesized by Plasma-Enhanced Atomic Layer Deposition
by Qizhen Chen, Wanqiang Fu, Jing Han, Xiaoying Zhang and Shui-Yang Lien
Nanomaterials 2025, 15(10), 719; https://doi.org/10.3390/nano15100719 - 10 May 2025
Viewed by 645
Abstract
The advancement of portable high-definition organic light-emitting diode (OLED) displays necessitates thin film transistors (TFTs) with low power consumption and high pixel density. Amorphous indium gallium zinc oxide (a-IGZO) TFTs are promising candidates to meet these requirements. However, conventional silicon dioxide gate insulators [...] Read more.
The advancement of portable high-definition organic light-emitting diode (OLED) displays necessitates thin film transistors (TFTs) with low power consumption and high pixel density. Amorphous indium gallium zinc oxide (a-IGZO) TFTs are promising candidates to meet these requirements. However, conventional silicon dioxide gate insulators provide limited channel modulation due to their low dielectric constant, while alternative high-k dielectrics often suffer from high leakage currents and poor surface quality. Plasma-enhanced atomic layer deposition (PEALD) enables the atomic-level control of film thickness, resulting in high-quality films with superior conformality and uniformity. In this work, a systematic investigation was conducted on the properties of HfO2 films and the electrical characteristics of a-IGZO TFTs with different HfO2 thicknesses. A Vth of −0.9 V, μsat of 6.76 cm2/Vs, SS of 0.084 V/decade, and Ion/Ioff of 1.35 × 109 are obtained for IGZO TFTs with 40 nm HfO2. It is believed that the IGZO TFTs based on a HfO2 gate insulating layer and prepared by PEALD can improve electrical performance. Full article
Show Figures

Figure 1

11 pages, 8235 KiB  
Article
Performance Improvement of Vertical Channel Indium–Gallium–Zinc Oxide Thin-Film Transistors Using Porous MXene Electrode
by Wanqiang Fu, Qizhen Chen, Peng Gao, Linqin Jiang, Yu Qiu, Dong-Sing Wuu, Ray-Hua Horng and Shui-Yang Lien
Energies 2025, 18(9), 2331; https://doi.org/10.3390/en18092331 - 2 May 2025
Viewed by 587
Abstract
The surface morphology of porous source electrodes plays a significant role in the performance of vertical channel indium–gallium–zinc oxide thin-film transistors (VC-IGZO-TFTs). This study systematically investigates the properties of porous MXene-based source electrodes and their impact on VC-IGZO-TFTs fabricated with varying MXene concentrations. [...] Read more.
The surface morphology of porous source electrodes plays a significant role in the performance of vertical channel indium–gallium–zinc oxide thin-film transistors (VC-IGZO-TFTs). This study systematically investigates the properties of porous MXene-based source electrodes and their impact on VC-IGZO-TFTs fabricated with varying MXene concentrations. As the MXene concentration increases, both the sheet resistance and porosity of the electrodes decrease. VC-IGZO-TFTs based on a 3.0 mg/mL MXene concentration exhibit optimal electrical performance, with a threshold voltage (Vth) of 0.16 V, a subthreshold swing (SS) of 0.20 V/decade, and an on/off current ratio (Ion/Ioff) of 4.90 × 105. Meanwhile, the VC-IGZO-TFTs exhibit excellent electrical reliability and mechanical stability. This work provides a way to analyze the influence of sheet resistance and porosity on the performance of VC-IGZO-TFTs, offering a viable approach for enhancing device efficiency through porous MXene electrode engineering. Full article
(This article belongs to the Special Issue Advanced Technologies of Solar Cells: 2nd Edition)
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 504
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

10 pages, 4044 KiB  
Article
Photonic–Electronic Modulated a-IGZO Synaptic Transistor with High Linearity Conductance Modulation and Energy-Efficient Multimodal Learning
by Zhidong Hou, Jinrong Shen, Yiming Zhong and Dongping Wu
Micromachines 2025, 16(5), 517; https://doi.org/10.3390/mi16050517 - 28 Apr 2025
Viewed by 706
Abstract
Brain-inspired neuromorphic computing is expected to overcome the von Neumann bottleneck by eliminating the memory wall between processing and memory units. Nevertheless, critical challenges persist in synaptic device implementation, particularly regarding nonlinear/asymmetric conductance modulation and multilevel conductance states, which substantially impede the realization [...] Read more.
Brain-inspired neuromorphic computing is expected to overcome the von Neumann bottleneck by eliminating the memory wall between processing and memory units. Nevertheless, critical challenges persist in synaptic device implementation, particularly regarding nonlinear/asymmetric conductance modulation and multilevel conductance states, which substantially impede the realization of high-performance neuromorphic hardware. This study demonstrates a novel advancement in photonic–electronic modulated synaptic devices through the development of an amorphous indium–gallium–zinc oxide (a-IGZO) synaptic transistor. The device demonstrates biological synaptic functionalities, including excitatory/inhibitory post-synaptic currents (EPSCs/IPSCs) and spike-timing-dependent plasticity, while achieving excellent conductance modulation characteristics (nonlinearity of 0.0095/−0.0115 and asymmetric ratio of 0.247) and successfully implementing Pavlovian associative learning paradigms. Notably, systematic neural network simulations employing the experimental parameters reveal a 93.8% recognition accuracy on the MNIST handwritten digit dataset. The a-IGZO synaptic transistor with photonic–electronic co-modulation serves as a potential critical building block for constructing neuromorphic architectures with human-brain efficiency. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Ion Gel-Modulated Low-Temperature Field-Effect Phototransistors with Multispectral Responsivity for Artificial Synapses
by Junjian Zhao, Yufei Zhang, Di Guo and Junyi Zhai
Sensors 2025, 25(9), 2750; https://doi.org/10.3390/s25092750 - 26 Apr 2025
Viewed by 793
Abstract
We report an ion-gel-gated amorphous indium gallium zinc oxide (a-IGZO) optoelectronic neuromorphic transistors capable of synaptic emulation in both photoelectric dual modes. The ion-gel dielectric in the coplanar-structured transistor, fabricated via ink-jet printing, exhibits excellent double-layer capacitance (>1 μF/cm2) and supports [...] Read more.
We report an ion-gel-gated amorphous indium gallium zinc oxide (a-IGZO) optoelectronic neuromorphic transistors capable of synaptic emulation in both photoelectric dual modes. The ion-gel dielectric in the coplanar-structured transistor, fabricated via ink-jet printing, exhibits excellent double-layer capacitance (>1 μF/cm2) and supports low-voltage operation through lateral gate coupling. The integration of ink-jet printing technology enables scalable and large-area fabrication, highlighting its industrial feasibility. Electrical stimulation-induced artificial synaptic behaviors were successfully demonstrated through ion migration in the gel matrix. Through a simple and controllable oxygen vacancy engineering process involving low-temperature oxygen-free growth and post-annealing process, a sufficient density of stable subgap states was generated in IGZO, extending its responsivity spectrum to the visible-red region and enabling wavelength-discriminative photoresponses to 450/532/638 nm visible light. Notably, the subgap states exhibited unique interaction dynamics with low-energy photons in optically triggered pulse responses. Critical synaptic functionalities—including short-term plasticity (STP), long-term plasticity (LTP), and paired-pulse facilitation (PPF)—were successfully simulated under both optical and electrical stimulations. The device achieves low energy consumption while maintaining compatibility with flexible substrates through low-temperature processing (≤150 °C). This study establishes a scalable platform for multimodal neuromorphic systems utilizing printed iontronic architectures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 3813 KiB  
Article
Dual-Gate Metal-Oxide-Semiconductor Transistors: Nanoscale Channel Length Scaling and Performance Optimization
by Huajian Zheng, Zhuohang Ye, Baiquan Liu, Mengye Wang, Li Zhang and Chuan Liu
Electronics 2025, 14(7), 1257; https://doi.org/10.3390/electronics14071257 - 22 Mar 2025
Viewed by 960
Abstract
Dual-gate metal-oxide-semiconductor transistors have attracted considerable interest due to their high threshold voltage control capability, higher drain current, and the ability to alleviate the impact of carrier surface scattering at the channel/dielectric interface. However, their applications in the monolithic integration of scaled devices [...] Read more.
Dual-gate metal-oxide-semiconductor transistors have attracted considerable interest due to their high threshold voltage control capability, higher drain current, and the ability to alleviate the impact of carrier surface scattering at the channel/dielectric interface. However, their applications in the monolithic integration of scaled devices encounter challenges stemming from the interaction between the pre-treated channel layer and its covering dielectric. Here, we demonstrate the successful realization of a scaled back-end-of-line (BEOL) compatible dual-gate indium–gallium–zinc oxide (IGZO) transistor with a channel length (Lch) scaled down to 150 nm and a channel thickness (Tch) of 4.2 nm. After precisely adjusting the metal ratio to In0.24Ga0.58Zn0.18O and employing O3 as an oxygen precursor for the deposition of Al2O3 as the top-gate dielectric layer, a high maximum current of 1.384 mA was attained under top-gate control, while a high current of 1.956 mA was achieved under bottom-gate control. Additionally, a high current on/off ratio (Ion/off > 109) was achieved for the dual gate. Careful calculations reveal that the field-effective mobility (μeff) reaches 11.68 cm2V−1s−1 under top-gate control and 22.46 cm2V−1s−1 under bottom-gate control. We demonstrate excellent dual-gate low-voltage modulation performance, with a high current switch ratio of 3 × 105 at Lch = 300 nm and 2 × 104 at Lch = 150 nm achieved by only 1 V modulation voltage, accompanied by a normalized current variation higher than 106. Overall, our devices show the remarkable electrical performance characteristics, highlighting their potential applications in high-performance electronic circuits. Full article
(This article belongs to the Special Issue Optoelectronics, Energy and Integration)
Show Figures

Figure 1

8 pages, 1488 KiB  
Article
Wrapping Amorphous Indium-Gallium-Zinc-Oxide Transistors with High Current Density
by Jiaxin Liu, Shan Huang, Zhenyuan Xiao, Ning Li, Jaekyun Kim, Jidong Jin and Jiawei Zhang
Electron. Mater. 2025, 6(1), 2; https://doi.org/10.3390/electronicmat6010002 - 23 Jan 2025
Viewed by 2302
Abstract
Amorphous oxide semiconductor transistors with a high current density output are highly desirable for large-area electronics. In this study, wrapping amorphous indium-gallium-zinc-oxide (a-IGZO) transistors are proposed to enhance the current density output relative to a-IGZO source-gated transistors (SGTs). Device performances are analyzed using [...] Read more.
Amorphous oxide semiconductor transistors with a high current density output are highly desirable for large-area electronics. In this study, wrapping amorphous indium-gallium-zinc-oxide (a-IGZO) transistors are proposed to enhance the current density output relative to a-IGZO source-gated transistors (SGTs). Device performances are analyzed using technology computer-aided design (TCAD) simulations. The TCAD simulation results reveal that, with an optimized device structure, the current density of the wrapping a-IGZO transistor can reach 7.34 μA/μm, representing an approximate two-fold enhancement compared to that of the a-IGZO SGT. Furthermore, the optimized wrapping a-IGZO transistor exhibits clear flat saturation and pinch-off behavior. The proposed wrapping a-IGZO transistors show significant potential for applications in large-area electronics. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

22 pages, 5992 KiB  
Review
IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies
by Youngmin Han, Juhyung Seo, Dong Hyun Lee and Hocheon Yoo
Micromachines 2025, 16(2), 118; https://doi.org/10.3390/mi16020118 - 21 Jan 2025
Cited by 1 | Viewed by 3641
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 [...] Read more.
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture. Full article
(This article belongs to the Special Issue Semiconductor and Energy Materials and Processing Technology)
Show Figures

Figure 1

46 pages, 17202 KiB  
Review
A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics
by Qiwei Shangguan, Yawei Lv and Changzhong Jiang
Nanomaterials 2024, 14(20), 1679; https://doi.org/10.3390/nano14201679 - 19 Oct 2024
Cited by 1 | Viewed by 3945
Abstract
Although the irreplaceable position of silicon (Si) semiconductor materials in the field of information has become a consensus, new materials continue to be sought to expand the application range of semiconductor devices. Among them, research on wide bandgap semiconductors has already achieved preliminary [...] Read more.
Although the irreplaceable position of silicon (Si) semiconductor materials in the field of information has become a consensus, new materials continue to be sought to expand the application range of semiconductor devices. Among them, research on wide bandgap semiconductors has already achieved preliminary success, and the relevant achievements have been applied in the fields of energy conversion, display, and storage. However, similar to the history of Si, the immature material grown and device manufacturing processes at the current stage seriously hinder the popularization of wide bandgap semiconductor-based applications, and one of the crucial issues behind this is the defect problem. Here, we take amorphous indium gallium zinc oxide (a-IGZO) and 4H silicon carbide (4H-SiC) as two representatives to discuss physical/mechanical properties, electrical performance, and stability from the perspective of defects. Relevant experimental and theoretical works on defect formation, evolution, and annihilation are summarized, and the impacts on carrier transport behaviors are highlighted. State-of-the-art applications using the two materials are also briefly reviewed. This review aims to assist researchers in elucidating the complex impacts of defects on electrical behaviors of wide bandgap semiconductors, enabling them to make judgments on potential defect issues that may arise in their own processes. It aims to contribute to the effort of using various post-treatment methods to control defect behaviors and achieve the desired material and device performance. Full article
(This article belongs to the Special Issue Simulation Study of Nanoelectronics)
Show Figures

Figure 1

16 pages, 3121 KiB  
Article
Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms
by Dong-Gyun Mah, Seong-Hwan Lim and Won-Ju Cho
Electronics 2024, 13(15), 2916; https://doi.org/10.3390/electronics13152916 - 24 Jul 2024
Viewed by 1257
Abstract
This study investigated the potential of indium tungsten oxide (IWO) channel-based inorganic electrolyte transistors as synaptic devices. We comparatively analyzed the electrical characteristics of indium gallium zinc oxide (IGZO) and IWO channels using phosphosilicate glass (PSG)-based electrolyte transistors, focusing on the effects of [...] Read more.
This study investigated the potential of indium tungsten oxide (IWO) channel-based inorganic electrolyte transistors as synaptic devices. We comparatively analyzed the electrical characteristics of indium gallium zinc oxide (IGZO) and IWO channels using phosphosilicate glass (PSG)-based electrolyte transistors, focusing on the effects of electric-double-layer (EDL) and electrochemical doping. The results showed the superior current retention characteristics of the IWO channel compared to the IGZO channel. To validate these findings, we compared the DC bias characteristics of SiO2-based field-effect transistors (FETs) with IGZO and IWO channels. Furthermore, by examining the transfer curve characteristics under various gate voltage (VG) sweep ranges for PSG transistors based on IGZO and IWO channels, we confirmed the reliability of the proposed mechanisms. Our results demonstrated the superior short-term plasticity of the IWO channel at VG = 1 V due to EDL operation, as confirmed by excitatory post-synaptic current measurements under pre-synaptic conditions. Additionally, we observed superior long-term plasticity at VG ≥ 2 V due to proton doping. Finally, the IWO channel-based FETs achieved a 92% recognition rate in pattern recognition simulations at VG = 4 V. IWO channel-based inorganic electrolyte transistors, therefore, have remarkable applicability in neuromorphic devices. Full article
(This article belongs to the Special Issue Neuromorphic Device, Circuits, and Systems)
Show Figures

Figure 1

26 pages, 8743 KiB  
Article
A Physical TCAD Mobility Model of Amorphous In-Ga-Zn-O (a-IGZO) Devices with Spatially Varying Mobility Edges, Band-Tails, and Enhanced Low-Temperature Convergence
by Mischa Thesberg, Franz Schanovsky, Ying Zhao, Markus Karner, Jose Maria Gonzalez-Medina, Zlatan Stanojević, Adrian Chasin and Gerhard Rzepa
Micromachines 2024, 15(7), 829; https://doi.org/10.3390/mi15070829 - 27 Jun 2024
Cited by 2 | Viewed by 2816
Abstract
Amorphous indium gallium zinc oxide (a-IGZO) is becoming an increasingly important technological material. Transport in this material is conceptualized as the heavy disorder of the material causing a conduction or mobility band-edge that randomly varies and undulates in space across the entire system. [...] Read more.
Amorphous indium gallium zinc oxide (a-IGZO) is becoming an increasingly important technological material. Transport in this material is conceptualized as the heavy disorder of the material causing a conduction or mobility band-edge that randomly varies and undulates in space across the entire system. Thus, transport is envisioned as being dominated by percolation physics as carriers traverse this varying band-edge landscape of “hills” and “valleys”. It is then something of a missed opportunity to model such a system using only a compact approach—despite this being the primary focus of the existing literature—as such a system can easily be faithfully reproduced as a true microscopic TCAD model with a real physically varying potential. Thus, in this work, we develop such a “microscopic” TCAD model of a-IGZO and detail a number of key aspects of its implementation. We then demonstrate that it can accurately reproduce experimental results and consider the issue of the addition of non-conducting band-tail states in a numerically efficient manner. Finally, two short studies of 3D effects are undertaken to illustrate the utility of the model: specifically, the cases of variation effects as a function of device size and as a function of surface roughness scattering. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

21 pages, 10710 KiB  
Article
Effects of Laser Treatment of Terbium-Doped Indium Oxide Thin Films and Transistors
by Rihui Yao, Dingrong Liu, Nanhong Chen, Honglong Ning, Guoping Su, Yuexin Yang, Dongxiang Luo, Xianzhe Liu, Haoyan Chen, Muyun Li and Junbiao Peng
Nanomaterials 2024, 14(11), 908; https://doi.org/10.3390/nano14110908 - 22 May 2024
Cited by 2 | Viewed by 1690
Abstract
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination [...] Read more.
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10−11 A vs. 1.66 × 10−12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = −10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V). Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

9 pages, 4338 KiB  
Communication
A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration
by Chenbo Huang, Yichao Yang, Yujie Li, Shijie Jiang, Lurong Yang, Ruixiao Li and Xiaojian She
Photonics 2024, 11(4), 362; https://doi.org/10.3390/photonics11040362 - 12 Apr 2024
Viewed by 2089
Abstract
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we [...] Read more.
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we studied the dark current behaviors of phototransistors fabricated based on the Indium Gallium Zinc Oxide (IGZO) channel and different perovskite materials. We found that depositing organic–inorganic hybrid perovskites materials (MAPbI3/FAPbI3/FA0.2MA0.8PbI3) on top of IGZO transistor can increase dark current from ~10−6 mA to 1~10 mA. By contrast, we observed depositing an inorganic perovskite material, CsPbI3, incorporated with PCBM additive can suppress the dark current down to ~10−6 mA. Our study of ion migration reveals that ion migration is pronounced in organic–inorganic perovskite films but is suppressed in CsPbI3, particularly in CsPbI3 mixed with PCBM additive. This study shows that ion migration suppression by the exclusion of organic halide and the incorporation of PCBM additive can benefit low dark current in perovskite phototransistors. Full article
Show Figures

Figure 1

12 pages, 3186 KiB  
Article
Characteristics Analysis of IGZO TFT and Logic Unit in the Temperature Range of 8–475 K
by Jianjian Wang, Jinshun Bi, Gaobo Xu and Mengxin Liu
Electronics 2024, 13(8), 1427; https://doi.org/10.3390/electronics13081427 - 10 Apr 2024
Cited by 8 | Viewed by 4117
Abstract
The effect of high- and low-temperature conditions on the performance of IGZO TFT and logic circuits were investigated in this work. In the temperature range of 250−350 K, the performance of the IGZO TFT did not show significant changes and exhibited a certain [...] Read more.
The effect of high- and low-temperature conditions on the performance of IGZO TFT and logic circuits were investigated in this work. In the temperature range of 250−350 K, the performance of the IGZO TFT did not show significant changes and exhibited a certain degree of high- and low-temperature resistance. When the temperature was below 250 K, as the temperature decreased, the threshold voltage (VTH) of the IGZO TFT significantly increased, the field effect mobility (μFE) and the on state current (ION) significantly decreased. This is attributed to the lower excitation degree of charge carriers at extremely low temperatures, resulting in fewer charge carriers transitioning to the conduction or valence bands, and the formation of defects also limits carrier migration. When the temperature exceeded 350 K, as the temperature increased, more electrons could escape from the bandgap trap state and become free charge carriers, and the IGZO layer was thermally excited to produce more oxygen vacancies, resulting in higher μFE and lower VTH. In addition, the drain current noise spectral density of IGZO TFT conformed to the 1/ƒ noise characteristic, and the degradation mechanism of IGZO TFT over a wide temperature range was confirmed based on the changes in noise spectral density at different temperatures. In addition, an inverter logic unit circuit was designed based on IGZO TFT, and the performance changes over a wide temperature range were analyzed. This lays the foundation for IGZO TFT to be applied in integrated circuits with harsh environments. Full article
Show Figures

Figure 1

Back to TopTop