Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = incomplete region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4983 KiB  
Article
Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
by Václav Zumr, Oto Nakládal and Jiří Remeš
Fire 2025, 8(8), 305; https://doi.org/10.3390/fire8080305 (registering DOI) - 2 Aug 2025
Abstract
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire [...] Read more.
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire across different forest types in Central Europe. The research was conducted following a large forest fire (ca. 1200 ha) that occurred in 2022. Data were collected over two years (2023 and 2024), from April to September. The research was conducted in coniferous forests and included six pairwise study types: burnt and unburnt dead spruce (bark beetle affected), burnt and unburnt clear-cuts, and burnt and unburnt healthy stands. In total, 96 traps were deployed each year. Across both years, 220,348 invertebrates were recorded (1.Y: 128,323; 2.Y: 92,025), representing 24 taxonomic groups. A general negative trend in abundance following forest fire was observed in the groups Acari, Auchenorhyncha, Blattodea, Dermaptera, Formicidae, Chilopoda, Isopoda, Opiliones, and Pseudoscorionida. Groups showing a neutral response included Araneae, Coleoptera, Collembola, Diplopoda, Heteroptera, Psocoptera, Raphidioptera, Thysanoptera, and Trichoptera. Positive responses, indicated by an increase in abundance, were recorded in Hymenoptera, Orthoptera, Lepidoptera, and Diptera. However, considerable differences among management types (clear-cut, dead spruce, and healthy) were evident, as their distinct characteristics largely influenced invertebrate abundance in both unburnt and burnt variants of the types across all groups studied. Forest fire primarily creates favorable conditions for heliophilous, open-landscape, and floricolous invertebrate groups, while less mobile epigeic groups are strongly negatively affected. In the second year post-fire, the total invertebrate abundance in burnt sites decreased to 59% of the first year’s levels. Conclusion: Forest fire generates a highly heterogeneous landscape from a regional perspective, creating unique ecological niches that persist more than two years after fire. For many invertebrates, successional return toward pre-fire conditions is delayed or incomplete. Full article
Show Figures

Figure 1

17 pages, 1204 KiB  
Article
The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico
by Maria Gómez-Lazaga and Alejandro Espinosa de los Monteros
Insects 2025, 16(8), 785; https://doi.org/10.3390/insects16080785 (registering DOI) - 31 Jul 2025
Viewed by 184
Abstract
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in [...] Read more.
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in Central Veracruz, Mexico. To do so, we sequenced fragments from the mitochondrial COI, COII, and nuclear LWRh genes. Segregated sites were found only at the mitochondrial markers, recovering a total of 21 different haplotypes. The nucleotide diversity ranged from 0 to 0.5% at the different sampling sites. Phylogenetic and spatial analyses of molecular variance revealed a weak but significant phylogeographic structure associated with lowland and mountainous zones. Molecular clock analysis suggests that radiation in the mountain area started 7500 years ago, whereas lineage radiation in the lowland started more recently, around 2700 years ago. The phylogeographic structure is incipient, with nests from lowlands more closely related to mountain nests than to other lowland nests, and vice versa. This seems to be consistent with a model of incomplete lineage sorting. The obtained patterns appear to be the result of restricted gene flow mediated by a complex topographic landscape that has been shaped by a dynamic geologic history. Full article
(This article belongs to the Special Issue Ant Population Genetics, Phylogeography and Phylogeny)
Show Figures

Figure 1

18 pages, 10854 KiB  
Article
A Novel Method for Predicting Landslide-Induced Displacement of Building Monitoring Points Based on Time Convolution and Gaussian Process
by Jianhu Wang, Xianglin Zeng, Yingbo Shi, Jiayi Liu, Liangfu Xie, Yan Xu and Jie Liu
Electronics 2025, 14(15), 3037; https://doi.org/10.3390/electronics14153037 - 30 Jul 2025
Viewed by 150
Abstract
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks [...] Read more.
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks (TCNs), herein referred to as the GTCN model, to forecast displacement at building monitoring points subject to landslide activity. The proposed methodology is validated using time-series monitoring data collected from the slope adjacent to the Zhongliang Reservoir in Wuxi County, Chongqing, an area where slope instability poses a significant threat to nearby structural assets. Experimental results demonstrate the GTCN model’s superior predictive performance, particularly under challenging conditions of incomplete or sparsely sampled data. The model proves highly effective in accurately characterizing both abrupt fluctuations within the displacement time series and capturing long-term deformation trends. Furthermore, the GTCN framework outperforms comparative hybrid models based on Gated Recurrent Units (GRUs) and GPR, with its advantage being especially pronounced in data-limited scenarios. It also exhibits enhanced capability for temporal feature extraction relative to conventional imputation-based forecasting strategies like forward-filling. By effectively modeling both nonlinear trends and uncertainty within displacement sequences, the GTCN framework offers a robust and scalable solution for landslide-related risk assessment and early warning applications. Its applicability to building safety monitoring underscores its potential contribution to geotechnical hazard mitigation and resilient infrastructure management. Full article
Show Figures

Figure 1

16 pages, 2280 KiB  
Article
Mechanical Properties of Korla Fragrant Pear Fruiting Branches and Pedicels: Implications for Non-Destructive Harvesting
by Yanwu Jiang, Jun Chen, Zhiwei Wang, Jianguo Zhou and Guangrui Hu
Horticulturae 2025, 11(8), 880; https://doi.org/10.3390/horticulturae11080880 - 29 Jul 2025
Viewed by 217
Abstract
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these [...] Read more.
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these data is of great significance for the development of efficient and non-destructive harvesting strategies. This study aims to elucidate the mechanical properties of the fruiting branches and peduncles of Korla fragrant pears, thereby establishing a theoretical foundation for the future development of intelligent harvesting technology for this variety. The research utilized axial and radial compression tests, along with three-point bending test methods, to quantitatively analyze the elastic modulus and shear modulus of the branches and peduncles. The test results reveal that the elastic modulus of the fruiting branches under axial compression is 263.51 ± 76.51 MPa, while under radial compression, it measures 135.53 ± 73.73 MPa (where ± represents the standard deviation). In comparison, the elastic modulus of the peduncles is recorded at 152.96 ± 119.95 MPa. Additionally, the three-point bending test yielded a shear modulus of 75.48 ± 32.84 MPa for the branches and 30.23 ± 8.50 MPa for the peduncles. Using finite element static structural analysis, the simulation results aligned closely with the experimental data, falling within an acceptable error range, thus validating the reliability of the testing methods and outcomes. The mechanical parameters obtained in this study are critical for modeling the stress and deformation behaviors of pear-bearing structures during mechanical harvesting. These findings provide valuable theoretical support for the optimization of harvesting device design and operational strategies, with the aim of reducing fruit damage and improving harvesting efficiency in pear orchards. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

14 pages, 3767 KiB  
Article
Unveiling Replication Timing-Dependent Mutational Biases: Mechanistic Insights from Gene Knockouts and Genotoxins Exposures
by Hadas Gross-Samuels, Amnon Koren and Itamar Simon
Int. J. Mol. Sci. 2025, 26(15), 7307; https://doi.org/10.3390/ijms26157307 - 29 Jul 2025
Viewed by 197
Abstract
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in [...] Read more.
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in DNA replication/repair genes or exposed to mutagenic compounds. Mutation distributions between early- and late-replicating regions were compared using bootstrapping and statistical modeling. We identified 14 genes that exhibit differential effects in early- or late-replicating regions, encompassing multiple DNA repair pathways, including mismatch repair (MLH1, MSH2, MSH6, PMS1, and PMS2), trans-lesion DNA synthesis (REV1) and double-strand break repair (DCLRE1A and PRKDC), DNA polymerases (POLB, POLE3, and POLE4), and other genes central to genomic instability (PARP1 and TP53). Similar analyses of mutagenic compounds revealed 19 compounds with differential effects on replication timing. These results establish replication timing as a critical modulator of mutagenesis, with distinct DNA repair pathways and exogenous agents exhibiting replication timing-specific effects on genomic instability. Our systematic bioinformatics approach identifies new DNA repair genes and mutagens that exhibit differential activity during the S phase. These findings pave the way for further investigation of factors that contribute to genome instability during cancer transformation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

20 pages, 9955 KiB  
Article
Dual-Branch Occlusion-Aware Semantic Part-Features Extraction Network for Occluded Person Re-Identification
by Bo Sun, Yulong Zhang, Jianan Wang and Chunmao Jiang
Mathematics 2025, 13(15), 2432; https://doi.org/10.3390/math13152432 - 28 Jul 2025
Viewed by 139
Abstract
Occlusion remains a major challenge in person re-identification, as it often leads to incomplete or misleading visual cues. To address this issue, we propose a dual-branch occlusion-aware network (DOAN), which explicitly and implicitly enhances the model’s capability to perceive and handle occlusions. The [...] Read more.
Occlusion remains a major challenge in person re-identification, as it often leads to incomplete or misleading visual cues. To address this issue, we propose a dual-branch occlusion-aware network (DOAN), which explicitly and implicitly enhances the model’s capability to perceive and handle occlusions. The proposed DOAN framework comprises two synergistic branches. In the first branch, we introduce an Occlusion-Aware Semantic Attention (OASA) module to extract semantic part features, incorporating a parallel channel and spatial attention (PCSA) block to precisely distinguish between pedestrian body regions and occlusion noise. We also generate occlusion-aware parsing labels by combining external human parsing annotations with occluder masks, providing structural supervision to guide the model in focusing on visible regions. In the second branch, we develop an occlusion-aware recovery (OAR) module that reconstructs occluded pedestrians to their original, unoccluded form, enabling the model to recover missing semantic information and enhance occlusion robustness. Extensive experiments on occluded, partial, and holistic benchmark datasets demonstrate that DOAN consistently outperforms existing state-of-the-art methods. Full article
Show Figures

Figure 1

13 pages, 413 KiB  
Article
A Retrospective Cohort Study of Leptospirosis in Crete, Greece
by Petros Ioannou, Maria Pendondgis, Eleni Kampanieri, Stergos Koukias, Maria Gorgomyti, Kyriaki Tryfinopoulou and Diamantis Kofteridis
Trop. Med. Infect. Dis. 2025, 10(8), 209; https://doi.org/10.3390/tropicalmed10080209 - 25 Jul 2025
Viewed by 405
Abstract
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical [...] Read more.
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical and epidemiological profile of leptospirosis in Crete, Greece, a region where data are scarce. Methods: All adult patients with laboratory-confirmed leptospirosis admitted to three major public hospitals in Crete, Greece, between January 2019 and December 2023 were included in the analysis. Diagnosis was made through serologic testing along with compatible clinical symptoms. Results: A total of 17 patients were included. Their median age was 48 years, with a predominance of males (70.6%). Notably, more than half of the patients had no documented exposure to classic risk factors such as rodents or standing water. Clinical presentations were varied but commonly included fever, fatigue, acute kidney injury, and jaundice. Of the patients who underwent imaging, most showed hepatomegaly. The median delay from symptom onset to diagnosis was 11 days, underscoring the diagnostic challenge in non-endemic areas. Ceftriaxone was the most frequently administered antibiotic (76.5%), often in combination with tetracyclines or quinolones. Despite treatment, three patients (17.6%) died, all presenting with severe manifestations such as ARDS, liver failure, or shock. A concerning increase in cases was noted in 2023. Conclusions: Leptospirosis can present with severe and potentially fatal outcomes even in previously healthy individuals and in regions not traditionally considered endemic. The relatively high mortality and disease frequency noted emphasize the importance of maintaining a high index of suspicion. Timely diagnosis and appropriate antimicrobial therapy are essential to improving patient outcomes. Additionally, the need for enhanced public health awareness, diagnostic capacity, and possibly environmental surveillance to control this neglected but impactful disease better, should be emphasized. Full article
(This article belongs to the Special Issue Leptospirosis and One Health)
Show Figures

Figure 1

24 pages, 12938 KiB  
Article
Spatial Distribution of Mangrove Forest Carbon Stocks in Marismas Nacionales, Mexico: Contributions to Climate Change Adaptation and Mitigation
by Carlos Troche-Souza, Edgar Villeda-Chávez, Berenice Vázquez-Balderas, Samuel Velázquez-Salazar, Víctor Hugo Vázquez-Morán, Oscar Gerardo Rosas-Aceves and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1224; https://doi.org/10.3390/f16081224 - 25 Jul 2025
Viewed by 633
Abstract
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, [...] Read more.
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, the objective of this study was to develop a high spatial resolution map of carbon stocks, encompassing both aboveground and belowground components, within the Marismas Nacionales system, which is the largest mangrove complex in northeastern Pacific Mexico. Our approach integrates primary field data collected during 2023–2024 and incorporates some historical plot measurements (2011–present) to enhance spatial coverage. These were combined with contemporary remote sensing data, including Sentinel-1, Sentinel-2, and LiDAR, analyzed using Random Forest algorithms. Our spatial models achieved strong predictive accuracy (R2 = 0.94–0.95), effectively resolving fine-scale variations driven by canopy structure, hydrologic regime, and spectral heterogeneity. The application of Local Indicators of Spatial Association (LISA) revealed the presence of carbon “hotspots,” which encompass 33% of the total area but contribute to 46% of the overall carbon stocks, amounting to 21.5 Tg C. Notably, elevated concentrations of carbon stocks are observed in the central regions, including the Agua Brava Lagoon and at the southern portion of the study area, where pristine mangrove stands thrive. Also, our analysis reveals that 74.6% of these carbon hotspots fall within existing protected areas, demonstrating relatively effective—though incomplete—conservation coverage across the Marismas Nacionales wetlands. We further identified important cold spots and ecotones that represent priority areas for rehabilitation and adaptive management. These findings establish a transferable framework for enhancing national carbon accounting while advancing nature-based solutions that support both climate mitigation and adaptation goals. Full article
Show Figures

Graphical abstract

19 pages, 4354 KiB  
Article
Genomic Insights into ARR Genes: Key Role in Cotton Leaf Abscission Formation
by Hongyan Shi, Zhenyu Wang, Yuzhi Zhang, Gongye Cheng, Peijun Huang, Li Yang, Songjuan Tan, Xiaoyu Cao, Xiaoyu Pei, Yu Liang, Yu Gao, Xiang Ren, Quanjia Chen and Xiongfeng Ma
Int. J. Mol. Sci. 2025, 26(15), 7161; https://doi.org/10.3390/ijms26157161 - 24 Jul 2025
Viewed by 279
Abstract
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total [...] Read more.
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total of 86 ARR genes were identified within the genome of Gossypium hirsutum. These genes were categorized into four distinct groups based on their phylogenetic characteristics, supported by analyses of gene structures and conserved protein motifs. The GhARR genes exhibited an uneven distribution across 25 chromosomes, with three pairs of tandem duplication events observed. Both segmental and tandem duplication events significantly contributed to the expansion of the ARR gene family. Furthermore, numerous putative cis-elements were identified in the promoter regions, with hormone and stress-related elements being common among all 86 GhARRs. Transcriptome expression profiling screening results demonstrated that GhARRs may play a mediating role in cotton’s response to TDZ (thidiazuron). The functional validation of GhARR16, GhARR43, and GhARR85 using virus-induced gene silencing (VIGS) technology demonstrated that the silencing of these genes led to pronounced leaf wilting and chlorosis in plants, accompanied by a substantial decrease in petiole fracture force. Overall, our study represents a comprehensive analysis of the G. hirsutum ARR gene family, revealing their potential roles in leaf abscission regulation. Full article
(This article belongs to the Special Issue Plant Stress Biology)
Show Figures

Figure 1

14 pages, 3796 KiB  
Article
Preliminary Analysis of Placental DNA Methylation Profiles in Piglets with Extreme Birth Weight Variations
by Zhiyuan Zhang, Baohua Tan, Jiawei Su, Jiaming Xue, Liyao Xiao, Zicong Li, Linjun Hong, Gengyuan Cai and Ting Gu
Animals 2025, 15(15), 2168; https://doi.org/10.3390/ani15152168 - 23 Jul 2025
Viewed by 218
Abstract
Adequate birth weight is essential for animal survival and subsequent growth. However, the mechanism by which placental DNA methylation influences fetal growth remains incompletely understood. This study employed whole-genome bi-sulfite sequencing (WGBS) and RNA sequencing to analyze placental tissues from two weak piglets [...] Read more.
Adequate birth weight is essential for animal survival and subsequent growth. However, the mechanism by which placental DNA methylation influences fetal growth remains incompletely understood. This study employed whole-genome bi-sulfite sequencing (WGBS) and RNA sequencing to analyze placental tissues from two weak piglets and two normal piglets born to the same sow. Transcriptome analysis identified 1989 differentially expressed genes (DEGs) enriched in blood/immune processes. Additionally, differentially methylated regions linked to DEG repression were enriched in extracellular matrix (ECM) receptors and angiogenesis pathways. To investigate the role of DNA methylation in gene regulation, porcine trophoblast cells (PTr2) were treated with either DMSO (control) or the DNA methylation inhibitor 5-Aza-2′-deoxycytidine (5-Aza). Real-time quantitative PCR (RT-qPCR) analysis demonstrated significant upregulation of PACC1, SLC7A1, and PKP1 gene expression in the 5-Aza-treated group compared to controls (p < 0.05). Furthermore, methylation-specific PCR (MS-PCR) assays confirmed that the transcriptional activity of these genes is directly modulated by DNA methylation. These findings suggest that the dynamic regulation of DNA methylation in gene promoters may influence variations in placental morphology and birth weight in piglets, offering new insights into epigenetic regulation of fetal development, though larger studies are needed for validation. Full article
(This article belongs to the Special Issue Advances in Omics to Enhance Livestock Production)
Show Figures

Figure 1

23 pages, 1372 KiB  
Article
Immunization with Complete Freund’s Adjuvant Reveals Trained Immunity-like Features in A/J Mice
by Kiruthiga Mone, Shraddha Singh, Fatema Abdullatif, Meghna Sur, Mahima T. Rasquinha, Javier Seravalli, Denise K. Zinniel, Indranil Mukhopadhyay, Raul G. Barletta, Teklab Gebregiworgis and Jay Reddy
Vaccines 2025, 13(7), 768; https://doi.org/10.3390/vaccines13070768 - 21 Jul 2025
Viewed by 568
Abstract
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) [...] Read more.
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) isolated from CFA-immunized A/J mice to address this question. Incomplete Freund’s adjuvant (IFA) and Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin (BCG) served as negative and positive controls, respectively. We evaluated cytokine profiles, metabolic, and epigenetic changes. Results: First, BMCs from all groups except saline showed varied levels of IL-1β, IL-6, and TNF-α. But expression of CCL5 and CXCL10 was significantly elevated only in the CFA and BCG groups. Transcriptionally, significant elevations were noted for TNF-α and IL-1β in the CFA and BCG groups, whereas CXCL10, IL-6, and IL-10 were upregulated in the CFA and BCG groups, respectively. Second, while BMCs from the BCG group expressed the markers of both the M1 and M2 macrophages, no clear trends were noted in the CFA and IFA groups. Third, cell lysates from the CFA group revealed metabolic reprogramming in the BMCs. Specifically, we observed an increased level of lactate, indicative of aerobic glycolysis, which is implicated in TI, and this was also detected in the IFA group. Fourth, epigenetic analysis revealed histone enrichment in the promoter region of TNF-α, in the CFA group, but to a lesser degree than the BCG group. However, no epigenetic changes were observed in the IFA group. Conclusions: Our data provide new insights into the mechanisms of Freund’s adjuvants and the immunomodulatory effects of CFA could involve the features of TI. Full article
(This article belongs to the Special Issue Recent Advances in Vaccine Adjuvants and Formulation)
Show Figures

Figure 1

22 pages, 9284 KiB  
Article
Comparative Analysis of Tyrosine Hydroxylase Amacrine Cells in the Mammalian Retina: Distribution and Quantification in Mouse, Rat, Ground Squirrel and Macaque Retinas
by Kiyoharu J. Miyagishima, Xiaomin Lai, Amurta Nath, William N. Grimes, Xiyuan Ping, Jeffrey S. Diamond, Morven A. Cameron, Wei Li and Francisco M. Nadal-Nicolás
Int. J. Mol. Sci. 2025, 26(14), 6972; https://doi.org/10.3390/ijms26146972 - 20 Jul 2025
Viewed by 319
Abstract
Dopaminergic amacrine cells (DACs) are a subclass of amacrine cells that modulate retinal processing and light adaptation by releasing dopamine. Although the role of dopamine is largely conserved, their retinal distribution across mammals remains incompletely characterized. In mice, rats, thirteen-lined ground squirrels (TLGSs), [...] Read more.
Dopaminergic amacrine cells (DACs) are a subclass of amacrine cells that modulate retinal processing and light adaptation by releasing dopamine. Although the role of dopamine is largely conserved, their retinal distribution across mammals remains incompletely characterized. In mice, rats, thirteen-lined ground squirrels (TLGSs), and macaques, we systematically compared the localization, number, and topography of DACs by their expression of tyrosine hydroxylase (TH), a crucial enzyme in the biosynthesis of dopamine. In all species examined, TH+ cells were primarily located in the inner nuclear layer; however, there was a species-dependent influence on their number and distribution. Mice exhibited the highest density of TH+cells but completely lacked displaced TH+cells (dTH+cells) in the ganglion cell layer. Despite interspecies variation in the total number of TH+cells in the retina, the overall density in rats, TLGSs, and macaques was similar. Most species displayed a higher density of DACs toward central retinal regions. However, rats exhibited a distinctive dorsal concentration, particularly among dTH+cells. Although most species examined exhibited a similar ratio of TH+cells to Brn3a+ retinal ganglion cells, TLGSs showed a marked reduction, indicating a potentially diminished dopaminergic modulatory role. Species-specific DAC topographies aligned with specialized visual regions, such as the visual streak in TLGS and the macula in macaques. These results reveal both conserved and divergent features of retinal dopamine circuitry, reflecting evolutionary adaptations to visual processing demands. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

16 pages, 3609 KiB  
Article
Will Wind Turbines Affect the Distribution of Alashan Ground Squirrel? Insights from Large-Scale Wind Farms in China
by Yuan Wang, Wenbin Yang, Qin Li, Min Zhao, Ying Yang, Xiangfeng Shi, Dazhi Zhang and Guijun Yang
Biology 2025, 14(7), 886; https://doi.org/10.3390/biology14070886 - 19 Jul 2025
Viewed by 224
Abstract
The wind energy resources in the northwestern desert and semi-desert grassland regions of China are abundant. However, the ramifications of large-scale centralized wind farm operations on terrestrial rodents remain incompletely understood. In May and September 2024, we employed a grid sampling method combined [...] Read more.
The wind energy resources in the northwestern desert and semi-desert grassland regions of China are abundant. However, the ramifications of large-scale centralized wind farm operations on terrestrial rodents remain incompletely understood. In May and September 2024, we employed a grid sampling method combined with burrow counting and kernel density analysis to investigate the spatial distribution of Alashan ground squirrel (Spermophilus alashanicus) burrows in different wind turbine power zones (control, 750 kW, 1500 kW, 2000 kW, and 2500 kW) at the Taiyangshan wind farm in China. Using generalized additive models and structural equation models, we analysed the relationship between burrow spatial distribution and environmental factors. The results revealed no significant linear correlation between burrow density and turbine layout density, but was significantly positively correlated with turbine power (p < 0.05). The highest burrow density was observed in the 2500 kW zone, with values of 24.43 ± 7.18 burrows/hm2 in May and 21.29 ± 3.38 burrows/hm2 in September (p < 0.05). The squirrels exhibited a tendency to avoid constructing burrows within the rotor sweeping areas of the turbines. The burrow density distribution exhibited a multinuclear clustering pattern in both May and September, with a northwest–southeast spatial orientation. Turbine power, aspect, and plan convexity had significant positive effects on burrow density, whereas vegetation height had a significant negative effect. Moreover, vegetation height indirectly influenced burrow density through its interactions with turbine power and relief degree. Under the combined influence of turbine power, topography, and vegetation, Alashan ground squirrels preferred habitats in low-density, high-power turbine zones with shorter vegetation, sunny slopes, convex landforms, and minimal disturbance. Full article
Show Figures

Graphical abstract

23 pages, 6037 KiB  
Article
Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania
by Nicolae-Leontin Petruța, Ioana Monica Sur, Tudor Andrei Rusu, Timea Gabor and Tiberiu Rusu
Sustainability 2025, 17(14), 6530; https://doi.org/10.3390/su17146530 - 17 Jul 2025
Viewed by 453
Abstract
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality [...] Read more.
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality in rural wells in the Ceanu Mare commune, Cluj County, Romania—a representative area of the Northern Transylvania Basin, characterized by diverse geological structures, intensive agricultural activities, and incomplete public water infrastructure. This study combines detailed hydrochemical analyses, household-level studies, and geological context to identify and quantify key factors influencing nitrate and microbial contamination in rural wells, providing a comprehensive perspective on water quality challenges in the central part of Romania. This study adopts a multidisciplinary approach, integrating detailed geotechnical investigations conducted through four strategically located boreholes. These are complemented by extensive hydrogeological and lithological characterization, as well as rigorous chemical and microbiological analyses of nearby wells. The results reveal persistently elevated concentrations of NO3 and NO2, commonly associated with inadequate livestock waste management and the proximity of manure storage areas. Microbiological contamination was also frequent. In this study, the NO3 levels in well water ranged from 39.7 to 48 mg/L, reaching up to 96% of the EU/WHO threshold (50 mg/L), while the NO2 concentrations varied from 0.50 to 0.69 mg/L, exceeding the legal limit (0.5 mg/L) in 87% of the sampled wells. Ammonium (NH4+) was detected (0.25–0.34 mg/L) in all the wells, below the maximum allowed limit (0.5 mg/L) but indicative of ongoing organic pollution. All the well water samples were non-compliant for microbiological parameters, with E. coli detected in 100% of cases (5–13 CFU/100 mL). The regional clay–marl substrate offers only limited natural protection against pollutant infiltration, primarily due to lithological heterogeneity and discontinuities observed within the clay–marl layers in the study area. This research delivers a replicable model for rural groundwater assessment and addresses a critical gap in regional and European water safety studies. It also provides actionable recommendations for sustainable groundwater management, infrastructure development, and community risk reduction in line with EU water directives. Full article
Show Figures

Figure 1

17 pages, 3248 KiB  
Article
Interneuron-Driven Ictogenesis in the 4-Aminopyridine Model: Depolarization Block and Potassium Accumulation Initiate Seizure-like Activity
by Elena Yu. Proskurina, Julia L. Ergina and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2025, 26(14), 6812; https://doi.org/10.3390/ijms26146812 - 16 Jul 2025
Viewed by 351
Abstract
The mechanisms of ictal discharge initiation remain incompletely understood, particularly the paradoxical role of inhibitory fast-spiking interneurons in seizure generation. Using simultaneous whole-cell recordings of interneurons and pyramidal neurons combined with extracellular [K+]o monitoring in mouse entorhinal cortex-hippocampal slices (4-aminopyridine [...] Read more.
The mechanisms of ictal discharge initiation remain incompletely understood, particularly the paradoxical role of inhibitory fast-spiking interneurons in seizure generation. Using simultaneous whole-cell recordings of interneurons and pyramidal neurons combined with extracellular [K+]o monitoring in mouse entorhinal cortex-hippocampal slices (4-aminopyridine model of epileptiform activity), we identified a critical transition sequence: interneurons displayed high-frequency firing during the preictal phase before entering depolarization block (DB). DB onset coincided with the peak of rate of extracellular [K+] accumulation. Pyramidal cells remained largely silent during interneuronal hyperactivity but started firing within 1.1 ± 0.3 s after DB onset, marking the transition to ictal discharges. This consistent sequence (interneuron DB → [K+]o rate peak → pyramidal cell firing) was observed in 100% of entorhinal cortex recordings. Importantly, while neurons across all entorhinal cortical layers synchronously fired during the first ictal discharge, hippocampal CA1 neurons showed fundamentally different activity: they generated high-frequency interictal bursts but did not participate in ictal events, indicating region-specific seizure initiation mechanisms. Our results demonstrate that interneuron depolarization block acts as a precise temporal switch for ictogenesis and suggest that the combined effect of disinhibition and K+-mediated depolarization triggers synchronous pyramidal neuron recruitment. These findings provide a mechanistic framework for seizure initiation in focal epilepsy, highlighting fast-spiking interneurons dysfunction as a potential therapeutic target. Full article
Show Figures

Figure 1

Back to TopTop