Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (958)

Search Parameters:
Keywords = indigenous activism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 49
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

16 pages, 4439 KiB  
Article
Baseline Assessment of Taeniasis and Cysticercosis Infections in a High-Priority Region for Taenia solium Control in Colombia
by Carlos Franco-Muñoz, María Camila Jurado Guacaneme, Sonia Dayanni Castillo Ayala, Sofia Duque-Beltrán, Adriana Arévalo, Marcela Pilar Rojas Díaz, Julián Trujillo Trujillo, Luz Elena Borras Reyes, Luis Reinel Vásquez Arteaga, Julio César Giraldo Forero and Mario J. Olivera
Pathogens 2025, 14(8), 755; https://doi.org/10.3390/pathogens14080755 (registering DOI) - 31 Jul 2025
Viewed by 259
Abstract
Coyaima is a town in the department of Tolima, Colombia, that was prioritized in a pilot program under Colombia’s National Plan for the Control of the Taeniasis/Cysticercosis Complex, focusing on this neglected health issue. The project engaged local indigenous communities, promoting education and [...] Read more.
Coyaima is a town in the department of Tolima, Colombia, that was prioritized in a pilot program under Colombia’s National Plan for the Control of the Taeniasis/Cysticercosis Complex, focusing on this neglected health issue. The project engaged local indigenous communities, promoting education and outreach within the One Health framework. The study included 444 randomly selected volunteers, who filled a Knowledge, Attitudes, and Practices (KAP) survey on the taeniasis/cysticercosis complex. The baseline study found no Taenia spp. eggs via microscopy on 383 stool samples examined, and no T. solium DNA was detected on human stool and soil samples by Copro-qPCR. However, seroprevalence was 8.5% for human cysticercosis and 14% for porcine cysticercosis, as detected by in-house ELISA testing for T. solium. Moreover, 57.9% of participants who provided a stool sample were positive for at least one parasite. Following the sampling and characterization activities, local health workers implemented mass treatment with Niclosamide, based on evidence of ongoing transmission, high porcine seroprevalence, poor basic sanitation, and the presence of free-roaming pigs reported in the KAP survey. These findings provide scientific evidence to apply national public health policies for controlling taeniasis/cysticercosis complex in Coyaima. Full article
(This article belongs to the Special Issue Recent Advances in Taeniasis and Cysticercosis)
Show Figures

Figure 1

17 pages, 1710 KiB  
Article
Physiological, Genetic, and Fermentative Traits of Oenococcus oeni Isolates from Spontaneous Malolactic Fermentation in Koshu Wine
by Misa Otoguro, Sayaka Inui, Taichi Aoyanagi, Ayana Misawa, Hiromi Nakano, Yoshimi Shimazu and Shigekazu Misawa
Fermentation 2025, 11(8), 440; https://doi.org/10.3390/fermentation11080440 - 31 Jul 2025
Viewed by 189
Abstract
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these [...] Read more.
Koshu wine, produced from the indigenous Japanese grape Vitis vinifera L. cv. Koshu exhibits a lower pH than other white wines, hindering malolactic fermentation (MLF) by lactic acid bacteria (LAB). Here, we aimed to isolate LAB strains capable of performing MLF under these challenging conditions to improve wine quality. Sixty-four Oenococcus oeni and one Lactobacillus hilgardii strain were isolated from Koshu grapes and wines that had undergone spontaneous MLF. MLF activity was assessed under varying pH, SO2, and ethanol conditions in modified basal medium (BM) and Koshu model wine media. Expression of stress-related genes was analyzed using real-time PCR. Carbon source utilization was evaluated via API 50CH assays. All isolates degraded malic acid and produced lactic acid at 15 °C and pH 3.2 in BM without reducing sugars. Seven strains, all identified as O. oeni, demonstrated MLF activity at pH 3.0 in modified BM lacking added reducing sugars or tomato juice. Six wine-derived strains tolerated up to 12% ethanol, whereas the grape-derived strain was inhibited at 10%. In a synthetic Koshu wine model (13% ethanol, pH 3.0), wine-derived isolates exhibited higher MLF activity than commercial starter strains. In high-performing strains, mleA was upregulated, and most isolates preferred fructose, arabinose, and ribose over glucose. These findings suggest that indigenous O. oeni strains from Koshu wine possess unique stress tolerance and metabolic traits, making them promising candidates for region-specific MLF starter cultures that could enhance Koshu wine quality and terroir expression. Full article
(This article belongs to the Special Issue Fermentation and Biotechnology in Wine Making)
Show Figures

Figure 1

18 pages, 762 KiB  
Review
Djulis (Chenopodium formosanum) Extract as a Promising Natural Agent Against Skin Aging
by Jia-Ling Lyu, Po-Yuan Wu, Hsiao-Fang Liao, Chia-Lin Lee, Kuo-Ching Wen, Chang-Cheng Chang and Hsiu-Mei Chiang
Molecules 2025, 30(15), 3209; https://doi.org/10.3390/molecules30153209 - 31 Jul 2025
Viewed by 292
Abstract
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract [...] Read more.
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract skin aging and photoaging. Djulis (Chenopodium formosanum), an indigenous Taiwanese pseudocereal from the Amaranthaceae family, has emerged as a promising candidate for skincare applications because of its rich phytochemicals and diverse bioactivities. This review describes the current understanding of the molecular mechanisms underlying photoaging and examines the therapeutic potential of djulis extract as a multifunctional agent for skin aging. Its mechanisms of action include enhancing antioxidant defenses, modulating inflammatory pathways, preserving the extracellular matrix, and inhibiting the formation of advanced glycation end products. Bioactive constituents of djulis extract, including phenolic compounds, flavonoids, and betanin, are known to exhibit potent antioxidant and photoprotective activities by modulating multiple molecular pathways essential for skin protection. The bioactivities of djulis in in vitro and animal studies, and four skin clinical trials of djulis extract products are presented in this review article. Ultimately, this review provides an overview that supports the potential of djulis extract in the development of evidence-based skincare formulations for the prevention and treatment of skin aging. Full article
Show Figures

Graphical abstract

27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 231
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

25 pages, 6142 KiB  
Article
Cancer Chemopreventive Potential of Claoxylon longifolium Grown in Southern Thailand: A Bioassay-Guided Isolation of Vicenin 1 as the Active Compound and In Silico Studies on Related C-Glycosyl Flavones
by Chuanchom Khuniad, Lutfun Nahar, Anupam D. Talukdar, Rajat Nath, Kenneth J. Ritchie and Satyajit D. Sarker
Molecules 2025, 30(15), 3173; https://doi.org/10.3390/molecules30153173 - 29 Jul 2025
Viewed by 325
Abstract
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions [...] Read more.
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions afforded six known compounds, including caffeic acid (1), isovitexin (2), and vicenins 1–3 (3–5) from leaves and hexadecanoic acid methyl ester (6) from stems. Their structures were determined by spectroscopic means. Ten constituents were tentatively identified from the oily fractions of stems by GC-MS. Non-cytotoxic concentrations of compounds 16 were identified using the MTT cell viability assay. The ability of compounds 16 at non-cytotoxic concentrations to induce Nrf2 activation, correlating to their potential chemopreventive properties, was determined using a luciferase reporter assay in the AREc32 cell line. Only vicenin 1 (3) was considered to be a potent chemopreventive compound, as it increased luciferase activity by 2.3-fold. In silico studies on compounds 25 and vitexin (16) revealed the potential of these compounds as cancer chemopreventive and chemotherapeutic agents. This study provides the first report on the chemopreventive properties of C. longifolium. All identified and isolated compounds are reported here for the first time from this species. Full article
Show Figures

Graphical abstract

24 pages, 3509 KiB  
Article
Water: The Central Theme of the Proposed Sonora Estuarine Biocultural Corridor of Northwestern Mexico
by Diana Luque-Agraz, Martha A. Flores-Cuamea, Alessia Kachadourian-Marras, Lara Cornejo-Denman and Arthur D. Murphy
Water 2025, 17(15), 2227; https://doi.org/10.3390/w17152227 - 26 Jul 2025
Viewed by 367
Abstract
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more [...] Read more.
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more of six irrigation districts of national relevance. The objective is to learn about the socio-environmental problems of the CBES, focused on the issue of water, as well as community proposals for solutions. Intercultural, mixed methodology approach. Prospecting visits were carried out in the six estuaries of the CBES, and 84 semi-structured interviews were conducted with experts from all social sectors who know the problems of the CBES in three (out of six) estuaries associated with indigenous territories. The main problem is centered on the issue of water: they receive contaminated water from agroindustry, aquaculture, and the municipal service; the fresh water of the rivers is almost nil, rainfall has decreased while the heat increases, and marine and terrestrial biodiversity decreases. This affects the food and economic security of the local population and generates conflicts between the different productive activities. A multisectoral organization that integrates the six estuaries would improve community wellbeing and, in turn, climate resilience. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 248
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 1102 KiB  
Review
Protective Potential of Satureja montana-Derived Polyphenols in Stress-Related Central Nervous System Disorders, Including Dementia
by Stela Dragomanova, Lyubka Tancheva, Silviya Abarova, Valya B. Grigorova, Valentina Gavazova, Dana Stanciu, Svetlin Tzonev, Vladimir Prandjev and Reni Kalfin
Curr. Issues Mol. Biol. 2025, 47(7), 556; https://doi.org/10.3390/cimb47070556 - 17 Jul 2025
Viewed by 309
Abstract
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental [...] Read more.
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental health is affected by the nature and quality of dietary consumption. Results: Ethnopharmacological research underscores the potential of SM in influencing various chronic ailments, including depression and anxiety. This plant is distinguished by a rich variety of secondary metabolites that display a broad spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, antiviral, and antifungal effects. Particularly, two of its active phenolic compounds, rosmarinic acid and carvacrol, reveal notable anxiolytic and antidepressive properties. This review aims to explore the capacity of SM to improve mental health through its plentiful phenolic components. Recent studies indicate their efficacy in addressing Alzheimer’s-type dementia. A notable correlation exists among depression, anxiety, and cognitive decline, which includes dementia. Considering that Alzheimer’s disease (AD) is a multifaceted condition, it requires multi-targeted therapeutic strategies for both prevention and management. Conclusions: Satureja montana is recognized as potential candidate for both the prevention and management of various mental health disorders, including dementia. Full article
Show Figures

Graphical abstract

13 pages, 3548 KiB  
Article
Analysis of Carcass and Meat Characteristics in Breast Muscle Between Hubbard White Broilers and Xueshan Chickens
by Fan Li, Xingyu Zhang, Jiajia Yu, Jiaxue Yuan, Yuanfeng Zhang, Huiting He, Qing Ma, Yinglin Lu, Xiaoe Xiang and Minli Yu
Animals 2025, 15(14), 2099; https://doi.org/10.3390/ani15142099 - 16 Jul 2025
Viewed by 327
Abstract
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an [...] Read more.
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an indigenous breed) at market age were analyzed to determine the potential mechanisms responsible for these differences. The results show that HWs exhibited significantly better carcass performance than XSs, including the larger weight of the carcass, the breast muscle, and the thigh muscle (p < 0.01). In addition, based on HE staining analysis, HWs’ breast muscles had a considerably larger average myofiber area and diameter than those of XSs (p < 0.01). Furthermore, the physical characteristics of the meat revealed that XSs had higher redness and yellowness and also higher lightness. HW meat had a higher pH and thermal loss, but a lower shear force and drip loss than XS meat (p < 0.01). The content of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) was, remarkably, lower in the breast muscles of HWs than of XSs (p < 0.01). In contrast, HWs had a larger concentration of monounsaturated fatty acids (MUFAs) than XSs (p < 0.01). Finally, the breast muscles of XSs had lower levels of mRNA expression for genes linked to lipid metabolism, such as fatty acid binding protein 4 (Fabp4) and peroxisome proliferator-activated receptor alpha (Pparα), and had higher levels of the phosphofructokinase muscle type (Pfkm) compared to HWs (p < 0.01). These results indicate that a lower carcass yield was observed in XSs compared with HWs, but that XSs showed better performance in terms of meat quality than HW. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 356
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

17 pages, 4748 KiB  
Article
Impact of the Gut Microbiota–Metabolite Axis on Intestinal Fatty Acid Absorption in Huainan Pigs
by Jing Wang, Liangying Zhu, Yangyang Wang, Qiang Ma, Xiangzhou Yan, Mingxun Li and Baosong Xing
Microorganisms 2025, 13(7), 1609; https://doi.org/10.3390/microorganisms13071609 - 8 Jul 2025
Viewed by 458
Abstract
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid [...] Read more.
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid absorption, we compared the rectal and colonic microbiota and metabolite profiles of Huainan and Large White pigs using 16S rRNA sequencing and untargeted metabolomics. HN pigs exhibited enriched Lactobacillus johnsonii and Lactobacillus amylovorus, along with a significantly higher Firmicutes/Bacteroidetes ratio. Functional predictions further revealed elevated microbial pathways related to glycolysis, pyruvate metabolism, and ABC transporters in HN pigs. Conversely, LW pigs showed increased abundance of potentially pro-inflammatory bacteria and enriched pathways for lipopolysaccharide (LPS) biosynthesis. Metabolites such as 4-ethyl-2-heptylthiazole and picolinic acid were significantly upregulated in HN pigs and served as robust biomarkers (Area Under the Curve, AUC = 1.0),with perfect discrimination observed in both rectal and colonic samples. Integrative analysis identified 52 co-enriched microbial and metabolic pathways in HN pigs, including short-chain fatty acid (SCFA) production, lipid biosynthesis and transport, amino acid metabolism, ABC transporter activity, and the PPAR signaling pathway, supporting a microbiota–metabolite axis that enhances fatty acid absorption and gut immune balance. These findings provide mechanistic insight into breed-specific fat deposition and offer candidate biomarkers for improving pork quality via precision nutrition and breeding. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

29 pages, 3238 KiB  
Review
Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review
by Kadidiatou O. Ndjoubi, Rajan Sharma and Ahmed A. Hussein
Plants 2025, 14(14), 2086; https://doi.org/10.3390/plants14142086 - 8 Jul 2025
Viewed by 510
Abstract
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such [...] Read more.
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such as amino acids, fatty acids, sugars, flavonoid glycosides, cycloartenol glycosides, and oleanane-type saponins. Moreover, several research studies have highlighted the promising therapeutic effects of L. frutescens in combating various cancer cell lines. Additionally, the plant demonstrated potent immunomodulatory, antioxidant, anti-inflammatory, antidiabetic, neuroprotective, antistress, and antimicrobial activities. These research findings highlight L. frutescens as a promising candidate for the development of new or complementary therapies for a range of diseases and conditions. This review analyses the chemical and biological properties of L. frutescens based on 154 articles identified through SciFinder. Of these, 78 articles, including two patents, met the inclusion criteria and were reviewed. Studies focused on agriculture and horticulture were excluded as they fell outside the scope of this research. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 333
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

29 pages, 8947 KiB  
Article
Cultural Heritage and Lacustrine Landscape Conservation: The Case of “Procession of The Wise Men” in Cajititlán, Jalisco
by David Fabricio Alvarado-Ramírez, Pedro Lina Manjarrez, José Teodoro Silva García, Gustavo Cruz-Cárdenas and Paloma Gallegos Tejeda
Sustainability 2025, 17(13), 6047; https://doi.org/10.3390/su17136047 - 2 Jul 2025
Viewed by 483
Abstract
Although lagoons are sites of water accumulation and runoff where a variety of animal species and plant varieties inhabit, they have also been positioned as spaces where rituals and religious practices take place, from which the transmission of knowledge emanates, and social activities [...] Read more.
Although lagoons are sites of water accumulation and runoff where a variety of animal species and plant varieties inhabit, they have also been positioned as spaces where rituals and religious practices take place, from which the transmission of knowledge emanates, and social activities are strengthened. The Laguna de Cajititlán (Cajititlán Lagoon) in the town of Tlajomulco de Zúñiga, Jalisco, México is a lacustrine landscape that faces a state of fragility due to incessant processes of urbanization along with basin desiccation and wastewater pollution. However, the community of Cajititlán has managed to protect its lacustrine landscape through the rescue of the religious tradition of the Procesión Los Santos Reyes (Procession of the Wise Men). Therefore, the objective of this article is to analyze how this tradition, as cultural heritage, has influenced the conservation of the lacustrine landscape. We conclude that cultural heritage and the lacustrine landscape are bidirectionally correlated because fostering Indigenous traditions like the Procesión in Cajititlán, as a manifestation of devotion and faith, enhances identity, promotes tourism, and supports conservation practices and the sustainability of the lacustrine landscape. At the same time, conservation of the lacustrine landscape enables the preservation of cultural heritage, generating an interdependent relationship between these elements. Full article
(This article belongs to the Special Issue Cultural Heritage Conservation and Sustainable Development)
Show Figures

Figure 1

Back to TopTop