Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = in-plane distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 (registering DOI) - 1 Aug 2025
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 (registering DOI) - 1 Aug 2025
Viewed by 25
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

13 pages, 3880 KiB  
Article
Low-Velocity Impact Damage Behavior and Failure Mechanism of 2.5D SiC/SiC Composites
by Jianyong Tu, Xingmiao Duan, Xingang Luan, Dianwei He and Laifei Cheng
J. Compos. Sci. 2025, 9(8), 388; https://doi.org/10.3390/jcs9080388 - 22 Jul 2025
Viewed by 229
Abstract
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop [...] Read more.
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop hammer impact test was conducted using narrow strip samples to simulate the low-velocity impact damage process of sharp-edged components. During the test, different impact energies and impact times were set to focus on investigating the low-velocity impact damage characteristics of 2.5D SiC/SiC composites. To further analyze the damage mechanism, computed tomography (CT) was used to observe the crack propagation paths and distribution states of the composites before and after impact, while scanning electron microscopy (SEM) was employed to characterize the differences in the micro-morphology of their fracture surfaces. The results show that the in-plane impact behavior of a 2.5D needled SiC/SiC composite strip samples differs from the conventional three-stage pattern. In addition to the three stages observed in the energy–time curve—namely in the quasi-linear elastic region, the severe load drop region, and the rebound stage after peak impact energy—a plateau stage appears when the impact energy is 1 J. During the impact process, interlayer load transfer is achieved through the connection of needled fibers, which continuously provide significant structural support, with obvious fiber pull-out and debonding phenomena. When the samples are subjected to two impacts, damage accumulation occurs inside the material. Under conditions with the same total energy, multiple impacts cause more severe damage to the material compared to a single impact. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

22 pages, 6902 KiB  
Article
Numerical Analysis of Aspect Ratio Effects on the Mechanical Behavior of Perforated Steel Plates
by Thiago da Silveira, Eduardo Araujo Crestani, Elizaldo Domingues dos Santos and Liércio André Isoldi
Metals 2025, 15(7), 786; https://doi.org/10.3390/met15070786 - 11 Jul 2025
Viewed by 215
Abstract
Thin plates are commonly used in mechanical structures such as ship hulls, offshore platforms, aircraft, automobiles, and bridges. When subjected to in-plane compressive loads, these structures may experience buckling. In some applications, perforations are introduced, altering membrane stress distribution and buckling behavior. This [...] Read more.
Thin plates are commonly used in mechanical structures such as ship hulls, offshore platforms, aircraft, automobiles, and bridges. When subjected to in-plane compressive loads, these structures may experience buckling. In some applications, perforations are introduced, altering membrane stress distribution and buckling behavior. This study investigates the elasto-plastic buckling behavior of perforated plates using the Finite Element Method (FEM), Constructal Design (CD), and Exhaustive Search (ES) techniques. Simply supported thin rectangular plates with central elliptical perforations were analyzed under biaxial elasto-plastic buckling. Three shapes of holes were considered—circular, horizontal elliptical, and vertical elliptical—along with sixteen aspect ratios and two different materials. Results showed that higher yield stress leads to higher ultimate stress for perforated plates. Regardless of material, plates exhibited a similar trend: ultimate stress decreased as the aspect ratio dropped from 1.00 to around 0.40 and then increased from 0.35 to 0.25. A similar pattern was observed in the stress components along both horizontal (x) and vertical (y) directions, once the y-component became considerably higher than the x-component for the same range of 0.40 to 0.25. For longer plates, in general, the vertical elliptical hole brings more benefits in structural terms, due to the facility in the distribution of y-components of stress. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

16 pages, 8906 KiB  
Article
Construction of Isotropy-Enhanced Honeycomb and Its Deformation Behaviors in Multi-Directions
by Junyuan Zheng and Guangdong Tian
Polymers 2025, 17(12), 1717; https://doi.org/10.3390/polym17121717 - 19 Jun 2025
Viewed by 468
Abstract
Honeycomb structures are widely constructed as cores in sandwich panels with lightweight characteristics and excellent out-of-plane properties. However, their in-plane performances are significantly inferior. This research proposed a novel isotropy-enhanced honeycomb (IEH) with interleaved layers, which is constructed by offsetting the initial seed [...] Read more.
Honeycomb structures are widely constructed as cores in sandwich panels with lightweight characteristics and excellent out-of-plane properties. However, their in-plane performances are significantly inferior. This research proposed a novel isotropy-enhanced honeycomb (IEH) with interleaved layers, which is constructed by offsetting the initial seed distributions across layers and then generating hexagonal cells via Voronoi tessellation. Numerical models with three layer-to-layer interval gradients were developed for simulations, and corresponding samples were additively manufactured for experimental validations. The in-plane and out-of-plane performances of IEH and the regular hexagonal honeycombs (RHHs) were comprehensively compared and investigated from quasi-static compression, energy absorption, mechanical properties, and dynamic loading. The results demonstrated that the IEH extremely enhances the in-plane properties by around 500% compared to the RHH, including stiffness, strength, plateau stress, and specific energy absorption (SEA). Although the improvements come at the expense of a partial reduction in out-of-plane stiffness, strength, and SEA, the in-plane performances of IEH reach approximately 70% of their out-of-plane performances, greatly improving the structural isotropy. Introducing layer-to-layer interval gradient leads to a slight reduction in out-of-plane mechanical properties while improving the early-stage deceleration under impact. These findings promote the considerable potential of sandwich panels utilizing IEH cores for applications requiring enhanced resistance to multi-directional impacts. Full article
(This article belongs to the Special Issue Structure, Properties and Analyses of Polymer Composites)
Show Figures

Figure 1

31 pages, 4895 KiB  
Article
Dynamic Analysis and Experimental Research on Anti-Swing Control of Distributed Mass Payload for Marine Cranes
by Guoliang Jin, Shenghai Wang, Yufu Gao, Maokai Sun, Haiquan Chen and Yuqing Sun
J. Mar. Sci. Eng. 2025, 13(6), 1112; https://doi.org/10.3390/jmse13061112 - 2 Jun 2025
Viewed by 447
Abstract
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes [...] Read more.
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes a dynamic coupling model considering ship roll and pitch environmental excitations. Then, under the maximum environmental excitation set in the experiment, the flexible cable parallel anti-swing system achieves swing suppression rates of 41.0% and 58.0% for the in-plane and out-of-plane angles of the DMP with regular geometric shape and mass distribution, respectively. For the DMP with irregular geometry and mass distribution, the suppression rates are 48.4% and 39.3% for the in-plane and out-of-plane angles, respectively. It is found that, after adjusting the lifting method and increasing the distance between the lifting points, the maximum in-plane angle of the payload decreases by 2.3%, while the out-of-plane angle maximum decreases by 52.0%. These results demonstrate the effectiveness of adjusting lifting methods in suppressing swing for irregular DMPs, thereby verifying the reliability and applicability of the flexible cable parallel anti-swing system and providing a reference for improving anti-swing performance and lifting efficiency in offshore DMP operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 7015 KiB  
Article
Studying the Behavior of a Paperboard Box: Experiment and Finite Element Model
by Boussad Abbès, Fazilay Abbès, Lien Tien Dao, Pham Tuong Minh Duong and Viet Dung Luong
Vibration 2025, 8(2), 23; https://doi.org/10.3390/vibration8020023 - 6 May 2025
Viewed by 668
Abstract
In the transportation and distribution of goods, cardboard boxes are often subjected to mechanical impacts such as shocks and random vibrations, which can cause damage to the goods. In this study, static and dynamic tests on cardboard boxes were designed and conducted to [...] Read more.
In the transportation and distribution of goods, cardboard boxes are often subjected to mechanical impacts such as shocks and random vibrations, which can cause damage to the goods. In this study, static and dynamic tests on cardboard boxes were designed and conducted to determine the compression strength, natural frequencies, and modal characteristics of the boxes. A finite element model of cardboard boxes considering the in-plane orthotropic elastic–plastic behavior of the cardboard was implemented in the Abaqus software through a VUMAT subroutine to perform numerical simulations under compression and random vibrations. The parameters of the model were determined through an inverse identification process. As a first result, the predicted force–displacement curves show good agreement with the measured curves. Furthermore, the power spectral density (PSD) response of the mass/box system under random vibrations obtained through numerical simulations is consistent with the responses obtained from experimental measurements. Full article
Show Figures

Figure 1

26 pages, 8150 KiB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Viewed by 629
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

23 pages, 6177 KiB  
Article
Collapse Analyses of Pre- and Low-Code Italian RC Building Types
by Vincenzo Manfredi
Buildings 2025, 15(8), 1263; https://doi.org/10.3390/buildings15081263 - 11 Apr 2025
Viewed by 346
Abstract
In seismic risk analyses, collapse assessment is of critical importance, as it leads to most injuries and fatalities, as well as significant economic losses. In this paper, the seismic collapse response of some 3D prototypes representative of the 1970s Italian reinforced concrete building [...] Read more.
In seismic risk analyses, collapse assessment is of critical importance, as it leads to most injuries and fatalities, as well as significant economic losses. In this paper, the seismic collapse response of some 3D prototypes representative of the 1970s Italian reinforced concrete building stock has been analyzed. The considered prototypes have been selected based on two of the most important typological parameters, namely the number of storeys (three types: 2-, 4-, and 6-storey) and the design level (two types: gravity load design, representative of pre-code types, and earthquake-resistant design with low lateral load intensities without anti-seismic details, representative of low-code types). Incremental non-linear dynamic analyses have been performed along the two in-plane directions using a set of 20 real signals scaled up to collapse. The inter-storey drift ratio values at collapse have been analyzed to estimate the mean and dispersion values of the best-fitting distribution functions. These results can be used as capacity thresholds for assessing seismic performance in numerical analyses. Fragility curves have also been derived using different intensity measures to estimate the exceedance probability of collapse, accounting for their inherent efficiency, to be used in seismic risk analyses. Results have been compared to provide valuable insights into the influence of the considered typological parameters on collapse. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 16804 KiB  
Article
Development and Demonstration of a Novel Test Bench for the Experimental Validation of Fuselage Stiffened Panel Simulations
by Panagiotis D. Kordas, Konstantinos T. Fotopoulos and George N. Lampeas
Aerospace 2025, 12(3), 263; https://doi.org/10.3390/aerospace12030263 - 20 Mar 2025
Viewed by 499
Abstract
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. [...] Read more.
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. The experimental arrangement was specifically designed, assembled, and instrumented to have multi-axial loading capabilities. The investigated load cases comprised uniaxial in-plane compression, lateral distributed pressure, and their combination. The introduction of pressure was enabled by inflatable airbags, and compression was applied up to the onset of local skin buckling. Calibration of the load introduction and inspection equipment was performed in multiple steps to acquire accurate and representative measurements. Data were recorded by external sensors mounted on a hydraulic actuator and an optical Digital Image Correlation (DIC) system. A numerical simulation of the fuselage panel and the test rig was developed, and a validation study was conducted. In the Finite Element (FE) model, several of the experimental configuration’s supporting elements and their connections to the specimen were integrated as constraints and boundary conditions. Data procured from the tests were correlated to the simulation’s predictions, presenting low errors in most displacement/strain distributions. The results show that the proposed test rig concept is suitable for stiffened panel level testing and could be used for future studies on similar aeronautical components. Full article
Show Figures

Figure 1

23 pages, 20568 KiB  
Article
On the Boundary Conditions in Out-of-Plane Analysis of Thin Plates by the Finite Point Method
by Sadegh Tavakoliyan, Mohamad Najar, Parham Memarzadeh and Tadeh Zirakian
Buildings 2025, 15(2), 241; https://doi.org/10.3390/buildings15020241 - 15 Jan 2025
Viewed by 657
Abstract
The finite point method (FPM) is a numerical, mesh-free technique for solving differential equations, particularly in fluid dynamics. While the FPM has been previously applied in solid mechanics to analyze plates under in-plane loading, there remains a notable scarcity of research exploring the [...] Read more.
The finite point method (FPM) is a numerical, mesh-free technique for solving differential equations, particularly in fluid dynamics. While the FPM has been previously applied in solid mechanics to analyze plates under in-plane loading, there remains a notable scarcity of research exploring the out-of-plane analysis of elastic plates using this method. This study thoroughly investigates the elastic FPM analysis of thin plates subjected to transverse loadings, focusing specifically on various boundary conditions (BCs). Boundary conditions represent a significant challenge in the out-of-plane analysis of thin plates within the FPM framework. To address this challenge, the approach incorporates additional nodal points positioned close to each boundary node, supplementing the points distributed throughout the plate’s interior and along its edges. The strong form of the governing equation is employed for the interior points, while the analysis also includes the scenario of a plate resting on boundary columns. Both distributed and concentrated external loads are examined to provide a comprehensive understanding of the behavior under different loading conditions. Furthermore, the optimal placement of the extra boundary nodes is briefly discussed, alongside a focus on the number of nodes within the finite point clouds. An appropriate range for this number is proposed, although the determination of the optimal distance for the extra boundary nodes and the ideal number of cloud points is earmarked for future research. The contribution of this work is to enhance the understanding of the FPM in the context of thin plates, particularly concerning the critical influence of boundary conditions. Full article
Show Figures

Figure 1

27 pages, 9867 KiB  
Article
Numerical Simulation and Experimental Study on Construction Forming of Cable-Stayed Tensioned Metal Thin Sheet Structure
by Jie Qin, Shuo Xiao, Guojun Sun, Dehai Feng and Jinzhi Wu
Buildings 2024, 14(12), 4059; https://doi.org/10.3390/buildings14124059 - 20 Dec 2024
Viewed by 1010
Abstract
This study investigates the construction methodology of large-span cable-stayed tensioned metal thin-sheet structures, introducing the “integrated enclosure and load-bearing” design concept. By applying in-plane prestress, the out-of-plane stiffness of the metal thin sheet is effectively enhanced, enabling it to simultaneously serve as an [...] Read more.
This study investigates the construction methodology of large-span cable-stayed tensioned metal thin-sheet structures, introducing the “integrated enclosure and load-bearing” design concept. By applying in-plane prestress, the out-of-plane stiffness of the metal thin sheet is effectively enhanced, enabling it to simultaneously serve as an enclosure and a load-bearing component. Through experimental studies and finite element analysis, the study systematically examines the effects of various construction methods on internal forces and displacements. The tensioning of back cables is identified as the safest and most efficient construction method. Subsequently, through simulations of a three-span structure and tensioning forming tests, the research examines displacement, stress, and cable force distribution patterns, demonstrating that increases in the tensioning level result in corresponding increases in sheet surface stress, cable forces, and displacements. The structure exhibits a concave middle section, upward curvatures at both ends, and outward-leaning end columns. Structural members with lower cable forces show minimal impact on displacement and are therefore identified as suitable targets for design optimization. This study offers a theoretical foundation and practical engineering insights to guide the optimization of design and construction for cable-stayed tensioned metal thin-sheet structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 16022 KiB  
Article
Effects of Anisotropic Microstructure and Load Ratio on Fatigue Crack Propagation Rate in Additively Manufactured Ti-6Al-4V Alloy
by Elad Chakotay, Roni Z. Shneck, Oz Golan, Rami Carmi, Mor Mega, Igal Alon, Raziel Yakov and Arie Busiba
Metals 2024, 14(12), 1405; https://doi.org/10.3390/met14121405 - 9 Dec 2024
Viewed by 970
Abstract
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during [...] Read more.
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during the AM process, which severely affect fatigue behavior. In the current research, the effects of the anisotropic microstructure in the in-plane and out-of-plane orientations and defects on the fatigue crack propagation rate (FCPR) and crack path were studied. A resonance machine was used to determine the fatigue crack propagation rate (da/dN vs. ΔK) from the near-threshold up to the final fracture, accompanied by in situ Acoustic Emission (AE) monitoring. Micro-Computerized Tomography (µCT) enabled us to characterize surface and microstructural defects. Metallography was used to determine the microstructure vs. orientations and fractography to classify the fatigue fracture propagation modes. Calculations of the local stress distribution were performed to determine the interactions of the cracks with the defects. In the out-of-plane direction, the material exhibited high fatigue fracture toughness accompanied by a slightly lower fatigue crack propagation rate as compared to in-plane orientations. The near-threshold stress intensity factor was slightly higher in the out-of-plane orientation as compared to that in the in-plane one, accompanied by a lower exponent of the Paris law regime. The threshold decreased with an increasing load ratio as expected for both orientations. The crack propagation direction that crosses the elongated grains plays an important role in increasing fatigue resistance in the out-of-plane direction. In the in-plane directions, the crack propagates parallel to the grain boundary, interacts with more defects and exhibits more brittle striations on the fracture surface, resulting in lower fatigue resistance. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metallic Materials)
Show Figures

Figure 1

21 pages, 8452 KiB  
Article
Seismic Analysis of Non-Regular Structures Based on Fragility Curves: A Study on Reinforced Concrete Frames
by Giovanni Smiroldo, Marco Fasan and Chiara Bedon
Buildings 2024, 14(12), 3734; https://doi.org/10.3390/buildings14123734 - 23 Nov 2024
Viewed by 1273
Abstract
The seismic performance and expected structural damage in reinforced concrete (RC) frames, as in many others, is a critical aspect for design. In this study, a set of RC frames characterized by increasing in-plan and in-height non-regularity is specifically investigated. Four code-conforming three-dimensional [...] Read more.
The seismic performance and expected structural damage in reinforced concrete (RC) frames, as in many others, is a critical aspect for design. In this study, a set of RC frames characterized by increasing in-plan and in-height non-regularity is specifically investigated. Four code-conforming three-dimensional (3D) buildings with varying regularity levels are numerically analyzed. Their seismic assessment is conducted by using unscaled real ground motion records (61 in total) and employing non-linear dynamic simulations within the Cloud Analysis framework. Three distinct intensity measures (IMs) are used to evaluate the impact of structural non-regularity on their seismic performance. Furthermore, fragility curves are preliminary derived based on conventional linear regression models and lognormal distribution. In contrast with the initial expectations and the typical results of non-linear dynamic analyses, the presented comparative results of the fragility curves show that the non-regularity level increase for the examined RC frames does not lead to progressively increasing fragility. Upon these considerations on the initial numerical findings, a re-evaluation of the methodology is performed using a reduced subset of ground motion records, in order to account for potential biases in their selection. Moreover, to uncover deeper insights into the unexpected outcomes, a logistic regression based on a maximum likelihood estimate is also employed to develop fragility curves. Comparative results are thus critically discussed, showing that the herein considered fragility development methods may lead to seismic assessment outcomes for code-conforming non-regular buildings that are in contrast with those of raw structural analyses. In fact, the considered building code design provisions seem to compensate non-regularity-induced torsional effects. Full article
(This article belongs to the Collection Advanced Concrete Structures in Civil Engineering)
Show Figures

Figure 1

14 pages, 5160 KiB  
Article
Exploring Crystal Structure Features in Proton Exchange Membranes and Their Correlation with Proton and Heat Transport
by Cong Feng, Cong Luo, Pingwen Ming and Cunman Zhang
Polymers 2024, 16(23), 3250; https://doi.org/10.3390/polym16233250 - 22 Nov 2024
Viewed by 921
Abstract
Proton exchange membranes (PEMs) are dominated by semicrystalline structures because highly pure crystals are still challenging to produce and control. Currently, the development and application of PEMs have been hindered by a lack of understanding regarding the effects of microstructure on proton and [...] Read more.
Proton exchange membranes (PEMs) are dominated by semicrystalline structures because highly pure crystals are still challenging to produce and control. Currently, the development and application of PEMs have been hindered by a lack of understanding regarding the effects of microstructure on proton and heat transport properties. Based on an experimentally characterized perfluoro sulfonic acid membrane, the corresponding semicrystalline model and the crystal model contained therein were constructed. The water distribution, proton, and heat transport in the crystal, amorphous, and semicrystalline regions were examined using molecular dynamics simulations and energy-conserving dissipative particle dynamics simulations. The crystal structure had pronounced water connection pathways, a proton transport efficiency 5–10 times higher than that of the amorphous structure, and an in-plane covalent bonding that boosted the thermal diffusion coefficient and thermal conductivity by more than 1–3 times. The results for the semicrystalline structure were validated by the corresponding experiments. In addition, a proportionality coefficient that depended on both temperature and water content was proposed to explain how vehicle transport contributed to the proton conductivities, facilitating our understanding of the proton transport mechanism. Our findings enhance our theoretical understanding of PEMs in proton and heat transport, considering both the semicrystalline and crystalline regions. Additionally, the research methods employed can be applied to the study of other semicrystalline polymers. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop