Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,775)

Search Parameters:
Keywords = in vivo tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3906 KB  
Article
Orange-Derived Extracellular Vesicles: Characterization and Therapeutic Applications in Normal and Diabetic Wound Healing in In Vivo Models
by Chiara Gai, Margherita Alba Carlotta Pomatto, Federica Negro, Lucia Massari, Maria Chiara Deregibus, Massimo Cedrino, Cristina Grange, Alessandro Burello, Joanna Kopecka, Ivan Molineris, Anel Ordabayeva, Alessandro Damin, Federica Antico, Chiara Riganti, Vito Fanelli, Natasa Zarovni and Giovanni Camussi
Cells 2026, 15(3), 244; https://doi.org/10.3390/cells15030244 - 27 Jan 2026
Abstract
Extracellular vesicles (EVs) of human origin show promise for regenerative medicine and wound healing. However, they have limitations regarding scalability, variability, safety, and costs. Plant-derived EVs may represent a valid alternative. This study investigated the regenerative potential of EVs extracted from orange juice [...] Read more.
Extracellular vesicles (EVs) of human origin show promise for regenerative medicine and wound healing. However, they have limitations regarding scalability, variability, safety, and costs. Plant-derived EVs may represent a valid alternative. This study investigated the regenerative potential of EVs extracted from orange juice (oEVs). oEVs obtained by standard ultracentrifugation were compared with oEVs purified by tangential flow filtration (TFF), a scalable technique suitable for large-scale and regulatory-compliant manufacturing. Comparisons included size, morphology, pH, Zeta potential, protein and RNA content, Raman spectroscopy, and proteomic, metabolomic, and RNA sequencing. The regenerative potential of oEVs was tested in vitro, with cell migration, endothelial tube formation, and proliferation assays performed. Antioxidant ability was tested on endothelial cells stressed by hyperglycemia or pro-inflammatory cytokine cocktails. Next, oEVs were formulated with different hydrogels and tested at different doses on skin ulcers on healthy and diabetic mice. TFF oEVs showed the same physio-chemical characteristics and a comparable molecular content as those isolated by ultracentrifugation, confirming the path to scalability. In vitro oEVs promoted cell migration, formation of capillary-like structures, cell proliferation, and strong antioxidant activity. Moreover, oEVs effectively accelerated in vivo wound closure in healthy and diabetic mice. Thus, oEVs may provide a useful and cost-effective ingredient for improved and effective wound treatment strategies. Full article
24 pages, 1920 KB  
Article
Robust Goat-Derived Enterococcus Isolates with Broad-Spectrum Antipathogenic Activity as Next-Generation Probiotic Candidates
by Mohamed Osman Abdalrahem Essa, Nosiba S. Basher, Layla Ahmed Mohammed Abdelhadi, Nasir A. Ibrahim, Shahab Ur Rehman, Hosameldeen Mohamed Husien, Ahmed A. Saleh and Darong Cheng
Vet. Sci. 2026, 13(2), 120; https://doi.org/10.3390/vetsci13020120 - 27 Jan 2026
Abstract
The rise of multidrug-resistant enteric pathogens and increased demand for antibiotic alternatives have intensified efforts to find reliable, safe, and effective probiotics. This study reports the isolation, characterization, and assessment of the probiotic potential of five Enterococcus strains isolated from the feces of [...] Read more.
The rise of multidrug-resistant enteric pathogens and increased demand for antibiotic alternatives have intensified efforts to find reliable, safe, and effective probiotics. This study reports the isolation, characterization, and assessment of the probiotic potential of five Enterococcus strains isolated from the feces of healthy goats aged 7–9 months raised under conventional management. Following an initial screening of 57 lactic acid bacteria, 5 isolates (Enterococcus faecium, E. hirae, E. faecalis, Enterococcus sp., and Streptococcus lutetiensis) were chosen based on their catalase-negative, non-motile, and non-hemolytic characteristics, in addition to their high tolerance to gastric (pH 2.0) and intestinal (pH 8.0, 0.3–1.5% bile salt) stress. In simulated gastric juice, survival rates reached 89.05% (E5) and 85.03% (E3), while in intestinal juice, survival peaked at 78.01% (E4). All strains thrived in 4% NaCl and maintained at least 8 Log10 CFU/mL after 12 h of exposure to 1.5% porcine bile salt. Cell surface hydrophobicity (0.78–93.85%) and auto-aggregation (23–91%) properties were strain-dependent, but exceeded the thresholds required for efficient gut colonization. Co-aggregation assays demonstrated over 45% binding with E. coli and S. typhimurium, suggesting a strong potential to displace pathogens. Cell-free supernatants created inhibition zones measuring 15.02 mm against E. coli and 11.04 mm against S. flexneri, while maintaining activity against methicillin-resistant S. aureus (MRSA). Antibiotic testing indicated that all strains were sensitive to ciprofloxacin and florfenicol. No β-hemolysis or mobile resistance genes were found, supporting the initial safety findings. This study reveals that Enterococcus isolates from goats display a unique combination of gastrointestinal survivability and broad-spectrum antipathogenic activity and, therefore, are promising candidates for the development of next-generation probiotic strains for use in livestock (and, potentially, humans). Further in vivo validation and genome-based safety assessments are warranted. Full article
Show Figures

Graphical abstract

20 pages, 7856 KB  
Article
Single-Die-Level MEMS Post-Processing for Prototyping CMOS-Based Neural Probes Combined with Optical Fibers for Optogenetic Neuromodulation
by Gabor Orban, Alberto Perna, Matteo Vincenzi, Raffaele Adamo, Gian Nicola Angotzi, Luca Berdondini and João Filipe Ribeiro
Micromachines 2026, 17(2), 159; https://doi.org/10.3390/mi17020159 - 26 Jan 2026
Abstract
The integration of complementary metal–oxide–semiconductor (CMOS) and micro-electromechanical systems (MEMSs) technologies for miniaturized biosensor fabrication enables unprecedented spatiotemporal resolution in monitoring the bioelectrical activity of the nervous system. Wafer-level CMOS technology incurs high costs, but multi-project wafer (MPW) runs mitigate this by allowing [...] Read more.
The integration of complementary metal–oxide–semiconductor (CMOS) and micro-electromechanical systems (MEMSs) technologies for miniaturized biosensor fabrication enables unprecedented spatiotemporal resolution in monitoring the bioelectrical activity of the nervous system. Wafer-level CMOS technology incurs high costs, but multi-project wafer (MPW) runs mitigate this by allowing multiple users to share a single wafer. Still, monolithic CMOS biosensors require specialized surface materials or device geometries incompatible with standard CMOS processes. Performing MEMS post-processing on the few square millimeters available in MPW dies remains a significant challenge. In this paper, we present a MEMS post-processing workflow tailored for CMOS dies that supports both surface material modification and layout shaping for intracortical biosensing applications. To address lithographic limitations on small substrates, we optimized spray-coating photolithography methods that suppress edge effects and enable reliable patterning and lift-off of diverse materials. We fabricated a needle-like, 512-channel simultaneous neural recording active pixel sensor (SiNAPS) technology based neural probe designed for integration with optical fibers for optogenetic studies. To mitigate photoelectric effects induced by light stimulation, we incorporated a photoelectric shield through simple modifications to the photolithography mask. Optical bench testing demonstrated >96% light-shielding effectiveness at 3 mW of light power applied directly to the probe electrodes. In vivo experiments confirmed the probe’s capability for high-resolution electrophysiological measurements. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
20 pages, 4351 KB  
Article
A Conductive, Photothermal and Antioxidant ε-Poly-L-Lysine/Carbon Nanotube Hydrogel as a Candidate Dressing for Chronic Diabetic Wounds
by Jinqiang Zhu, Wenjun Qin, Bo Wu, Haining Li, Cui Cheng, Xiao Han and Xiwen Jiang
Polymers 2026, 18(3), 332; https://doi.org/10.3390/polym18030332 - 26 Jan 2026
Abstract
Background: Chronic diabetic wounds, particularly diabetic foot ulcers (DFUs), are prone to recurrent infection and delayed healing, resulting in substantial morbidity, mortality, and economic burden. Multifunctional wound dressings that combine antibacterial, antioxidant, conductive, and self-healing properties may help to address the complex microenvironment [...] Read more.
Background: Chronic diabetic wounds, particularly diabetic foot ulcers (DFUs), are prone to recurrent infection and delayed healing, resulting in substantial morbidity, mortality, and economic burden. Multifunctional wound dressings that combine antibacterial, antioxidant, conductive, and self-healing properties may help to address the complex microenvironment of chronic diabetic wounds. Methods: In this study, ε-poly-L-lysine and amino-terminated polyethylene glycol were grafted onto carboxylated single-walled carbon nanotubes (SWCNTs) via amide coupling to obtain ε-PL-CNT-PEG. Aminated chondroitin sulfate (CS-ADH) and a catechol–metal coordination complex of protocatechualdehyde and Fe3+ (PA@Fe) were then used to construct a dynamic covalently cross-linked hydrogel network through Schiff-base chemistry. The obtained hydrogels (Gel0–3, Gel4) were characterized for photothermal performance, rheological behavior, microstructure, swelling/degradation, adhesiveness, antioxidant capacity, electrical conductivity, cytocompatibility, hemocompatibility, and antibacterial activity in the presence and absence of near-infrared (NIR, 808 nm) irradiation. Results: ε-PL-CNT-PEG showed good aqueous dispersibility, NIR-induced photothermal conversion, and improved cytocompatibility after surface modification. Incorporation of ε-PL-CNT-PEG into the PA@Fe/CS-ADH network yielded conductive hydrogels with porous microstructures and storage modulus (G′) higher than loss modulus (G′′) over the tested frequency range, indicating stable gel-like behavior. The hydrogels exhibited self-healing under alternating strain and macroscopic rejoining after cutting. Swelling and degradation studies demonstrated pH-dependent degradation, with faster degradation in mildly acidic conditions (pH 5.0), mimicking infected chronic diabetic wounds. The hydrogels adhered to diverse substrates and tolerated joint movements. Gel4 showed notable DPPH• and H2O2 scavenging (≈65% and ≈60%, respectively, within several hours). The electrical conductivity was 0.19 ± 0.0X mS/cm for Gel0–3 and 0.21 ± 0.0Y mS/cm for Gel4 (mean ± SD, n = 3), falling within the range reported for human skin. In vitro, NIH3T3 cells maintained >90% viability in the presence of hydrogel extracts, and hemolysis ratios remained below 5%. Hydrogels containing ε-PL-CNT-PEG displayed enhanced antibacterial effects against Escherichia coli and Staphylococcus aureus, and NIR irradiation further reduced bacterial survival, with some formulations achieving near-complete inhibition under low-power (0.2–0.3 W/cm2) 808 nm irradiation. Conclusions: A dynamic, conductive hydrogel based on PA@Fe, CS-ADH, and ε-PL-CNT-PEG was successfully developed. The hydrogel combines photothermal antibacterial activity, antioxidant capacity, electrical conductivity, self-healing behavior, adhesiveness, cytocompatibility, and hemocompatibility. These properties suggest potential for application as a wound dressing for chronic diabetic wounds, including diabetic foot ulcers, although further in vivo studies are required to validate therapeutic efficacy. Full article
(This article belongs to the Section Polymer Networks and Gels)
25 pages, 58730 KB  
Article
Chitosan-Based Thermosensitive Hydrogel Loaded with Quercetin Inclusion Compound for Accelerating Infectious Wound Healing
by Jin Tao, Suhong Chen, Liyan Cai, Panmei Ma, Xiaojian Lin, Yusi Song, Ying Hu and Guiyuan Lv
Pharmaceuticals 2026, 19(2), 214; https://doi.org/10.3390/ph19020214 - 26 Jan 2026
Abstract
Background: Chitosan-based hydrogels exhibit excellent temperature-sensitive properties and are widely used as skin dressings. However, several challenges remain, such as long gelation times and difficulties releasing insoluble drugs, which limit their application in skin wound healing. In this study, we developed a [...] Read more.
Background: Chitosan-based hydrogels exhibit excellent temperature-sensitive properties and are widely used as skin dressings. However, several challenges remain, such as long gelation times and difficulties releasing insoluble drugs, which limit their application in skin wound healing. In this study, we developed a novel sulfobutyl-β-cyclodextrin/quercetin@chitosan/hyaluronic acid hydrogel (Qe/SBE@CS/HA Gel). In this gel, SBE not only encapsulates Qe to form inclusion complexes, thereby enhancing the solubility of Qe, but also shortens the gelation time of thermosensitive gels through electrostatic adsorption with chitosan. Methods: Qe/SBE was prepared using the saturated solution method, while Qe/SBE@CS/HA gel was fabricated via electrostatic adsorption. The performance of the gels was evaluated using antibacterial, antioxidant, compatibility, and skin infection damage models. Results: The Qe/SBE@CS/HA Gel exhibits both thermosensitivity and acid sensitivity, releasing 91.9% of Qe in a medium with a pH of 5.0. This gel displays notable antibacterial activity and antioxidant characteristics. Furthermore, it shows excellent biocompatibility, as evidenced by hemolytic and in vivo degradation tests. The gel has the capacity to modulate chronic inflammation and facilitate angiogenesis and collagen synthesis, thereby significantly accelerating wound healing in wound and infection models. Conclusions: This multi-responsive and multifunctional gel shows potential as a therapeutic strategy for bacterial infection wounds. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

19 pages, 2166 KB  
Article
Efficacy of Multivalent Dengue Vaccine Candidates Predicted In Silico
by Seokhwan Hyeon, Kwangwook Kim, Yoo Jin Na, Mihee Kim, Jaenam Jeong, Byung Chul Kim and Yookyoung Lee
Vaccines 2026, 14(2), 114; https://doi.org/10.3390/vaccines14020114 - 25 Jan 2026
Viewed by 129
Abstract
Background: Dengue virus (DENV) is becoming a global public health problem, but the immunogenicity of DENV structural proteins is not fully understood. Methods: We predicted the epitope-based immunogenicity of DENV proteins from four serotypes in silico and evaluated their efficacy in vitro (T-cell [...] Read more.
Background: Dengue virus (DENV) is becoming a global public health problem, but the immunogenicity of DENV structural proteins is not fully understood. Methods: We predicted the epitope-based immunogenicity of DENV proteins from four serotypes in silico and evaluated their efficacy in vitro (T-cell proliferation assays) and in vivo (ELISpot, qRT-PCR, and plaque reduction neutralization tests using murine splenocytes). We focused on the envelope protein, which contains envelope domain III. Immunogenic B-cell epitopes were predicted using BepiPred-2.0, and regions that induce T cell-mediated immune responses were analyzed using the immune epitope database (IEDB), which validates peptides presented on HLA class I. Results: Nine-amino-acid peptide candidates were selected based on a score of >0.1. The best peptide candidates were tested in T-cell proliferation assays to confirm the in silico data. Subsequently, BALB/c mice were vaccinated with candidate peptides showing immunity in the proliferation assay, and their splenocytes were analyzed. ELISpot and qRT-PCR data showed that some candidate peptides highly regulated cytokines, including interferon-γ, tumor necrosis factor-α, and interleukin-4. Murine sera were collected after peptide boosting 2 weeks apart. Stimulation of cellular immunity was confirmed for some candidates in plaque reduction neutralization tests. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

19 pages, 808 KB  
Systematic Review
Ex Vivo Organotypic Brain Slice Models for Glioblastoma: A Systematic Review
by Cateno C. T. Petralia, Agata G. D’amico, Velia D’Agata, Giuseppe Broggi and Giuseppe M. V. Barbagallo
Cancers 2026, 18(3), 372; https://doi.org/10.3390/cancers18030372 - 25 Jan 2026
Viewed by 137
Abstract
Background/Objective: This systematic review aims to evaluate ex vivo brain slice models in glioblastoma (GBM) research, with a specific focus on tumour invasion, tumour–microenvironment interactions, and therapeutic response. Methods: A systematic search looking for studies employing ex vivo organotypic brain slice models in [...] Read more.
Background/Objective: This systematic review aims to evaluate ex vivo brain slice models in glioblastoma (GBM) research, with a specific focus on tumour invasion, tumour–microenvironment interactions, and therapeutic response. Methods: A systematic search looking for studies employing ex vivo organotypic brain slice models in GBM research was conducted across multiple databases (January 2010–July 2025) in accordance with PRISMA guidelines. The study was registered in PROSPERO database (CRD420251138341). Inclusion criteria encompassed patient-derived brain slices, hybrid rodent–human slice co-cultures, and microfluidic-integrated ex vivo platforms designed to assess tumour invasion, microenvironmental interactions and therapeutic responses. Exclusion criteria included reviews, abstracts, conference proceedings, in vivo-only studies, purely in vitro models without organotypic integration, and studies not focused on GBM. Results: Twenty-six studies met the inclusion criteria. Among these, 18/26 (69%) investigated GBM invasion, 18/26 (69%) evaluated therapeutic responses, and 5/26 (19%) examined tumour–microenvironment interactions, with several studies spanning multiple domains. Across platforms, organotypic slices consistently recapitulated key features of GBM biology—including perivascular and white-matter-aligned invasion, stromal–immune interactions, and patient-specific drug sensitivity—while engineered systems enhanced perfusion and exposure control. Methodological variability, particularly regarding slice preparation, oxygenation and viability assessment, limits direct comparability between studies. Conclusions: Organotypic brain slice models represent an extremely relevant tool for translational investigations of GBM biology and treatment response. However, substantial methodological heterogeneity together with limited standardisation hamper reproducibility and cross-study validation. Future work should focus on enhancing reproducibility and harmonising protocols to support the development of clinically meaningful precision oncology strategies. Full article
(This article belongs to the Special Issue Novel Insights into Glioblastoma and Brain Metastases (2nd Edition))
Show Figures

Figure 1

22 pages, 3540 KB  
Article
Targeted Removal of HCV E2 N2 N-Glycan Is Associated with Improved Immune Responses in Mice
by Yuan-Qin Min, Yu-Shan Ren, Wen-Wen Zhang, Yi-Dan Zhou and Min Liu
Biomolecules 2026, 16(2), 183; https://doi.org/10.3390/biom16020183 - 24 Jan 2026
Viewed by 118
Abstract
Hepatitis C virus (HCV) still lacks a licensed vaccine. The envelope glycoprotein E2 is a key neutralizing target, but its dense N-glycan shield can hinder epitope exposure. In this study, we revisit E2 glycan editing and examine whether single-site deletion preserves antigen integrity [...] Read more.
Hepatitis C virus (HCV) still lacks a licensed vaccine. The envelope glycoprotein E2 is a key neutralizing target, but its dense N-glycan shield can hinder epitope exposure. In this study, we revisit E2 glycan editing and examine whether single-site deletion preserves antigen integrity while improving immune responses in mice under a DNA immunization setting. Using a secreted E2 ectodomain (sE2384–661), we generated five N to D mutants at conserved sites (N1, N2, N4, N6, and N11) and evaluated them in a unified DNA immunization model with identical CpG content and delivery conditions across groups. The N2 mutant (N423, sE2-N2) maintained expression, secretion, and ER localization; furthermore, in mice, it was associated with higher anti-E2 titers and greater inhibition of H77 (genotype 1a) HCVcc at the tested dilutions, with limited activity against Con1 (1b). Cellular analyses showed increased IFN-γ ELISPOT counts and higher frequencies of granzyme B+/perforin+ CD8+ T cells after N2 immunization, while IL-4 remained low. Functionally, N2 elicited stronger specific lysis of CT26-sE2 targets in vitro and slowed CT26-sE2 tumor growth in vivo. In HCV-infected ICR4R+ mice, therapeutic vaccination with sE2-N2 reduced blood HCV RNA and hepatic readouts compared with sE2. A monoclonal antibody isolated from sE2-N2-immunized mice (1C1) neutralized HCVcc in vitro and, after passive transfer, lowered viremia and liver signals in infected mice. Collectively, these findings indicate that selective removal of the N2 glycan preserves antigen properties and is associated with improved humoral and cellular immunity and measurable in vivo activity, supporting targeted glycan editing as a practical strategy to refine E2-based HCV vaccines. Full article
Show Figures

Figure 1

12 pages, 2080 KB  
Article
In Vivo Toxicity of Silver Nanoparticles in the Marine Rotifer Brachionus plicatilis: Integrating Metabolic Activity and Generation of Reactive Oxygen Species
by Thiago Obiedo Garcia, Analía Ale, Lucas Garcia Da Costa, Matheus de Castro Vieira, Victoria Dos Santos Monteiro, Martín Frederico Desimone and José María Monserrat
Coatings 2026, 16(2), 152; https://doi.org/10.3390/coatings16020152 - 24 Jan 2026
Viewed by 149
Abstract
Silver nanoparticles (AgNPs) have been widely employed across various industrial, medical, and consumer applications due to their unique biocidal properties, raising concerns about their potential impact on biota such as planktonic microinvertebrates, which, in turn, necessitates the rapid development of in vivo nanotoxicological [...] Read more.
Silver nanoparticles (AgNPs) have been widely employed across various industrial, medical, and consumer applications due to their unique biocidal properties, raising concerns about their potential impact on biota such as planktonic microinvertebrates, which, in turn, necessitates the rapid development of in vivo nanotoxicological bioassays. Here, we combined physicochemical particle characterization with organismal responses to assess the in vivo nanotoxicity of chemically synthesized AgNPs in the marine rotifer Brachionus plicatilis (Ploimida, Brachionidae). Particles were fully characterized by dynamic light scattering (hydrodynamic diameter and polydispersity), zeta potential, transmission electron microscopy, and UV–Vis spectroscopy in both stock and exposure media. Rotifers were exposed to low AgNP concentrations: 0 (control), 2, and 20 µg/L. After a 24 h exposure, in vivo metabolic activity was quantified via resazurin reduction. Reactive oxygen species (ROS) were measured using the fluorescent probe H2DCF-DA (excitation 485 nm, emission 530 nm), quantified by fluorimeter and fluorescence microscopy. Results showed that AgNP exposure decreased ROS levels at both tested concentrations, a finding that can be linked to reduced aerobic metabolic activity in the rotifers. These findings demonstrate that B. plicatilis provides a rapid and sensitive in vivo toxicity assessment that integrates metabolic and ROS endpoints for nano-ecotoxicity evaluations. Full article
Show Figures

Figure 1

22 pages, 1088 KB  
Article
In Vitro Assessment of Essential Oils for Their Methane Mitigation Potential and Impact on Rumen Fermentation in Cattle
by Memoona Nasir, Rokia Temmar, Abdelhacib Kihal, José Luis Repetto, Cecilia Cajarville, Gwenael Forgeard, Jihane Guihard, María Rodríguez-Prado, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2026, 16(3), 373; https://doi.org/10.3390/ani16030373 - 24 Jan 2026
Viewed by 78
Abstract
Strategies to suppress methanogenesis must preserve the functional integrity of the rumen microbial ecosystem. Essential oils (EOs) have emerged as promising modulators of rumen microbial function, though their responses vary widely with chemical structure and inclusion level. This study evaluated the efficacy of [...] Read more.
Strategies to suppress methanogenesis must preserve the functional integrity of the rumen microbial ecosystem. Essential oils (EOs) have emerged as promising modulators of rumen microbial function, though their responses vary widely with chemical structure and inclusion level. This study evaluated the efficacy of selected EOs using detailed in vitro fermentation assays. Nine EOs—cinnamon, lavender, garlic (GAR), lemongrass (LEG), peppermint (PPM), eucalyptus, coriander, oregano, and ginger (GIN)—were evaluated for their effects on rumen fermentation and methane (CH4) production using a 24 h in vitro batch culture system. Eight EOs were tested at two doses (Low and High) specific to each EO, while GIN was evaluated at a single dose. All treatments were incubated in a rumen fluid–buffer mix (1:1 for fermentation parameters and 1:4 for gas and CH4 measurements) with a 55:45 forage-to-concentrate substrate (pH 6.9). Overall treatment effects were significant for all measured fermentation parameters (p < 0.01). Most treatments reduced total gas production, CH4 emissions, and CH4/total gas ratios compared with the control (p < 0.05), although several responses were dose-dependent or directly divergent. Essential oils showed clear, composition-dependent responses: non-terpenoid EOs produced the strongest but also the most variable antimethanogenic effects, with GAR, particularly at the lower dose, consistently achieving the greatest CH4 inhibition while maintaining a favorable fermentation pattern. Conversely, terpenoid-based EOs induced moderate, dose-responsive CH4 reductions with minimal effects on overall fermentation. At the higher dose, PPM suppressed CH4 without altering major volatile fatty acid (VFA) patterns aside from increases in valerate and branched-chain VFA, whereas LEG reduced CH4 only when accompanied by marked fermentation depression. Monensin validated its role as an effective positive control. Overall, GAR, characterized by sulfur-based bioactives, emerged as the most effective candidate for CH4 mitigation under the tested in vitro conditions, highlighting the importance of chemical composition and inclusion level in determining efficacy and reinforcing the need for in vivo validation. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

21 pages, 2571 KB  
Article
Chemical Composition, Antioxidant Potential, and Genotoxic Safety of Lamiaceae Essential Oils from Eastern Morocco: A Multimethod Evaluation
by Abderrahman Makaoui, Abdelmonaem Talhaoui, Kaoutar Aboukhalid, Rachid Sabbahi, Sabir Ouahhoud, Sanae Baddaoui, Abdessadek Essadek, Abdesselam Maatougui, Ennouamane Saalaoui and Mounsef Neffa
Molecules 2026, 31(3), 400; https://doi.org/10.3390/molecules31030400 - 23 Jan 2026
Viewed by 148
Abstract
This study investigated the chemical composition, antioxidant activity, and genotoxic potential of essential oils (EOs) obtained by hydrodistillation from aerial parts of four wild-growing Lamiaceae species in eastern Morocco: Spanish ziziphora (Ziziphora hispanica L.), felty germander (Teucrium polium L.), French lavender [...] Read more.
This study investigated the chemical composition, antioxidant activity, and genotoxic potential of essential oils (EOs) obtained by hydrodistillation from aerial parts of four wild-growing Lamiaceae species in eastern Morocco: Spanish ziziphora (Ziziphora hispanica L.), felty germander (Teucrium polium L.), French lavender (Lavandula dentata L.), and topped lavender (Lavandula stoechas L.). Gas chromatography–mass spectrometry (GC-MS) analysis revealed eucalyptol (40.08%), thujopsene (11.25%), β-myrcene (15.82%), and fenchone (30.69%) as the major constituents in Z. hispanica, T. polium, L. dentata, and L. stoechas, respectively. Antioxidant capacity was evaluated using three complementary assays: 2,2-diphenyl-1-picrylhydrazyl radical scavenging, ferric reducing antioxidant power, and β-carotene bleaching. L. stoechas and L. dentata exhibited the strongest antioxidant activities, with IC50 values ranging from 0.284 to 1.71 mg/mL across assays. Genotoxicity was assessed in rat leukocytes using the alkaline Comet assay at EO concentrations of 2.5, 5, and 10 µg/mL. All tested EOs induced statistically significant DNA damage compared to the negative control, though the extent varied by species and concentration; notably, L. stoechas at 2.5 µg/mL showed the lowest genotoxic impact. These findings highlight the dual potential of these EOs as natural antioxidants while underscoring the need for dose-dependent safety evaluation prior to therapeutic or industrial application. Given that DNA damage was detectable even at 2.5 µg/mL, a conservative practical recommendation is to keep EO levels below 2.5 µg/mL-equivalent in preliminary applications, pending further in vivo toxicology to establish NOAEL-based exposure limits. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Graphical abstract

23 pages, 913 KB  
Review
N-Alkyl Derivatives of Deoxynojirimycin (DNJ) as Antiviral Agents: Overview and Update
by Paola Checconi, Domenico Iacopetta, Alessia Catalano, Jessica Ceramella, Maria Maddalena Cavalluzzi, Annaluisa Mariconda, Stefania Marsico, Stefano Aquaro, Pasquale Longo, Maria Stefania Sinicropi and Giovanni Lentini
Molecules 2026, 31(3), 399; https://doi.org/10.3390/molecules31030399 - 23 Jan 2026
Viewed by 118
Abstract
N-Alkyl deoxynojirimycin-derived drugs, belonging to the class of iminosugars, are well-known for their α-glucosidase inhibitory activity. N-Butyl-deoxynojirimycin (N-butyl-DNJ; NB-DNJ; also known as miglustat or UV-1) has been developed for the treatment of type 1 Gaucher disease and Niemann–Pick disease [...] Read more.
N-Alkyl deoxynojirimycin-derived drugs, belonging to the class of iminosugars, are well-known for their α-glucosidase inhibitory activity. N-Butyl-deoxynojirimycin (N-butyl-DNJ; NB-DNJ; also known as miglustat or UV-1) has been developed for the treatment of type 1 Gaucher disease and Niemann–Pick disease type C as Zavesca®. Furthermore, it behaves as a host-targeted glucomimetic that inhibits endoplasmic reticulum α-glucosidase I and II (GluI and GluII, respectively) enzymes, resulting in improper glycosylation and misfolding of viral glycoproteins; thus, it is a potential antiviral agent. It is studied against a broad range of viruses in vitro and in vivo; however, its utility as antiviral has not been fully explored. Other N-alkylated congeners of DNJ are in preclinical and clinical studies for diverse viral infections. The iminosugar N-9′-methoxynonyl-1-deoxynojirimycin (MON-DNJ or UV-4) is probably the most studied and potent inhibitor of α-Glu I and α-Glu II in clinical trials. It is often studied in the form of its hydrochloride salt (UV-4B) and has broad-spectrum activity against diverse viruses, including dengue and influenza. In clinical trials, it was found to be safe at all doses tested up to 1000 mg. In this paper, an overview on N-alkyl derivatives of DNJ is reported, focusing on their antiviral activity. The literature search was carried out by means of three literature databases, i.e., PubMed/MEDLINE, Google Scholar, and Scopus, screened using different keywords. A brief history of the discovery of their usefulness as antivirals is given, as well as the most recent studies on new compounds belonging to this class. Since different names are often used for the same compound, we tried to dissipate confusion and bring some order to this jumble of names. Specifically, in the tables, all the diverse names used to identify each compound, were reported. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Synthetic Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 2558 KB  
Article
Standardized Hericium erinaceus Extract Powder Improves Scopolamine-Induced Cognitive Deficits via BDNF-Mediated Neuroplasticity
by Seon-Hyeok Kim, Se Jeong Kim, Eun Ji Ko, Hae Ran Lee, Seong Min Hong, Se Hwan Ryu, Dae Hee Lee, Young Guk Kim, Jeong Yun Yu, Jae Kang Lee, Mi Kyeong Lee and Sun Yeou Kim
Sci. Pharm. 2026, 94(1), 12; https://doi.org/10.3390/scipharm94010012 - 23 Jan 2026
Viewed by 144
Abstract
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, [...] Read more.
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, a standardized H. erinaceus extract powder (HEP) was prepared from fruiting bodies and quantified using hericene A as a marker compound. The neuroprotective effects of HEP were then evaluated in both cellular and animal models of scopolamine-induced cognitive dysfunction. Pretreatment of SH-SY5Y human neuroblastoma cells with HEP (5–25 μg/mL) significantly improved cell viability and reduced scopolamine-induced apoptosis, while enhancing the activation of neuroplasticity-related signaling proteins, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). In vivo, oral administration of HEP (300 mg/kg) to scopolamine-treated ICR mice markedly improved cognitive performance, increasing the recognition index to 63.8% compared with 41.6% in the scopolamine group, and enhancing spontaneous alternation in the Y-maze test to 59.6%. These cognitive improvements were accompanied by preserved hippocampal neuronal structure and increased BDNF immunoreactivity. Additionally, HEP improved cholinergic function by restoring serum acetylcholine levels and reducing acetylcholinesterase activity. Collectively, these findings suggest that standardized HEP exerts neuroprotective and cognition-enhancing effects via modulation of cholinergic markers and activation of BDNF-mediated neuroplasticity, highlighting its potential as a functional food ingredient or nutraceutical for preventing cognitive decline related to cholinergic dysfunction. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

22 pages, 2631 KB  
Article
Design, Docking, Synthesis, and Biological Evaluation of Pyrazolone Derivatives as Potential Dual-Action Antimicrobial and Antiepileptic Agents
by Yousef Al-ebini, Manojmouli Chandramouli, Naga Prashant Koppuravuri, Thoppalada Yunus Pasha, Mohamed Rahamathulla, Salwa Eltawaty, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceuticals 2026, 19(2), 193; https://doi.org/10.3390/ph19020193 - 23 Jan 2026
Viewed by 211
Abstract
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: [...] Read more.
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: Novel pyrazolone derivatives were designed, synthesized (using 2,4-dinitrophenylhydrazine/semicarbazide condensation with ethyl acetoacetate), and evaluated through molecular docking against antimicrobial (4URM, 3FYV, 3FRA) and neuronal targets (4COF, 5TP9, 5L1F). The in vitro antimicrobial activity was assessed against Gram-positive (S. aureus) and in vitro Gram-negative (E. coli, P. aeruginosa) strains via agar cup plate assays, while in vivo antiepileptic efficacy was tested in a PTZ-induced seizure model in Swiss albino mice. Results: Compound IIa showed potent dual activity, inhibiting E. coli (9 mm zone at 80 μg/mL) and S. aureus (9.5 mm at 80 μg/mL), alongside a significantly delayed seizure onset in the PTZ-induced mouse model (100% survival rate, 45 sec delayed seizure onset, p < 0.001). Compounds Ia and Id showed selective activity against E. coli (6 mm at 80 μg/mL) and P. aeruginosa (7 mm at 80 μg/mL), respectively. Docking studies revealed that compound IIa has a superior binding affinity (−7.57 kcal/mol for 3FYV) compared to standards, driven by hydrogen bonds (SER X: 49) and hydrophobic interactions (LEU X: 20). Conclusions: This study presents a novel approach by proposing a rationally designed pyrazolone scaffold exhibiting both antimicrobial and antiepileptic activity, which integrates in silico modeling with experimental validation. Compound IIa emerged with preliminary dual biological activities, exhibiting strong antibacterial activity, a superior binding affinity toward both bacterial and neuronal targets, and notable seizure prevention in vivo. These findings show the potential of multifunctional pyrazolone derivatives as a new treatment strategy for addressing drug-resistant infections linked to epilepsy and support further optimization toward clinical development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

20 pages, 1623 KB  
Article
Evaluating the Feed Value of Sawdust as a Roughage Substitute for Ruminants: Implications Based on In Vitro, In Sacco and In Vivo Studies
by Seid Ali Yimam, Egil Prestløkken, Lars Martin Hval and Alemayehu Kidane
Agriculture 2026, 16(3), 288; https://doi.org/10.3390/agriculture16030288 - 23 Jan 2026
Viewed by 393
Abstract
Sawdust represents a locally available lignocellulosic resource that may complement ruminant diets during periods of forage shortage. This study evaluated the feeding value of birch (Betula pendula) sawdust subjected to physical and chemical processing using a stepwise experimental approach. Steam-exploded and fresh sawdust [...] Read more.
Sawdust represents a locally available lignocellulosic resource that may complement ruminant diets during periods of forage shortage. This study evaluated the feeding value of birch (Betula pendula) sawdust subjected to physical and chemical processing using a stepwise experimental approach. Steam-exploded and fresh sawdust were treated with 0, 4% ammonia, or 4% sodium hydroxide in a 2 × 3 factorial design and initially evaluated by in vitro gas production, dry matter digestibility, and fermentation pH. Based on these results, selected materials were further assessed for rumen dry matter and fiber degradation using the in sacco technique in cannulated dairy cows, with untreated and ammonia-treated wheat straw included for comparison. In addition, steam-exploded sawdust was compared with wheat straw and grass silage for in vivo digestibility in sheep. A pilot study also tested aspen (Populus tremula) sawdust in lactating cow diets. Steam explosion substantially reduced fiber fractions, particularly hemicellulose, and increased residual carbohydrates, resulting in higher gas production and in vitro digestibility compared with fresh sawdust (p < 0.05). Ammonia treatment markedly increased crude protein content, whereas sodium hydroxide primarily increased ash concentration. In sacco, steam-exploded birch showed similar or higher ruminal dry matter and neutral detergent fiber degradation compared with ammonia-treated wheat straw, while untreated fresh birch remained largely undegraded. In vivo, steam-exploded sawdust exhibited greater organic matter digestibility and net energy than untreated wheat straw but remained less digestible than grass silage (p < 0.0001). A pilot feeding test with lactating dairy cows demonstrated good acceptance of untreated aspen sawdust as a partial roughage substitute under non-standardized conditions. Overall, the results indicate that steam-exploded sawdust has potential as a complementary roughage source for ruminants when conventional forages are limited. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

Back to TopTop