Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = indazole derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9250 KB  
Article
The Interventional Effects and Mechanisms of Lonidamine in Combination with Apigenin on Colorectal Cancer
by Yi Zhou, Jiahao Shi, Mengjie Zhang, Hua Yang and Jian Fei
Curr. Issues Mol. Biol. 2025, 47(10), 825; https://doi.org/10.3390/cimb47100825 - 8 Oct 2025
Viewed by 769
Abstract
Colorectal cancer (CRC) is the second most prevalent cancer globally and remains a significant cause of cancer-related mortality. The limited efficacy and toxicities of conventional therapies underscore the urgent need for novel treatments. Lonidamine (LND), a synthetic indazole-3-carboxylic acid derivative, possesses anticancer properties, [...] Read more.
Colorectal cancer (CRC) is the second most prevalent cancer globally and remains a significant cause of cancer-related mortality. The limited efficacy and toxicities of conventional therapies underscore the urgent need for novel treatments. Lonidamine (LND), a synthetic indazole-3-carboxylic acid derivative, possesses anticancer properties, yet its clinical use is limited by toxic side effects. Apigenin (AP), a naturally occurring flavonoid present in a variety of fruits and vegetables, has been observed to enhance the efficacy of conventional chemotherapy regimens while mitigating associated side effects. In this study, we explored the potential synergistic anticancer effects and mechanisms of combining LND with AP in colon cancer cell lines MC38 and CT26. The results showed that LND and AP in combination synergistically inhibited the growth of colon cancer cells. In vitro, the combination therapy inhibited cell migration, induced cell cycle arrest in the G2/M phase, and promoted apoptosis by downregulating Bcl-2 and upregulating Bax expression. It disrupted glycolysis by reducing HK2 and GLUT1 expression, resulting in decreased glucose consumption and lactate production. Additionally, our findings suggested that the co-administration led to nucleotide depletion and disrupted NAD+ metabolism. The synergistic anticancer effect of LND combined with AP was also validated in MC38 tumor-bearing mice. These findings provide preliminary evidence that the combination of LND and AP may exert beneficial effects against CRC. Full article
Show Figures

Figure 1

19 pages, 2390 KB  
Article
Indazol-Pyrimidine Hybrids: Design, Synthesis, and Antiproliferative Activity Against Human Cancer Cell Lines
by Hanaa M. Al-Tuwaijri, Ahmed A. El-Rashedy, Siddique Akber Ansari, Aliyah Almomen, Hamad M. Alkahtani, Ebtehal S. Al-Abdullah and Mogedda E. Haiba
Molecules 2025, 30(18), 3773; https://doi.org/10.3390/molecules30183773 - 17 Sep 2025
Viewed by 878
Abstract
The current study outlines a synthetic method for creating a new class of indazol-pyrimidine derivatives 4ah and 5ah. The new derivatives were evaluated as in vitro cytotoxic agents against three types of cancer cell lines (MCF-7, A549 and [...] Read more.
The current study outlines a synthetic method for creating a new class of indazol-pyrimidine derivatives 4ah and 5ah. The new derivatives were evaluated as in vitro cytotoxic agents against three types of cancer cell lines (MCF-7, A549 and Caco-2), utilizing the MTT assay. Compounds 4a, 4c, 4d, 5a and 5f demonstrated potent cytotoxic activity against MCF-7 cell line, showing higher activity than the reference drug Staurosporine. Among the examined compounds, 5f showed a strong cytotoxic effect against all three tested cancer cells (MCF-7, A549 and Caco-2), with IC50 values of 1.858, 3.628 and 1.056 µM, respectively. In comparison, the reference drug exhibited IC50 values of 8.029, 7.354 and 4.202 µM respectively, indicating promising anti-proliferative potential of compound 5f. On the other hand, Compound 4b demonstrated the greatest potency against Caco-2 cell line, with an IC50 of 0.827 µM, markedly outperforming reference compound’s IC50 of 4.202 µM. Furthermore, compound 5h revealed significant anti-proliferative activity against A549 cell line, with an IC50 value of 1.378 µM, compared to the reference drug, with an IC50 value of 7.354 µM. Additionally, the molecular docking study revealed a strong binding affinity of compound 5f within the binding site of the c-Kit tyrosine kinase protein, and the molecular dynamics study confirmed its stability. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

13 pages, 1388 KB  
Article
Indazole Derivatives Against Murine Cutaneous Leishmaniasis
by Niurka Mollineda-Diogo, Yunierkis Pérez-Castillo, Sergio Sifontes-Rodríguez, Osmani Marrero-Chang, Alfredo Meneses-Marcel, Alma Reyna Escalona-Montaño, María Magdalena Aguirre-García, Teresa Espinosa-Buitrago, Yeny Morales-Moreno and Vicente Arán-Redó
Pharmaceuticals 2025, 18(8), 1107; https://doi.org/10.3390/ph18081107 - 25 Jul 2025
Viewed by 765
Abstract
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side [...] Read more.
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side effects, remains a priority for the scientific community in this field of research. In previous investigations, 3-alkoxy-1-benzyl-5-nitroindazole derivatives showed remarkable in vitro results against Leishmania species, and predictions of absorption, distribution, metabolism, excretion, and toxicity properties, as well as pharmacological scores, of the compounds classified as active were superior to those of amphotericin B, indicating their potential as candidates for in vivo studies. Therefore, the aim of the present study was to evaluate the in vivo antileishmanial activity of the indazole derivatives NV6 and NV16. Methods: The compounds were administered intralesionally at concentrations of 10 and 5 mg/kg in a BALB/c mouse model of cutaneous leishmaniasis caused by Leishmania amazonensis. To evaluate the efficacy of the compounds, indicators such as lesion size, ulcer area, lesion weight, and parasitic load were determined. Amphotericin B was used as a positive control. Results: The compound NV6 showed leishmanicidal activity comparable to that observed with amphotericin B, with a significant reduction in lesion development and parasite load, while NV16 caused a reduction in ulcer area. Conclusions: These results provide strong evidence for the antileishmanial activity of NV6 and support future studies to improve its pharmacokinetic profile, as well as the investigation of combination therapies with other chemotherapeutic agents currently in use. Full article
Show Figures

Graphical abstract

12 pages, 1398 KB  
Article
Surface Plasmon Resonance (SPR) for the Binding Kinetics Analysis of Synthetic Cannabinoids: Advancing CB1 Receptor Interaction Studies
by Xuesong Shi, Lixin Kuai, Deli Xu, Yanling Qiao, Yuanyuan Chen, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(8), 3692; https://doi.org/10.3390/ijms26083692 - 14 Apr 2025
Cited by 2 | Viewed by 2624
Abstract
Synthetic cannabinoids (SCs), a class of widely abused new psychoactive substances, are characterized by their structural diversity and rapid evolution. Structure–affinity relationships are crucial for predicting pharmacological effects and potential toxicity. Traditional methods for affinity testing are often complex and less applicable to [...] Read more.
Synthetic cannabinoids (SCs), a class of widely abused new psychoactive substances, are characterized by their structural diversity and rapid evolution. Structure–affinity relationships are crucial for predicting pharmacological effects and potential toxicity. Traditional methods for affinity testing are often complex and less applicable to newly modified compounds. In contrast, Surface Plasmon Resonance (SPR) is a sensitive and label-free technology that detects molecular interactions by measuring refractive index changes on a metallic surface with the advantages of high sensitivity, low sample consumption, and high-throughput capability. In this study, we used SPR to determine the receptor affinity constants of 10 SCs, including some first-reported substances, and analyzed their structure–affinity relationships to validate the method’s reliability. The results showed that (1) indazole-based SCs exhibited stronger CB1 receptor affinity compared to their indole counterparts, (2) the head structure of p-fluorophenyl enhanced affinity relative to 5-fluoropentyl, (3) and the affinity rankings obtained from SPR experiments were consistent with those derived from traditional methods. These results collectively demonstrate the reliability and effectiveness of SPR in assessing CB1 receptor affinity and differentiating affinity differences among structurally similar analogs, with promising application prospects in drug research, particularly in the development and screening of therapeutic agents targeting cannabinoid receptors. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

25 pages, 5904 KB  
Article
In Vitro Evaluation of New 5-Nitroindazolin-3-one Derivatives as Promising Agents against Trypanosoma cruzi
by Josué Pozo-Martínez, Vicente J. Arán, Matías Zúñiga-Bustos, Sebastián Parra-Magna, Esteban Rocha-Valderrama, Ana Liempi, Christian Castillo, Claudio Olea-Azar and Mauricio Moncada-Basualto
Int. J. Mol. Sci. 2024, 25(20), 11107; https://doi.org/10.3390/ijms252011107 - 16 Oct 2024
Cited by 4 | Viewed by 2001
Abstract
Chagas disease is a prevalent health problem in Latin America which has received insufficient attention worldwide. Current treatments for this disease, benznidazole and nifurtimox, have limited efficacy and may cause side effects. A recent study proposed investigating a wide range of nitroindazole and [...] Read more.
Chagas disease is a prevalent health problem in Latin America which has received insufficient attention worldwide. Current treatments for this disease, benznidazole and nifurtimox, have limited efficacy and may cause side effects. A recent study proposed investigating a wide range of nitroindazole and indazolone derivatives as feasible treatments. Therefore, it is proposed that adding a nitro group at the 5-position of the indazole and indazolone structure could enhance trypanocidal activity by inducing oxidative stress through activation of the nitro group by NTRs (nitroreductases). The study results indicate that the nitro group advances free radical production, as confirmed by several analyses. Compound 5a (5-nitro-2-picolyl-indazolin-3-one) shows the most favorable trypanocidal activity (1.1 ± 0.3 µM in epimastigotes and 5.4 ± 1.0 µM in trypomastigotes), with a selectivity index superior to nifurtimox. Analysis of the mechanism of action indicated that the nitro group at the 5-position of the indazole ring induces the generation of reactive oxygen species (ROS), which causes apoptosis in the parasites. Computational docking studies reveal how the compounds interact with critical residues of the NTR and FMNH2 (flavin mononucleotide reduced) in the binding site, which is also present in active ligands. The lipophilicity of the studied series was shown to influence their activity, and the nitro group was found to play a crucial role in generating free radicals. Further investigations are needed of derivatives with comparable lipophilic characteristics and the location of the nitro group in different positions of the base structure. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 2968 KB  
Article
3-Alkoxy-1-Benzyl-5-Nitroindazole Derivatives Are Potent Antileishmanial Compounds
by Niurka Mollineda-Diogo, Sergio Sifontes-Rodríguez, María Magdalena Aguirre-García, Alma Reyna Escalona-Montaño, Teresa Espinosa-Buitrago, Ricardo Mondragón-Flores, Mónica Edith Mondragón-Castelán, Alfredo Meneses-Marcel, Ofelia Pérez-Olvera, Daniel Andrés Sánchez-Almaraz, Yunierkis Perez-Castillo and Vicente Arán-Redó
Int. J. Mol. Sci. 2024, 25(19), 10582; https://doi.org/10.3390/ijms251910582 - 1 Oct 2024
Cited by 3 | Viewed by 1810
Abstract
Indazoles have previously been identified as molecules with antiprotozoal activity. In this study, we evaluate the in vitro activity of thirteen 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) against L. amazonensis, L. infantum, and L. mexicana. In vitro, cytotoxicity against mouse peritoneal macrophages and [...] Read more.
Indazoles have previously been identified as molecules with antiprotozoal activity. In this study, we evaluate the in vitro activity of thirteen 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) against L. amazonensis, L. infantum, and L. mexicana. In vitro, cytotoxicity against mouse peritoneal macrophages and growth inhibitory activity in promastigotes were evaluated for all compounds, and those showing adequate activity and selectivity were tested against intracellular amastigotes. Transmission and scanning electron microscopy were employed to study the effects of 3-alkoxy-1-benzyl-5-nitroindazole and 2-benzyl-5-nitroindazolin-3-one derivatives on promastigotes of L. amazonensis. Compounds NV6 and NV8 were active in the two life stages of the three species, with the latter showing the best indicators of activity and selectivity. 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) showed in vitro activity comparable to that of amphotericin B against the promastigote stage of Leishmania spp. Two compounds were also found to be active the amastigote stage. Electron microscopy studies confirmed the antileishmanial activity of the indazole derivatives studied and support future research on this family of compounds as antileishmanial agents. Full article
(This article belongs to the Special Issue Advances in Therapeutics against Eukaryotic Pathogens)
Show Figures

Figure 1

10 pages, 3901 KB  
Communication
An Alternative Method for Synthesizing N,2,3-Trimethyl-2H-indazol-6-amine as a Key Component in the Preparation of Pazopanib
by Thi Thanh Cham Bui, Hue Linh Luu, Thi Thanh Luong, Thi Ngoc Nguyen, Nguyet Suong Huyen Dao, Van Giang Nguyen, Dinh Luyen Nguyen, Nguyen Trieu Trinh and Van Hai Nguyen
Chemistry 2024, 6(5), 1089-1098; https://doi.org/10.3390/chemistry6050063 - 19 Sep 2024
Cited by 1 | Viewed by 2482
Abstract
Due to its application as an anti-cancer drug, pazopanib (1) has attracted the interest of many researchers, and several studies on pazopanib synthesis have been reported over the years. This paper provides a novel route for synthesizing N,2,3-trimethyl-2H-indazol-6-amine [...] Read more.
Due to its application as an anti-cancer drug, pazopanib (1) has attracted the interest of many researchers, and several studies on pazopanib synthesis have been reported over the years. This paper provides a novel route for synthesizing N,2,3-trimethyl-2H-indazol-6-amine (5), which is a crucial building block in the synthesis of pazopanib from 3-methyl-6-nitro-1H-indazole (6). By alternating between the reduction and two methylation steps, compound 5 was obtained in a yield comparable (55%) to what has been reported (54%). It is noteworthy that the last step of N2-methylation also yielded N,N,2,3-tetramethyl-2H-indazol-6-amine (5′) as a novel compound. Furthermore, the data presented in this paper can serve as a valuable resource for future research aimed at further refining the process of synthesizing pazopanib and its derivatives. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 2026 KB  
Article
Mucolytic Drugs Ambroxol and Bromhexine: Transformation under Aqueous Chlorination Conditions
by Sergey A. Sypalov, Ilya S. Varsegov, Nikolay V. Ulyanovskii, Albert T. Lebedev and Dmitry S. Kosyakov
Int. J. Mol. Sci. 2024, 25(10), 5214; https://doi.org/10.3390/ijms25105214 - 10 May 2024
Cited by 3 | Viewed by 3739
Abstract
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous [...] Read more.
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry. It was shown that at the initial stages, the reactions of cyclization, hydroxylation, chlorination, electrophilic ipso-substitution of bromine atoms with chlorine, and oxidative N-dealkylation occur. Along with known metabolites, a number of novel primary DBPs were tentatively identified based on their elemental compositions and tandem mass spectra. Deep degradation of bromhexine and ambroxol gives twenty-four identified volatile and semi-volatile compounds of six classes, among which trihalomethanes account for more than 50%. The specific class of bromhexine- and ambroxol-related DBPs are bromine-containing haloanilines. Seven of them, including methoxy derivatives, were first discovered in the present study. One more novel class of DBPs associated with bromhexine and ambroxol is represented by halogenated indazoles formed through dealkylation of the primary transformation products containing pyrazoline or tetrahydropyrimidine cycle in their structure. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 2205 KB  
Article
Synthesis of Trifluoromethylated Pyrimido[1,2-b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SNAr Reactions
by Sakina Tellal, Badr Jismy, Djamila Hikem-Oukacha and Mohamed Abarbri
Molecules 2024, 29(1), 44; https://doi.org/10.3390/molecules29010044 - 20 Dec 2023
Cited by 2 | Viewed by 2210
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic [...] Read more.
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields. Full article
Show Figures

Graphical abstract

20 pages, 7352 KB  
Article
Identification of Indazole-Based Thiadiazole-Bearing Thiazolidinone Hybrid Derivatives: Theoretical and Computational Approaches to Develop Promising Anti-Alzheimer’s Candidates
by Yousaf Khan, Shoaib Khan, Rafaqat Hussain, Wajid Rehman, Aneela Maalik, Urooba Gulshan, Mohamed W. Attwa, Hany W. Darwish, Hazem A. Ghabbour and Nawab Ali
Pharmaceuticals 2023, 16(12), 1667; https://doi.org/10.3390/ph16121667 - 30 Nov 2023
Cited by 21 | Viewed by 2205
Abstract
A hybrid library of compounds based on indazole-based thiadiazole containing thiazolidinone moieties (117) was synthesized. The synthesized compounds were screened in vitro for their inhibition profile against targetedacetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. All the derivatives demonstrated a varied [...] Read more.
A hybrid library of compounds based on indazole-based thiadiazole containing thiazolidinone moieties (117) was synthesized. The synthesized compounds were screened in vitro for their inhibition profile against targetedacetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. All the derivatives demonstrated a varied range of inhibitory activities having IC50 values ranging from 0.86 ± 0.33 μM to 26.73 ± 0.84 μM (AChE) and 0.89 ± 0.12 μM to 27.08 ± 0.19 μM (BuChE), respectively. The results obtained were compared with standard Donepezil drugs (IC50 = 1.26 ± 0.18 μM for AChE) and (1.35 ± 0.37 μM for BuChE), respectively. Specifically, the derivatives 117, 1, 9, and 14 were found to be significantly active, with IC50 values of 0.86 ± 0.30, 0.92 ± 0.10, and 1.10 ± 0.37 μM (against AChE) and 0.89 ± 0.12, 0.98 ± 0.48 and 1.19 ± 0.42 μM (against BuChE), respectively.The structure–activity relationship (SAR) studies revealed that derivatives bearing para-CF3, ortho-OH, and para-F substitutions on the phenyl ring attached to the thiadiazole skeleton, as well as meta-Cl, -NO2, and para-chloro substitutions on the phenyl ring, having a significant effect on inhibitory potential. The synthesized scaffolds have been further characterized by using 1H-NMR, 13C-NMR, and (HR-MS) to confirm the precise structures of the synthesized compounds. Additionally, the molecular docking approach was carried out for most active compounds to explore the binding interactions established by most active compounds, with the active sites of targeted enzymes and obtained results supporting the experimental data. Full article
Show Figures

Graphical abstract

24 pages, 8529 KB  
Article
Mechanochemical Synthesis of PdO2 Nanoparticles Immobilized over Silica Gel for Catalytic Suzuki–Miyaura Cross-Coupling Reactions Leading to the C-3 Modification of 1H-Indazole with Phenylboronic Acids
by Qin Pan, Yong Wu, Aqun Zheng, Xiangdong Wang, Xiaoyong Li, Wanqin Wang, Min Gao, Zainab Bibi, Sidra Chaudhary and Yang Sun
Molecules 2023, 28(20), 7190; https://doi.org/10.3390/molecules28207190 - 20 Oct 2023
Cited by 2 | Viewed by 2126
Abstract
The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In [...] Read more.
The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In this work, a series of silica gel-supported PdO2 nanoparticles of 25–66 nm size were prepared by ball milling silica gel with divalent palladium precursors, and then employed as catalysts for the Suzuki–Miyaura cross-coupling of 1H-indazole derivative with phenylboronic acid. All the synthesized catalysts showed much higher cross-coupling yields than their palladium precursors, and could also be reused three times without losing high activity and selectivity in a toluene/water/ethanol mixed solvent. Although the palladium precursors showed an order of activity of PdCl2(dppf, 1,1′-bis(diphenylphosphino)ferrocene) > PdCl2(dtbpf, 1,1′-bis(di-tert-butylphosphino)ferrocene) > Pd(OAc, acetate)2, the synthesized catalysts showed an order of C1 (from Pd(OAc)2) > C3 (from PdCl2(dtbpf)) > C2 (from PdCl2(dppf)), which conformed to the orders of BET (Brunauer–Emmett–Teller) surface areas and acidities of these catalysts. Notably, the most inexpensive Pd(OAc)2 can be used as a palladium precursor for the synthesis of the best catalyst through simple ball milling. This work provides a highly active and inexpensive series of catalysts for C-3 modification of 1H-indazole, which are significant for the large-scale production of 1H-indazole-based pharmaceuticals. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

11 pages, 1485 KB  
Article
In Vitro Anti-Microbial Activity and Anti-Cancer Potential of Novel Synthesized Carbamothioyl-Furan-2-Carboxamide Derivatives
by Muhammad Salman Javed, Muhammad Zubair, Komal Rizwan and Muhammad Jamil
Molecules 2023, 28(12), 4583; https://doi.org/10.3390/molecules28124583 - 6 Jun 2023
Cited by 7 | Viewed by 3098
Abstract
A series of carbamothioyl-furan-2-carboxamide derivatives were synthesized using a one-pot strategy. Compounds were obtained in moderate to excellent yields (56–85%). Synthesized derivatives were evaluated for their anti-cancer (HepG2, Huh-7, and MCF-7 human cancer cell lines) and anti-microbial potential. Compound p-tolylcarbamothioyl)furan-2-carboxamide showed the highest [...] Read more.
A series of carbamothioyl-furan-2-carboxamide derivatives were synthesized using a one-pot strategy. Compounds were obtained in moderate to excellent yields (56–85%). Synthesized derivatives were evaluated for their anti-cancer (HepG2, Huh-7, and MCF-7 human cancer cell lines) and anti-microbial potential. Compound p-tolylcarbamothioyl)furan-2-carboxamide showed the highest anti-cancer activity at a concentration of 20 μg/mL against hepatocellular carcinoma, with a cell viability of 33.29%. All compounds showed significant anti-cancer activity against HepG2, Huh-7, and MCF-7, while indazole and 2,4-dinitrophenyl containing carboxamide derivatives were found to be less potent against all tested cell lines. Results were compared with the standard drug doxorubicin. Carboxamide derivatives possessing 2,4-dinitrophenyl showed significant inhibition against all bacterial and fungal strains with inhibition zones (I.Z) in the range of 9–17 and MICs were found to be 150.7–295 μg/mL. All carboxamide derivatives showed significant anti-fungal activity against all tested fungal strains. Gentamicin was used as the standard drug. The results showed that carbamothioyl-furan-2-carboxamide derivatives could be a potential source of anti-cancer and anti-microbial agents. Full article
(This article belongs to the Special Issue Novel Antimicrobial Agents: Design, Synthesis and Activity)
Show Figures

Figure 1

12 pages, 6415 KB  
Article
Design, Synthesis and Antitumor Activity of 1H-indazole-3-amine Derivatives
by Congyu Wang, Mei Zhu, Xuesha Long, Qin Wang, Zhenchao Wang and Guiping Ouyang
Int. J. Mol. Sci. 2023, 24(10), 8686; https://doi.org/10.3390/ijms24108686 - 12 May 2023
Cited by 12 | Viewed by 5029
Abstract
A series of indazole derivatives were designed and synthesized by molecular hybridization strategy, and these compounds were evaluated the inhibitory activities against human cancer cell lines of lung (A549), chronic myeloid leukemia (K562), prostate (PC-3), and hepatoma (Hep-G2) by methyl thiazolyl tetrazolium (MTT) [...] Read more.
A series of indazole derivatives were designed and synthesized by molecular hybridization strategy, and these compounds were evaluated the inhibitory activities against human cancer cell lines of lung (A549), chronic myeloid leukemia (K562), prostate (PC-3), and hepatoma (Hep-G2) by methyl thiazolyl tetrazolium (MTT) colorimetric assay. Among these, compound 6o exhibited a promising inhibitory effect against the K562 cell line with the IC50 (50% inhibition concentration) value of 5.15 µM, and this compound showed great selectivity for normal cell (HEK-293, IC50 = 33.2 µM). Moreover, compound 6o was confirmed to affect apoptosis and cell cycle possibly by inhibiting Bcl2 family members and the p53/MDM2 pathway in a concentration-dependent manner. Overall, this study indicates that compound 6o could be a promising scaffold to develop an effective and low-toxic anticancer agent. Full article
Show Figures

Figure 1

19 pages, 3760 KB  
Article
New Indazol-Pyrimidine-Based Derivatives as Selective Anticancer Agents: Design, Synthesis, and In Silico Studies
by Hanaa M. Al-Tuwaijri, Ebtehal S. Al-Abdullah, Ahmed A. El-Rashedy, Siddique Akber Ansari, Aliyah Almomen, Hanan M. Alshibl, Mogedda E. Haiba and Hamad M. Alkahtani
Molecules 2023, 28(9), 3664; https://doi.org/10.3390/molecules28093664 - 23 Apr 2023
Cited by 17 | Viewed by 3460
Abstract
In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds—4f [...] Read more.
In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds—4f, 4i, 4a, 4g, and 4d—possessed significant cytotoxic inhibitory activity against the MCF-7 cell line, with IC50 values of 1.629, 1.841, 2.958, 4.680, and 4.798 μM, respectively, compared to the reference drug with an IC50 value of 8.029 μM, thus demonstrating promising suppression power. Compounds 4i, 4g, 4e, 4d, and 4a showed effective cytotoxic activity stronger than the standard against Caco2 cells. Moreover, compounds 4a and 4i exhibited potent antiproliferative activity against the A549 cell line that was stronger than the reference drug. The most active products, 4f and 4i, werr e further examined for their mechanism of action. It turns out that they were capable of activating caspase-3/7 and, therefore, inducing apoptosis. However, produced a higher safety profile than the reference drug, towards the normal cells (MCF10a). Furthermore, the dynamic nature, binding interaction, and protein–ligand stability were explored through a Molecular Dynamics (MD) simulation study. Various analysis parameters (RMSD, RMSF, RoG, and SASA) from the MD simulation trajectory have suggested the stability of the compounds during the 20 ns MD simulation study. In silico ADMET results revealed that the synthesized compounds had low toxicity, good solubility, and an absorption profile since they met Lipinski’s rule of five and Veber’s rule. The present research highlights the potential of derivatives with indazole scaffolds bearing pyrimidine as a lead compound for designing anticancer agents. Full article
Show Figures

Figure 1

20 pages, 2964 KB  
Article
The C-3 Functionalization of 1H-Indazole through Suzuki–Miyaura Cross-Coupling Catalyzed by a Ferrocene-Based Divalent Palladium Complex Immobilized over Ionic Liquid, as Well as Theoretical Insights into the Reaction Mechanism
by Jinmeng Yu, Aqun Zheng, Lu Jin, Yong Wu, Qin Pan, Xiangdong Wang, Xiaoyong Li, Wanqin Wang, Min Gao and Yang Sun
Appl. Sci. 2023, 13(7), 4095; https://doi.org/10.3390/app13074095 - 23 Mar 2023
Cited by 9 | Viewed by 4551
Abstract
The C-3 functionalization of 1H-indazole could produce a lot of highly valuable pharmaceutical precursors, which could be used for the treatment of cancer and many other inflammatory diseases. This work was focused on the C-3 functionalization of 1H-indazole through [...] Read more.
The C-3 functionalization of 1H-indazole could produce a lot of highly valuable pharmaceutical precursors, which could be used for the treatment of cancer and many other inflammatory diseases. This work was focused on the C-3 functionalization of 1H-indazole through Suzuki–Miyaura cross-coupling of 3-iodo-1H-indazole with organoboronic acids, catalyzed by various palladium catalysts immobilized over imidazolium ionic liquids, as well as catalyst recycling. A series of reaction parameters, including the substrate, catalyst, and ionic liquid, were fully investigated. It is significant to note that the yields of the present Suzuki–Miyaura cross-coupling were mainly determined by the catalyst and the solvent used, more than the chemical structure of the substrate. Furthermore, ferrocene-based divalent palladium complexes showed better catalytic outputs compared to simple palladium salts. Moreover, using two imidazolium ionic liquids, BMImX (BMIm+ = 1-n-butyl-3-methylimidazolium, X = BF4, PF6) not only improved the yields of cross-coupled products, but also avoided the formation of Pd(0) black, as compared to the non-ionic liquid facilitated reactions, and simultaneously making catalyst recycling more effective. On average, BMImBF4 performed better than BMImPF6. Additionally, scientific calculations revealed that 1,1′-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (PdCl2(dppf)) showed a lower energy barrier in the formation of intermediates than [1,1′-bis(di-tert-butylphosphino)ferrocene]dichloropalladium(II) (PdCl2(dtbpf)), leading to higher catalytic outputs. This work may contribute to the development of 1H-indazole-derived new pharmaceuticals. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

Back to TopTop