Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = incremental nonlinear dynamic inversion (INDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1649 KiB  
Article
Direct Force Control Technology for Longitudinal Trajectory of Receiver Aircraft Based on Incremental Nonlinear Dynamic Inversion and Active Disturbance Rejection Controller
by Xin Bao, Yan Li and Zhong Wang
Machines 2025, 13(6), 525; https://doi.org/10.3390/machines13060525 - 16 Jun 2025
Viewed by 276
Abstract
Aiming at the requirements of rapidity, high precision, and robustness for the longitudinal trajectory control of the receiver aircraft in autonomous aerial refueling, a direct lift control (DLC) strategy that integrates incremental nonlinear dynamic inversion (INDI) and nonlinear extended state observer (NESO) is [...] Read more.
Aiming at the requirements of rapidity, high precision, and robustness for the longitudinal trajectory control of the receiver aircraft in autonomous aerial refueling, a direct lift control (DLC) strategy that integrates incremental nonlinear dynamic inversion (INDI) and nonlinear extended state observer (NESO) is proposed. First, a control strategy for generating direct lift through the coordinated action of the flaperons and elevators is presented, and a longitudinal dynamics model is established. Secondly, based on the INDI and DLC methods, the rapid tracking and control of altitude are achieved. Finally, an NESO is designed. The observer gains are designed through the pole placement method and the robust optimization method to achieve the estimation of states such as airspeed, angle of attack, pitch rate, and pitch angle, as well as unknown force and moment disturbances. The estimated force and moment disturbances are used to implement the active disturbance rejection control. Simulation results show that the strategy has no altitude tracking error under normal operating conditions, and the altitude tracking error is less than 0.2 m under typical disturbance conditions, indicating high control accuracy. Under disturbance conditions, the estimation errors of true airspeed, angle of attack, pitch angle, and pitch angular velocity are less than 0.3 m/s, 0.12°, 0.1°, and 0.2°/s, respectively, demonstrating the high-precision estimation capability of the observer. The NESO exhibits high accuracy in state estimation, the rudder deflection is smooth, and the anti-disturbance capability is significantly better than traditional methods, providing an engineered solution for the longitudinal control of the receiver aircraft. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

24 pages, 10393 KiB  
Article
Adaptive Incremental Nonlinear Dynamic Inversion Control with Guaranteed Stability for Aerial Manipulators
by Chanhong Park, Alex Ramirez-Serrano and Mahdis Bisheban
Aerospace 2025, 12(4), 312; https://doi.org/10.3390/aerospace12040312 - 6 Apr 2025
Viewed by 710
Abstract
This paper introduces an adaptive Incremental Nonlinear Dynamic Inversion (INDI) control methodology with guaranteed stability for a highly maneuverable unmanned aerial manipulator (UAM) designed to operate under demanding conditions, such as rapid arm movements and varying manipulated payloads. This work extends previous work [...] Read more.
This paper introduces an adaptive Incremental Nonlinear Dynamic Inversion (INDI) control methodology with guaranteed stability for a highly maneuverable unmanned aerial manipulator (UAM) designed to operate under demanding conditions, such as rapid arm movements and varying manipulated payloads. This work extends previous work on the control of aerial manipulators by addressing control effectiveness uncertainties. The stability bounds of the inertia matrix within the control effectiveness matrix are derived through a detailed eigenvalue analysis, ensuring that the eigenvalues consistently remain within a specified stability threshold. The proposed methodology ensures both stability and control responsiveness by dynamically adjusting the inertia parameters of the control effectiveness matrix within stability-guaranteeing limits. The methodology is validated through extensive simulation tests showing that the proposed adaptive INDI controller outperforms previous UAM controllers, effectively coping with disturbances caused by varying grasped payloads/masses and extended arm movements with guaranteed stability. Full article
(This article belongs to the Special Issue Challenges and Innovations in Aircraft Flight Control)
Show Figures

Figure 1

25 pages, 9613 KiB  
Article
Design and Analysis of a Launcher Flight Control System Based on Incremental Nonlinear Dynamic Inversion
by Pedro Simplício, Paul Acquatella and Samir Bennani
Aerospace 2025, 12(4), 296; https://doi.org/10.3390/aerospace12040296 - 31 Mar 2025
Viewed by 586
Abstract
This paper investigates the application of Incremental Nonlinear Dynamic Inversion (INDI) for launch vehicle flight control, addressing the limited exploration of nonlinear control architectures and their potential benefits in the context of the current “New Space” era. In this context, this study aims [...] Read more.
This paper investigates the application of Incremental Nonlinear Dynamic Inversion (INDI) for launch vehicle flight control, addressing the limited exploration of nonlinear control architectures and their potential benefits in the context of the current “New Space” era. In this context, this study aims to bridge the gap between the launcher’s traditional linear control practice and nonlinear methods, focusing on INDI, which offers the potential to enhance limits of performance while reducing mission preparation (“missionisation”) efforts. INDI control commands incremental inputs by exploiting feedback acceleration estimates in a feedback-linearised plant in order to reduce model dependency, making it easier to design and resulting in a robust closed loop as compared to nonlinear dynamic inversion. The objective of this paper is therefore to demonstrate INDI’s implementation in a representative industrial launch ascent scenario, evaluate its strengths and limitations relative to industry standards, and promote its adoption within the launcher Guidance, Navigation, and Control (GNC) community. Comparative simulations with traditional scheduled PD controllers, with and without angular acceleration feedback, are highlighted together with several trade-offs. Furthermore, this paper presents a new and practical INDI stability analysis method as applied in the context of aerospace attitude control, as well as an augmentation of the design with an outer control loop for active load relief. Results indicate that while INDI exhibits increased sensitivity to sensor noise and actuator delays as compared to the linear controllers, its advantages in robustness and performance are significant. Notably, INDI’s ability to handle nonlinearities without extensive tuning and gain-scheduling surpasses the capabilities of the traditional linear control counterparts. These results highlight the potential of INDI as a more robust and efficient alternative to state-of-practice launcher control design methodologies. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 3643 KiB  
Article
Incremental Nonlinear Dynamics Inversion Control with Nonlinear Disturbance Observer Augmentation for Flight Dynamics
by Lamsu Kim and Jeong I. Kim
Appl. Sci. 2024, 14(22), 10615; https://doi.org/10.3390/app142210615 - 18 Nov 2024
Viewed by 1655
Abstract
A flight controller formulation based on incremental nonlinear dynamics inversion (INDI) control with nonlinear disturbance observer (NDO) is proposed. INDI control is a nonlinear controller based on incremental dynamics. Aimed to attain robustness for nonlinear dynamics inversion (NDI)-based controller, incremental dynamics are derived [...] Read more.
A flight controller formulation based on incremental nonlinear dynamics inversion (INDI) control with nonlinear disturbance observer (NDO) is proposed. INDI control is a nonlinear controller based on incremental dynamics. Aimed to attain robustness for nonlinear dynamics inversion (NDI)-based controller, incremental dynamics are derived using the first-order Talyor series expansion to nonlinear systems. The incremental dynamics-based controller requires information on state derivative terms to strengthen the robustness property of the nonlinear controller. The proposed controller utilizes the first-order low-pass filter to obtain the state derivative estimate to implement incremental dynamics into the system. Because the incremental form creates uncertainty term which is an aftermath of the Taylor series expansion, the proposed controller adopts the NDO to eliminate this effect. The controller is applied to the generic transport model which was developed by NASA for simulation purposes. The proposed NDO-based INDI control underwent simulations, together with an INDI controller without disturbance observer, and showed that the developed method results in better performances, providing important advantages where it compensates the uncertainties, removes the steady-state error, and shows less oscillating longitudinal body rate response than the baseline controller, desirable for aerodynamics applications with faster system response. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

25 pages, 6687 KiB  
Article
Modeling and Transition Flight Control of Distributed Propulsion–Wing VTOL UAV with Induced Wing Configuration
by Qingfeng Zhao, Zhou Zhou and Rui Wang
Aerospace 2024, 11(11), 922; https://doi.org/10.3390/aerospace11110922 - 8 Nov 2024
Viewed by 1138
Abstract
The integration of propulsion and wing in distributed propulsion–wing UAVs (DPW UAVs) introduces significant propulsion-aerodynamic coupling, complicating dynamic modeling and flight control. This complexity is heightened by using induced wing surfaces for vertical takeoff and landing, requiring controllers to adapt to configuration changes [...] Read more.
The integration of propulsion and wing in distributed propulsion–wing UAVs (DPW UAVs) introduces significant propulsion-aerodynamic coupling, complicating dynamic modeling and flight control. This complexity is heightened by using induced wing surfaces for vertical takeoff and landing, requiring controllers to adapt to configuration changes and disturbances during transition flight. This paper develops a propulsion-aerodynamic coupling model for a medium-sized DPW UAV with induced wings (DPW-IW), enabling real-time aerodynamic performance calculations. Furthermore, a unified flight-control framework is proposed to avoid controller scheduling and switching during flight mode transitions. The proposed control framework employs the time-scale separation principle, divided into an outer loop and an inner loop. The outer loop uses a fuzzy controller to adjust allocation parameters, while the inner loop applies incremental nonlinear dynamic inversion (INDI) and control allocation (INCA) methods, providing robustness to nonlinear changes during flight transitions. Finally, simulations under various conditions demonstrate the controller’s effectiveness in ensuring smooth and robust transitions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 3682 KiB  
Article
Adaptive Incremental Nonlinear Dynamic Inversion Control for Aerial Manipulators
by Chanhong Park, Alex Ramirez-Serrano and Mahdis Bisheban
Aerospace 2024, 11(8), 671; https://doi.org/10.3390/aerospace11080671 - 15 Aug 2024
Cited by 6 | Viewed by 2405
Abstract
This paper proposes an adaptive incremental nonlinear dynamic inversion (INDI) controller for unmanned aerial manipulators (UAMs). A novel adaptive law is employed to enable aerial manipulators to manage the inertia parameter changes that occur when the manipulator moves or picks up unknown objects [...] Read more.
This paper proposes an adaptive incremental nonlinear dynamic inversion (INDI) controller for unmanned aerial manipulators (UAMs). A novel adaptive law is employed to enable aerial manipulators to manage the inertia parameter changes that occur when the manipulator moves or picks up unknown objects during any phase of the UAM’s flight maneuver. The adaptive law utilizes a Kalman filter to estimate a set of weighting factors employed to adjust the control gain matrix of a previously developed INDI control law formulated for the corresponding UAV (no manipulator included). The proposed adaptive control scheme uses acceleration and actuator input measurements of the UAV without necessitating any knowledge about the manipulator, its movements, or the objects being grasped, thus enabling the use of previously developed INDI UAV controllers for UAMs. The algorithm is validated through simulations demonstrating that the adaptive control gain matrix used in the UAV’s INDI controller is promptly updated based on the UAM maneuvers, resulting in effective UAV and robot arm control. Full article
(This article belongs to the Special Issue Challenges and Innovations in Aircraft Flight Control)
Show Figures

Figure 1

20 pages, 3401 KiB  
Article
Incremental Nonlinear Dynamics Inversion and Incremental Backstepping: Experimental Attitude Control of a Tail-Sitter UAV
by Alexandre Athayde, Alexandra Moutinho and José Raul Azinheira
Actuators 2024, 13(6), 225; https://doi.org/10.3390/act13060225 - 17 Jun 2024
Cited by 1 | Viewed by 1507
Abstract
Incremental control strategies such as Incremental Nonlinear Dynamics Inversion (INDI) and Incremental Backstepping (IBKS) provide undeniable advantages for controlling Uncrewed Aerial Vehicles (UAVs) due to their reduced model dependency and accurate tracking capacities, which is of particular relevance for tail-sitters as these perform [...] Read more.
Incremental control strategies such as Incremental Nonlinear Dynamics Inversion (INDI) and Incremental Backstepping (IBKS) provide undeniable advantages for controlling Uncrewed Aerial Vehicles (UAVs) due to their reduced model dependency and accurate tracking capacities, which is of particular relevance for tail-sitters as these perform complex, hard to model manoeuvres when transitioning to and from aerodynamic flight. In this research article, a quaternion-based form of IBKS is originally deduced and applied to the stabilization of a tail-sitter in vertical flight, which is then implemented in a flight controller and validated in a Hardware-in-the-Loop simulation, which is also made for the INDI controller. Experimental validation with indoor flight tests of both INDI and IBKS controllers follows, evaluating their performance in stabilizing the tail-sitter prototype in vertical flight. Lastly, the tracking results obtained from the experimental trials are analysed, allowing an objective comparison to be drawn between these controllers, evaluating their respective advantages and limitations. From the successfully conducted flight tests, it was found that both incremental solutions are suited to control a tail-sitter in vertical flight, providing accurate tracking capabilities with smooth actuation, and only requiring the actuation model. Furthermore, it was found that the IBKS is significantly more computationally demanding than the INDI, although having a global proof of stability that is of interest in aircraft control. Full article
(This article belongs to the Special Issue From Theory to Practice: Incremental Nonlinear Control)
Show Figures

Figure 1

18 pages, 3329 KiB  
Article
Parameter Tuning Approach for Incremental Nonlinear Dynamic Inversion-Based Flight Controllers
by Mark Henkenjohann, Udo Nolte, Fabian Sion, Christian Henke and Ansgar Trächtler
Actuators 2024, 13(5), 187; https://doi.org/10.3390/act13050187 - 13 May 2024
Cited by 2 | Viewed by 2153
Abstract
Incremental nonlinear dynamic inversion (INDI) is a widely used approach to controlling UAVs with highly nonlinear dynamics. One key element of INDI-based controllers is the control allocation realizing pseudo controls using available actuators. However, the tracking of commanded pseudo controls is not the [...] Read more.
Incremental nonlinear dynamic inversion (INDI) is a widely used approach to controlling UAVs with highly nonlinear dynamics. One key element of INDI-based controllers is the control allocation realizing pseudo controls using available actuators. However, the tracking of commanded pseudo controls is not the only objective considered during control allocation. Since the approach only works locally due to linearization and the solution is often ambiguous, additional aspects like control efforts or penalizing the deviation of certain states must be considered. Conducting the control allocation by solving a quadratic program this results in a considerable number of weighting parameters, which must be tuned during control design. Currently, this is conducted manually and is therefore time consuming. An automated approach for tuning these parameters is therefore highly beneficial. Thus, this paper presents and evaluates a model-based approach automatically tuning the control allocation parameters of a tiltrotor VTOL using an optimization algorithm. This optimization algorithm searches for optimal parameters minimizing a cost functional that reflects the design target. This cost functional is calculated based on a test mission for the VTOL which is conducted within a simulation environment. The test mission represents the common operating range of the VTOL. The simulation environment consists of an aircraft model as well as a model of the INDI-based controller which is dependent on the control allocation parameters. On this basis, model-based optimization is conducted and the optimal parameters are identified. Finally, successful real-world tests on a 4-degrees-of-freedom testbench using the identified parameters are presented. Since the control allocation parameters can significantly influence the aircraft’s stability, the 4-DOF testbench for the aircraft is required for rapid validation of the parameters at a minimum amount of risk. Full article
Show Figures

Figure 1

15 pages, 15313 KiB  
Article
Hexa-Propeller Airship for Environmental Surveillance and Monitoring in Amazon Rainforest
by José Azinheira, Reginaldo Carvalho, Ely Paiva and Rafael Cordeiro
Aerospace 2024, 11(4), 249; https://doi.org/10.3390/aerospace11040249 - 22 Mar 2024
Cited by 1 | Viewed by 1833
Abstract
This paper proposes a new kind of airship actuator configuration for surveillance and environmental monitoring missions. We present the design and application of a six-propeller electrical airship (Noamini) with independent tilting propellers, allowing improved and flexible maneuverability. The vehicle has different combinations of [...] Read more.
This paper proposes a new kind of airship actuator configuration for surveillance and environmental monitoring missions. We present the design and application of a six-propeller electrical airship (Noamini) with independent tilting propellers, allowing improved and flexible maneuverability. The vehicle has different combinations of differential propulsion and can be used in a two-, four- or six-motor configuration. We developed a high-fidelity airship simulator for the Noamini airship, which was used to test and validate a control/guidance approach. Incremental Nonlinear Dynamic Inversion (INDI) is used for the velocity/attitude control to follow a high-level L1 guidance reference in a simulated waypoint-tracking mission with wind and turbulence. The proposed framework will be soon implemented in the onboard control system of the Noamini, an autonomous airship for environmental monitoring and surveillance applications. Full article
Show Figures

Figure 1

33 pages, 8086 KiB  
Article
Experimental Nonlinear and Incremental Control Stabilization of a Tail-Sitter UAV with Hardware-in-the-Loop Validation
by Alexandre Athayde, Alexandra Moutinho and José Raúl Azinheira
Robotics 2024, 13(3), 51; https://doi.org/10.3390/robotics13030051 - 16 Mar 2024
Cited by 6 | Viewed by 3727
Abstract
Tail-sitters aim to combine the advantages of fixed-wing aircraft and rotorcraft but require a robust and fast stabilization strategy to perform vertical maneuvers and transitions to and from aerodynamic flight. The research conducted in this work explores different nonlinear control solutions for the [...] Read more.
Tail-sitters aim to combine the advantages of fixed-wing aircraft and rotorcraft but require a robust and fast stabilization strategy to perform vertical maneuvers and transitions to and from aerodynamic flight. The research conducted in this work explores different nonlinear control solutions for the problem of stabilizing a tail-sitter when hovering. For this purpose, the first controller is an existing strategy for tail-sitter control obtained from the literature, the second is an application of Nonlinear Dynamic Inversion (NDI), and the last one is its incremental version, INDI. These controllers were implemented and tuned in a simulation in order to stabilize a model of the tail-sitter, complemented by estimation methods that allow the feedback of the necessary variables. These estimators and controllers were then implemented in a microcontroller and validated in a Hardware-in-the-Loop (HITL) scenario with simple maneuvers in vertical flight. Lastly, the developed control solutions were used to stabilize the aircraft in experimental flight while being monitored by a motion capture system. The experimental results allow the validation of the model of the X-Vert and provide a comparison of the performance of the different control solutions, where the INDI presents itself as a robust control strategy with accurate tracking capabilities and less actuator demand. Full article
(This article belongs to the Special Issue UAV Systems and Swarm Robotics)
Show Figures

Figure 1

19 pages, 4943 KiB  
Article
Multi-Phase Vertical Take-Off and Landing Trajectory Optimization with Feasible Initial Guesses
by Zhidong Lu, Haichao Hong and Florian Holzapfel
Aerospace 2024, 11(1), 39; https://doi.org/10.3390/aerospace11010039 - 29 Dec 2023
Cited by 8 | Viewed by 3775
Abstract
The advancement of electric vertical take-off and landing (eVTOL) aircraft has expanded the horizon of urban air mobility. However, the challenge of generating precise vertical take-off and landing (VTOL) trajectories that comply with airworthiness requirements remains. This paper presents an approach for optimizing [...] Read more.
The advancement of electric vertical take-off and landing (eVTOL) aircraft has expanded the horizon of urban air mobility. However, the challenge of generating precise vertical take-off and landing (VTOL) trajectories that comply with airworthiness requirements remains. This paper presents an approach for optimizing VTOL trajectories considering six degrees of freedom (6DOF) dynamics and operational constraints. Multi-phase optimal control problems are formulated to address specific constraints in various flight stages. The incremental nonlinear dynamic inversion (INDI) controller is employed to execute the flight mission in each phase. Controlled flight simulations yield dynamically feasible trajectories that serve as initial guesses for generating sub-optimal trajectories within individual phases. A feasible and sub-optimal initial guess for the holistic multi-phase problem is established by concatenating these single-phase trajectories. Focusing on a tilt-wing eVTOL aircraft, this paper computes VTOL trajectories leveraging the proposed initial guess generation procedure. These trajectories account for complex flight dynamics, align with various operation constraints, and minimize electric energy consumption. Full article
Show Figures

Figure 1

21 pages, 9531 KiB  
Article
Control Design for Soft Transition for Landing Preparation of Light Compound-Wing Unmanned Aerial Vehicles Based on Incremental Nonlinear Dynamic Inversion
by Zheng Ye, Yongliang Chen, Pengcheng Cai, Huitao Lyu, Zheng Gong and Jie Wu
Appl. Sci. 2023, 13(22), 12225; https://doi.org/10.3390/app132212225 - 10 Nov 2023
Cited by 8 | Viewed by 2173
Abstract
This paper proposes a soft switching mode for electric vertical takeoff and landing (eVTOL) compound-wing unmanned aerial vehicles (UAVs) to achieve a smooth transition between modes. The proposed mode pre-compensates the lift loss with the rotary wing during the deceleration stage before UAV [...] Read more.
This paper proposes a soft switching mode for electric vertical takeoff and landing (eVTOL) compound-wing unmanned aerial vehicles (UAVs) to achieve a smooth transition between modes. The proposed mode pre-compensates the lift loss with the rotary wing during the deceleration stage before UAV landing. The control law adopted in this paper consists of implicit nonlinear dynamic inversion (NDI) and incremental nonlinear dynamic inversion (INDI). The outer loop (attitude angle loop) control law is based on implicit NDI, while the inner loop (attitude angle rate loop) controller is based on INDI. An extended state observer (ESO) is employed to estimate the angular acceleration. This paper innovates by proposing a soft switching strategy that improves the robustness, safety, and smoothness of the transition for the compound-wing UAV, and applying advanced control law to mode transition design. For the future application of eVTOL aircraft in UAM scenarios, this paper evaluates the smoothness of transition and passenger comfort using normal overload as a physical quantity. The Monte Carlo (MC) simulation results demonstrate that the proposed mode can reduce the peak normal overload by about 89%. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 2320 KiB  
Article
Meta-Learning-Based Incremental Nonlinear Dynamic Inversion Control for Quadrotors with Disturbances
by Xinyue Zhang and Maopeng Ran
Appl. Sci. 2023, 13(21), 11844; https://doi.org/10.3390/app132111844 - 30 Oct 2023
Cited by 2 | Viewed by 1623
Abstract
This paper proposes an online meta-learning-based incremental nonlinear dynamic inversion (INDI) control method for quadrotors with disturbances. The quadrotor dynamic model is first transformed into linear form via an INDI control law. Since INDI largely depends on the accuracy of the control matrix, [...] Read more.
This paper proposes an online meta-learning-based incremental nonlinear dynamic inversion (INDI) control method for quadrotors with disturbances. The quadrotor dynamic model is first transformed into linear form via an INDI control law. Since INDI largely depends on the accuracy of the control matrix, a method composed of meta-learning and adaptive control is proposed to estimate it online. The effectiveness of the proposed control framework is validated through simulation on a quadrotor with 3D wind disturbances. Full article
(This article belongs to the Special Issue Intelligent Unmanned System Technology and Application)
Show Figures

Figure 1

33 pages, 8401 KiB  
Article
L1 Adaptive Control Based on Dynamic Inversion for Morphing Aircraft
by Lingquan Cheng, Yiyang Li, Jiayi Yuan, Jianliang Ai and Yiqun Dong
Aerospace 2023, 10(9), 786; https://doi.org/10.3390/aerospace10090786 - 7 Sep 2023
Cited by 7 | Viewed by 2618
Abstract
Morphing aircraft are able to keep optimal performance in diverse flight conditions. However, the change in geometry always leads to challenges in the design of flight controllers. In this paper, a new method for designing a flight controller for variable-sweep morphing aircraft is [...] Read more.
Morphing aircraft are able to keep optimal performance in diverse flight conditions. However, the change in geometry always leads to challenges in the design of flight controllers. In this paper, a new method for designing a flight controller for variable-sweep morphing aircraft is presented—dynamic inversion combined with L1 adaptive control. Firstly, the dynamics of the vehicle is analyzed and a six degrees of freedom (6DOF) nonlinear dynamics model based on multibody dynamics theory is established. Secondly, nonlinear dynamic inversion (NDI) and incremental nonlinear dynamic inversion (INDI) are then employed to realize decoupling control. Thirdly, linear quadratic regulator (LQR) technique and L1 adaptive control are adopted to design the adaptive controller in order to improve robustness to uncertainties and ensure the control accuracy. Finally, extensive simulation experiments are performed, wherein the demonstrated results indicate that the proposed method overcomes the drawbacks of conventional methods and realizes an improvement in control performance. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation)
Show Figures

Figure 1

18 pages, 1827 KiB  
Article
Discrete-Time Incremental Backstepping Control with Extended Kalman Filter for UAVs
by Yanju Liu, Chengyu Duan, Lei Liu and Lijia Cao
Electronics 2023, 12(14), 3079; https://doi.org/10.3390/electronics12143079 - 14 Jul 2023
Cited by 14 | Viewed by 2023
Abstract
In this study, a discrete-time incremental backstepping (DTIBS) controller with an extended Kalman filter (EKF) is proposed for unmanned aerial vehicles (UAVs) with unknown actuator dynamics. The Taylor series and an approximate discrete method are employed, transforming the second-order continuous-time nonlinear system into [...] Read more.
In this study, a discrete-time incremental backstepping (DTIBS) controller with an extended Kalman filter (EKF) is proposed for unmanned aerial vehicles (UAVs) with unknown actuator dynamics. The Taylor series and an approximate discrete method are employed, transforming the second-order continuous-time nonlinear system into a discrete-time nonlinear plant with an incremental input form. The incremental control laws are designed using the incremental nonlinear dynamic inversion (INDI) method and the time-delay control (TDC) method. The TDC is introduced to design the control law, eliminating the need for prior knowledge of the control effectiveness matrix involving some unknown aerodynamic coefficients. In addition, the airflow angle and body rotation rate are selected as key system states, and the EKF is used to design a state estimator to estimate the local state of the small unmanned aerial vehicle closed-loop flight control system under strong noise conditions. The effectiveness of the DTIBS control method with EKF is verified through numerical simulation. The results show that the proposed method can effectively estimate the state under the typical noise characteristics of low-cost sensors, and the closed-loop control systems has good tracking performance and can quickly and effectively track sudden commands. Full article
Show Figures

Figure 1

Back to TopTop