Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,163)

Search Parameters:
Keywords = in vivo stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2807 KB  
Article
Crystallographic Modification of Rosuvastatin Calcium: Formulation, Characterization and Pharmacokinetic Evaluation for Enhanced Dissolution, Stability and Bioavailability
by Deepak Kulkarni and Sanjay Pekamwar
Sci. Pharm. 2026, 94(1), 1; https://doi.org/10.3390/scipharm94010001 - 19 Dec 2025
Abstract
Rosuvastatin calcium is a promising lipid-lowering agent and the drug of choice in hyperlipidemia. Conventional solid oral delivery of rosuvastatin is limited by its poor solubility and ultimately poor bioavailability. An attempt was made to fabricate the cocrystals of RSC for enhancing solubility [...] Read more.
Rosuvastatin calcium is a promising lipid-lowering agent and the drug of choice in hyperlipidemia. Conventional solid oral delivery of rosuvastatin is limited by its poor solubility and ultimately poor bioavailability. An attempt was made to fabricate the cocrystals of RSC for enhancing solubility and bioavailability. Cocrystals were prepared by a microwave synthesiser-assisted solvent evaporation technique with multiple cocrystal formers. Rosuvastatin-Ascorbic acid (RSC-AA) cocrystals showed the highest solubility (~5-fold increased) amongst all twenty drug-coformer combination (DCC). RSC-AA cocrystals (1:1 ratio) were further characterized by various analytical techniques like FTIR, DSC and XRD to confirm the formation of cocrystals. RSC-AA cocrystals also showed improved flow properties and compressibility in comparison with pure drug, and it was demonstrated using the SeDeM diagram. RSC-AA cocrystals were further formulated into an immediate-release tablet by implementing experimental optimization. Comparative dissolution study of the cocrystal and pure drug tablet revealed improved dissolution after cocrystallization. RSC-AA cocrystal tablet showed the % drug release of 95.61 ± 3.94 while RSC pure drug showed the drug release of 67.83 ± 3.29. In vivo pharmacokinetic analysis showed significant improvement in systemic availability and cumulative absorption of the drug. The peak plasma concentration (Cmax) for RSC pure drug was 13.924 ± 0.477 μg/mL, while RSC-AA cocrystals showed a peak plasma concentration of 22.464 ± 0.484 μg/mL. Area Under Curve (AUC) of RSC-AA cocrystal was also significantly greater compared to the pure drug. In the stability study analysis, the shelf life was calculated from a graphical method and was found to be around 34.58 months for RSC-AA cocrystal tablets and 19.87 months for RSC pure drug tablets, which indicates improved stability with cocrystallization. Overall, the cocrystallization resulted in significant improvement in dissolution and solubility of RSC. Full article
Show Figures

Figure 1

17 pages, 7531 KB  
Article
L-Serine–Incorporated Collagen Scaffolds for Modulating In Vivo Degradation Behavior
by Su-Young Kim, Ji-Hyeon Oh, Min-Ho Hong, Joon Ha Lee, You-Young Jo and Seong-Gon Kim
J. Funct. Biomater. 2025, 16(12), 466; https://doi.org/10.3390/jfb16120466 - 18 Dec 2025
Abstract
Collagen-based biomaterials are widely used, but their relatively rapid biodegradation can limit functional duration. Such collagen constructs are widely used as barrier membranes in guided tissue and bone regeneration, where controlled degradation is essential for maintaining function. Although conventional crosslinking methods extend stability, [...] Read more.
Collagen-based biomaterials are widely used, but their relatively rapid biodegradation can limit functional duration. Such collagen constructs are widely used as barrier membranes in guided tissue and bone regeneration, where controlled degradation is essential for maintaining function. Although conventional crosslinking methods extend stability, they may introduce cytotoxicity, alter mechanical behavior, or hinder tissue integration. This study evaluated whether incorporating L-serine, a polar amino acid capable of hydrogen bonding, could modulate collagen structure and slow degradation without chemical crosslinking. L-Serine was selected because its hydroxyl-containing side chain can engage in biocompatible, hydrogen-bond–mediated interactions that offer a mild, non-crosslinking means of stabilizing collagen. Collagen scaffolds, prepared by incorporating L-serine into a collagen hydrogel followed by drying, were produced with 0–40 wt% L-serine and characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, circular dichroism, and scanning electron microscopy. In vivo degradation was assessed in a subcutaneous mouse model comparing unmodified collagen, collagen containing 40 wt% L-serine, and a commercially available bilayer porcine collagen membrane (Bio-Gide®, composed of type I and III collagen), with residual area quantified by serial sonography and histological evaluation. Low-to-moderate L-serine incorporation preserved triple-helical features, while 40 wt% led to crystalline domain formation and β-sheet enrichment. L-serine–treated collagen exhibited significantly greater residual area (2.70 ± 1.45 mm2) than unmodified collagen (0.37 ± 0.22 mm2, p < 0.05), although Bio-Gide® remained the most persistent (5.64 ± 2.76 mm2). These findings demonstrate that L-serine incorporation can modulate collagen structure and degradation kinetics through a simple, aqueous, and non-crosslinking approach. The results provide preliminary feasibility data supporting amino acid–assisted tuning of collagen resorption properties and justify further evaluation using membrane-specific fabrication and application-relevant testing. Full article
Show Figures

Figure 1

21 pages, 4109 KB  
Article
Engineering Inhalable Carboxymethyl Chitosan-Swellable Microgels for Pulmonary Delivery of Charged Hydrophilic Molecules
by David Encinas-Basurto, Kiley McCombs, Ernest L. Vallorz, Maria F. Acosta, Rick G. Schnellmann and Heidi M. Mansour
Gels 2025, 11(12), 1015; https://doi.org/10.3390/gels11121015 - 17 Dec 2025
Abstract
Swellable microparticles are a promising strategy for pulmonary drug delivery. They provide good aerosol performance in the dry state and enlarge after deposition in the lungs. In this study, we aimed to develop and characterize spray-dried microparticles composed of carboxymethyl chitosan (CMC), L-leucine, [...] Read more.
Swellable microparticles are a promising strategy for pulmonary drug delivery. They provide good aerosol performance in the dry state and enlarge after deposition in the lungs. In this study, we aimed to develop and characterize spray-dried microparticles composed of carboxymethyl chitosan (CMC), L-leucine, and suramin, a hydrophilic polyanionic drug. Microparticles were obtained by co-spray drying (Co-SD) formulations with increasing leucine content (0–10% w/w) and evaluated for morphology, thermal behavior, crystallinity, swelling, aerodynamic deposition using a Next Generation Impactor (NGI), and cytocompatibility in pulmonary epithelial cells. The 10% leucine formulation produced the highest fine particle fraction (35.2 ± 1.1%) and the lowest mass median aerodynamic diameter (1.0 ± 0.4 µm). These values indicate efficient in vitro deep lung deposition. XRPD and DSC showed that the Co-SD formulations were predominantly amorphous. Hydration studies revealed rapid water uptake and a clear increase in particle size, leading to the formation of swollen microgels. Cell viability assays demonstrated >85% viability up to 100 µM suramin, suggesting that CMC–leucine microgels enable efficient pulmonary delivery of hydrophilic drugs by combining respirable dry-state properties with in situ swelling and reducing immunological clearance. Future in vivo studies will be needed to assess long-term stability, macrophage interaction, and the translational potential of this delivery system. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

19 pages, 2932 KB  
Article
PEGylated Terpesome-Loaded 3D-Printed Aripiprazole Ocuserts for the Treatment of Ocular Candidiasis
by Rofida Albash, Mariam Hassan, Ahmed M. Agiba, Wessam H. Abd-Elsalam, Diana Aziz, Youssef R. Hassan, Amira B. Kassem, Asmaa Saleh and Moaz A. Eltabeeb
Pharmaceutics 2025, 17(12), 1616; https://doi.org/10.3390/pharmaceutics17121616 - 16 Dec 2025
Viewed by 143
Abstract
Background/Objectives: This study aimed to repurpose aripiprazole (AR), an antipsychotic clinically approved by the FDA, as a novel antifungal drug and to potentiate its therapeutic efficacy through PEGylated terpesomes (PEG-TERs). Methods: PEG-TERs were prepared by thin-film hydration and optimized using a central composite [...] Read more.
Background/Objectives: This study aimed to repurpose aripiprazole (AR), an antipsychotic clinically approved by the FDA, as a novel antifungal drug and to potentiate its therapeutic efficacy through PEGylated terpesomes (PEG-TERs). Methods: PEG-TERs were prepared by thin-film hydration and optimized using a central composite design. The optimum PEG-TER formulation was characterized for entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP), and subsequently integrated into polylactic acid (PLA)-based 3D-printed ocuserts. Results: The optimized formulation exhibited spherical vesicles with high EE%, nanoscale PS, narrow PDI, and favorable ZP, alongside excellent stability and mucoadhesive properties. Ex vivo permeation demonstrated a sustained release profile of AR from PEG-TERs compared with an AR suspension, while confocal microscopy confirmed efficient corneal deposition of fluorescein-labeled PEG-TERs. In vivo, the optimum AR-loaded PEG-TERs ocusert exhibited a substantial therapeutic effect in a rabbit model of Candida albicans keratitis, while histopathological assessment confirmed its ocular safety and biocompatibility. Conclusions: In conclusion, AR-loaded PEG-TERs embedded in PLA-based 3D-printed ocuserts represent a promising, safe, and innovative therapeutic platform for the management of Candida albicans-induced corneal infections, offering both drug repurposing and emerging opportunities in advanced ocular drug delivery. Full article
Show Figures

Figure 1

16 pages, 1076 KB  
Article
A Deletion Variant of Human Factor VIII Displaying Low Immunogenicity in a Murine Model of Hemophilia A
by Erika de Simone Molina, Theri Leica Degaki, Mari Cleide Sogayar and Marcos Angelo Almeida Demasi
Int. J. Mol. Sci. 2025, 26(24), 12093; https://doi.org/10.3390/ijms262412093 - 16 Dec 2025
Viewed by 107
Abstract
The therapeutic clotting factor VIII (FVIII) is known for its particular immunogenicity, with nearly 30% of hemophilic patients developing neutralizing antibodies against the infused protein. The root cause of this immunogenicity is still not well understood, but intrinsic factors, such as FVIII byproducts, [...] Read more.
The therapeutic clotting factor VIII (FVIII) is known for its particular immunogenicity, with nearly 30% of hemophilic patients developing neutralizing antibodies against the infused protein. The root cause of this immunogenicity is still not well understood, but intrinsic factors, such as FVIII byproducts, have been linked to the immunological response elicited. Bioengineering of the FVIII molecule has been improving its recombinant (rhFVIII) production in many aspects, mainly enhancing its expression and stability. Assessment of immunogenicity for novel recombinant isoforms is crucial for further development and scaling-up processes, particularly due to the unpredictable antigenic properties and their impact on neutralizing antibody formation. In the present study, we describe a bioengineered human recombinant FVIII (rhFVIII-H6A), which induces lower immunogenicity in a murine model of hemophilia A. The rhFVIII-H6A product is characterized by a B-domain-deleted heavy chain (HCh), with the C-terminal of the B-domain fused to the light chain (BΔ-LCh). Compared to plasma-derived FVIII (pdFVIII) and rhFVIII reference products, treating hemophilic mice with rhFVIII-H6A induced lower levels of anti-FVIII antibody formation, including those with inhibitory neutralizing activity, while no difference was observed in the functional activity of rhFVIII-H6A in reverting the in vivo hemophilia phenotype. In addition, our results indicate that deleting the major part of the B-domain from the HCh might lower the immunogenicity of novel rhFVIII products. Full article
Show Figures

Figure 1

16 pages, 8221 KB  
Article
An Attenuated Recombinant Newcastle Disease Virus of Genotype VII Generated by Reverse Genetics
by Hongze Pang, Yidan Bo, Jiawei Chen, Yongzhi Xue, Baishi Lei, Kuan Zhao, Yu Huang, Wenming Jiang, Wuchao Zhang and Wanzhe Yuan
Viruses 2025, 17(12), 1618; https://doi.org/10.3390/v17121618 - 15 Dec 2025
Viewed by 152
Abstract
Genotype VII Newcastle disease virus (NDV) has been confirmed as the predominant epidemic strain in China. Traditional vaccine strains fail to provide complete immune protection when challenged with an epidemic strain. NDV vaccines with phylogenetic relationships closer to those of the endemic viruses [...] Read more.
Genotype VII Newcastle disease virus (NDV) has been confirmed as the predominant epidemic strain in China. Traditional vaccine strains fail to provide complete immune protection when challenged with an epidemic strain. NDV vaccines with phylogenetic relationships closer to those of the endemic viruses demonstrate improved protective efficacy in reducing viral shedding and transmission. This research seeks to develop attenuated vaccine strains that are specifically aligned with NDV genotype VII. A reverse genetics system for the genotype VII NDV HB strain was developed, successfully rescuing the attenuated recombinant virus aHB by substituting the fusion protein (F) cleavage site motif “112R-R-Q-K-R↓F117” with “112G-R-Q-G-R↓L117.” Recombinant aHB virus attenuation was verified by assessing the mean death time (MDT) and intracerebral pathogenicity index (ICPI). The attenuated aHB strain demonstrated greater proliferation titers than did the virulent HB and rHB strains both in vivo and in vitro. Furthermore, the genome exhibited significant genetic stability even after 10 passages in chicken embryos. When challenged with the HB strain of NDV genotype VII, the aHB-inactivated vaccine provided 100% protection to chickens and effectively prevented viral shedding. These findings indicate that recombinant aHB may serve as an effective vaccine candidate. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

24 pages, 12542 KB  
Article
TRIM14 Regulation of Copper Homeostasis and Cuproptosis: A New Strategy to Overcome Chemoresistance in Glioblastoma
by Jianyong Wang, Enhao Zhang, Siqi Chen, Haifeng Wang, Yi Huang and Wenting Lan
Biomedicines 2025, 13(12), 3085; https://doi.org/10.3390/biomedicines13123085 - 15 Dec 2025
Viewed by 166
Abstract
Background: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by limited therapeutic options and poor prognosis. Temozolomide (TMZ) remains the standard chemotherapy; however, its effectiveness is often hindered by the development of acquired resistance. Cuproptosis, a recently identified copper-dependent form of [...] Read more.
Background: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by limited therapeutic options and poor prognosis. Temozolomide (TMZ) remains the standard chemotherapy; however, its effectiveness is often hindered by the development of acquired resistance. Cuproptosis, a recently identified copper-dependent form of regulated cell death, has emerged as a potential therapeutic target. The synergistic effects of TMZ and copper, as well as the molecular mechanisms underlying their combined action, remain unclear. This study aimed to investigate the role of tripartite motif-containing protein 14 (TRIM14) and its downstream effector ATP7A in mediating TMZ- and copper-induced cuproptosis in glioma. Methods: We employed in vitro cellular assays, in vivo xenograft models, bioinformatic analysis, immunofluorescence staining, Western blotting, and co-immunoprecipitation experiments to examine the functional involvement of TRIM14 and ATP7A during combined TMZ and copper chloride (CuCl2) treatment. Intracellular copper levels and cuproptosis markers, including Dihydrolipoamide S-acetyltransferase (DLAT), were assessed to evaluate copper-dependent cytotoxicity. Results: TMZ combined with CuCl2 markedly enhanced cuproptosis in glioma cells, as evidenced by increased DLAT expression and elevated intracellular copper accumulation. This combination treatment significantly suppressed TRIM14 expression, downregulated the TRIM14–ATP7A axis, and inhibited non-canonical NF-κB signaling. Co-immunoprecipitation assays further revealed a potential interaction between TRIM14 and ATP7A, suggesting that TRIM14 may modulate ATP7A stability or activity. Conclusions: Our findings indicate that TMZ and copper synergistically induce cuproptosis in GBM by disrupting the TRIM14–ATP7A regulatory axis and promoting intracellular copper accumulation. Targeting TRIM14 or ATP7A to enhance cuproptosis may represent a promising therapeutic strategy to overcome TMZ resistance and improve clinical outcomes in GBM patients. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

49 pages, 1617 KB  
Review
Harnessing Machine Learning Approaches for the Identification, Characterization, and Optimization of Novel Antimicrobial Peptides
by Naveed Saleem, Naresh Kumar, Emad El-Omar, Mark Willcox and Xiao-Tao Jiang
Antibiotics 2025, 14(12), 1263; https://doi.org/10.3390/antibiotics14121263 - 14 Dec 2025
Viewed by 394
Abstract
Antimicrobial resistance (AMR) has become a major health crisis worldwide, and it is expected to surpass cancer as one of the leading causes of death by 2050. Conventional antibiotics are struggling to keep pace with the rapidly evolving resistance trends, underscoring the urgent [...] Read more.
Antimicrobial resistance (AMR) has become a major health crisis worldwide, and it is expected to surpass cancer as one of the leading causes of death by 2050. Conventional antibiotics are struggling to keep pace with the rapidly evolving resistance trends, underscoring the urgent need for novel antimicrobial therapeutic strategies. Antimicrobial peptides (AMPs) function through diverse, often membrane-disrupting mechanisms that can address the latest challenges to resistance. However, the identification, prediction, and optimization of novel AMPs can be impeded by several issues, including extensive sequence spaces, context-dependent activity, and the higher costs associated with wet laboratory screenings. Recent developments in artificial intelligence (AI) have enabled large-scale mining of genomes, metagenomes, and quantitative species-resolved activity prediction, i.e., MIC, and de novo AMPs designed with integrated stability and toxicity filters. The current review has synthesized and highlighted progress across different discriminative models, such as classical machine learning and deep learning models and transformer embeddings, alongside graphs and geometric encoders, structure-guided and multi-modal hybrid learning approaches, closed-loop generative methods, and large language models (LLMs) predicted frameworks. This review compares models’ benchmark performances, highlighting AI-predicted novel hybrid approaches for designing AMPs, validated by in vitro and in vivo methods against clinical and resistant pathogens to increase overall experimental hit rates. Based on observations, multimodal paradigm strategies are proposed, focusing on identification, prediction, and characterization, followed by design frameworks, linking active-learning lab cycles, mechanistic interpretability, curated data resources, and uncertainty estimation. Therefore, for reproducible benchmarks and interoperable data, collaborative computational and wet lab experimental validations must be required to accelerate AI-driven novel AMP discovery to combat multidrug-resistant Gram-negative pathogens. Full article
(This article belongs to the Special Issue Novel Approaches to Prevent and Combat Antimicrobial Resistance)
Show Figures

Graphical abstract

21 pages, 7124 KB  
Article
Fermented Yeast Complex Extract Promotes Hair Regrowth by Decreasing Oxidative Stress
by Kyung-A Byun, Chang Hu Choi, Seyeon Oh, Jimin Hyun, Kuk Hui Son and Kyunghee Byun
Antioxidants 2025, 14(12), 1503; https://doi.org/10.3390/antiox14121503 - 14 Dec 2025
Viewed by 243
Abstract
Hair growth is orchestrated by a complex cycle comprising the anagen, catagen, telogen, and exogen phases that are largely regulated by dermal papilla cells (DPCs). The disruption of oxidative balance and inflammation impairs follicle function and regeneration. Fermented yeast complex extract (FYCE) is [...] Read more.
Hair growth is orchestrated by a complex cycle comprising the anagen, catagen, telogen, and exogen phases that are largely regulated by dermal papilla cells (DPCs). The disruption of oxidative balance and inflammation impairs follicle function and regeneration. Fermented yeast complex extract (FYCE) is a bioactive material derived from enzymatically hydrolyzed yeast and collagen substrates through a two-step fermentation with Lactobacillus brevis and Lactobacillus plantarum, enriched in antioxidant amino acids such as γ-aminobutyric acid (GABA) and L-alanine. In this study, we evaluated the effect of FYCE on hair regrowth, with a focus on its modulation of oxidative stress and inflammatory pathways in hydrogen peroxide (H2O2)-treated DPCs. FYCE treatment significantly enhanced NRF2 expression (3.2-fold compared to H2O2-treated DPCs), a central transcription factor controlling antioxidant defense, and concomitantly suppressed NF-κB activity (0.6-fold compared to H2O2-treated DPCs), a key mediator of inflammation. Importantly, FYCE also attenuated the activation of the NLRP3 inflammasome, as evidenced by the decreased expression levels of its molecular components. Complementary studies showed that FYCE increased IGF-1 (5.4-fold compared to H2O2-treated DPCs), Wnt10b (1.8-fold compared to H2O2-treated DPCs), and Wnt3a (2.9-fold compared to H2O2-treated DPCs), and stabilized β-catenin (2.8-fold compared to H2O2-treated DPCs). FYCE also showed these changes in the shaved animal skin, which was associated with increased hair follicle number (1.6-fold compared to the water-administered control group) and the anagen phase (3.0-fold compared to the water-administered control group). Collectively, our results suggest that FYCE promotes hair regrowth through the dual modulation of antioxidative and anti-inflammatory pathways, specifically by activating NRF2, inhibiting NF-κB signaling, and downregulating the NLRP3 inflammasome. These findings support FYCE as a promising candidate for further investigation as a treatment to prevent or reverse hair loss, with in vivo and clinical studies substantiating its efficacy and safety. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 4583 KB  
Article
Molecular Docking Analysis of Heparin–Diclofenac Complexes: Insights into Enhanced Cox Enzyme Inhibition for Pain Management
by Manuel Ovidiu Amzoiu, Oana Taisescu, Emilia Amzoiu, Andrei Gresita, Georgeta Sofia Popescu, Gabriela Rău, Maria Viorica Ciocîlteu and Costel Valentin Manda
Life 2025, 15(12), 1903; https://doi.org/10.3390/life15121903 - 12 Dec 2025
Viewed by 163
Abstract
The aim of this study was to investigate the molecular interactions of heparin, diclofenac, and their supramolecular complexes with cyclooxygenase enzymes (COX-1 and COX-2) using computational docking techniques. Diclofenac is a widely used nonsteroidal anti-inflammatory drug (NSAID) that inhibits COX isoforms, whereas heparin [...] Read more.
The aim of this study was to investigate the molecular interactions of heparin, diclofenac, and their supramolecular complexes with cyclooxygenase enzymes (COX-1 and COX-2) using computational docking techniques. Diclofenac is a widely used nonsteroidal anti-inflammatory drug (NSAID) that inhibits COX isoforms, whereas heparin is a polyanionic glycosaminoglycan with established anticoagulant and emerging anti-inflammatory properties. Supramolecular association between these agents may modulate their physicochemical behavior and target engagement. Molecular modeling, dual-drug docking, and molecular dynamics (MD) simulations were employed to characterize the interactions of heparin, diclofenac, and pre-formed heparin–diclofenac complexes with COX-1 and COX-2. Geometry optimization and lipophilicity (logP) estimates were obtained using HyperChem, while protein–ligand docking was performed in HEX using crystallographic COX structures from the Protein Data Bank. Docking poses were analyzed in Chimera, and selected complexes were refined through short MD simulations. Pre-formed heparin–diclofenac assemblies exhibited markedly enhanced docking scores toward both COX isoforms compared with single ligands. Binding orientation strongly influenced affinity: for COX-1, the heparin–diclofenac configuration yielded the most favorable interaction, whereas for COX-2 the diclofenac–heparin configuration was preferred. Both assemblies adopted binding modes distinct from free diclofenac, suggesting cooperative electrostatic and hydrophobic contacts at the enzyme surface. Supramolecular complexation also altered calculated logP values relative to the individual compounds. MD simulations supported the relative stability of the top-ranked complex–COX assemblies. These findings indicate that heparin–diclofenac assemblies may enhance and reorganize predicted COX interactions in a configuration-dependent manner and illustrate the utility of dual-drug docking for modeling potential synergistic effects. Such insights may inform the design of localized or topical formulations, potentially incorporating non-anticoagulant heparin derivatives, to achieve effective COX inhibition with reduced systemic exposure. However, the results rely on simplified heparin fragments, legacy docking tools, and short MD simulations, and should therefore be interpreted qualitatively. Experimental studies will be essential to confirm whether such supramolecular assemblies form under physiological conditions and whether they influence COX inhibition in vivo. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

40 pages, 2992 KB  
Review
Advances in Mesoporous Silica and Hybrid Nanoparticles for Drug Delivery: Synthesis, Functionalization, and Biomedical Applications
by Ahmad Almatroudi
Pharmaceutics 2025, 17(12), 1602; https://doi.org/10.3390/pharmaceutics17121602 - 12 Dec 2025
Viewed by 210
Abstract
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, [...] Read more.
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, therefore, MSNs are powerful platforms for the targeted and controlled delivery of drugs and theragnostic agents. Over the past ten years and within the 2021–2025 period, the advancement of MSN design has led to the creation of hybrid nanostructures into polymers, lipids, metals, and biomolecules that have yielded multifunctional carriers with enhanced stability, responsiveness, and biological activities. The current review provides a review of the synthesis methods, surface functionalization techniques, and physicochemical characterization techniques that define the next-generation MSN-based delivery systems. The particular focus is put on stimuli-responsive systems, such as redox, pH, enzyme-activated, and light-activated systems, that enable delivering drugs in a controlled and localized manner. We further provide a summary of the biomedical use of MSNs and their hybrids such as in cancer chemotherapy, gene and nucleic acid delivery, antimicrobial and vaccine delivery, and central nervous system targeting, supported by recent in vivo and in vitro studies. Important evaluations of biocompatibility, immunogenicity, degradation, and biodistribution in vivo are also provided with a focus on safety in addition to the regulatory impediments to clinical translation. The review concludes by saying that there are still limitations such as large-scale reproducibility, long-term toxicity, and standardization by the regulators, and that directions are being taken in the future in the fields of smart programmable nanocarriers, green synthesis, and sustainable manufacture. Overall, mesoporous silica and hybrid nanoparticles represent a breakthrough technology in the nanomedicine sector with potentials that are unrivaled in relation to targeted, controlled, and personalized therapeutic interventions. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

30 pages, 2355 KB  
Review
Postbiotics: Multifunctional Microbial Products Transforming Animal Health and Performance
by Sahdeo Prasad, Bhaumik Patel, Prafulla Kumar and Rajiv Lall
Vet. Sci. 2025, 12(12), 1191; https://doi.org/10.3390/vetsci12121191 - 12 Dec 2025
Viewed by 174
Abstract
Postbiotics, which are preparations of inanimate microorganisms and their components, have emerged as a promising functional ingredient in animal health and nutrition. Postbiotics are primarily composed of microbial cell fractions, metabolites, enzymes, vitamins, polysaccharides, and short-chain fatty acids. Unlike probiotics, postbiotics do not [...] Read more.
Postbiotics, which are preparations of inanimate microorganisms and their components, have emerged as a promising functional ingredient in animal health and nutrition. Postbiotics are primarily composed of microbial cell fractions, metabolites, enzymes, vitamins, polysaccharides, and short-chain fatty acids. Unlike probiotics, postbiotics do not contain live microorganisms, which strengthens their greater stability and safety in feed/food formulations. Postbiotics offer several beneficial effects, including antioxidant, anti-inflammatory, immune-modulatory, and antimicrobial actions. They enhance antioxidant enzymes, neutralize reactive oxygen species, and inhibit lipid peroxidation, thereby protecting tissues from oxidative damage. Postbiotics also inhibit pro-inflammatory molecules like TNF-α and IL-6, while enhancing the anti-inflammatory cytokine IL-10, promoting the maturation and function of immune cells, and increasing secretory IgA production. They suppress a variety of pathogenic bacteria, including Escherichia coli, Salmonella, Staphylococcus, Campylobacter, etc., both in vitro and in vivo. Moreover, they increase beneficial gut bacteria and improve the digestion and integrity of the intestine. This article outlines the beneficial effects of postbiotics in animals including poultry, swine, canine, feline, horses, and ruminant animals, either as feed/food or as a supplement. The integration of postbiotics into animal feed improves growth performance, feed conversion ratios, and disease resistance in animals. Thus, the multifunctional benefits of postbiotics make them a valuable tool for healthy companion animals and sustainable livestock production, supporting both animal welfare and productivity without the drawbacks associated with antibiotic growth promoters. Full article
Show Figures

Graphical abstract

15 pages, 4045 KB  
Article
Design of Artificial Peptide Against HIV-1 Based on the Heptad-Repeat Rules and Membrane-Anchor Strategies
by Jiali Zhao, Yan Zhao, Xiao Qi, Xiaojie Lv, Yanbai Tang, Wei Zhang, Qingge Dai, Jiaqi Xu, Dongmin Zhao, Qilu Yan, Guodong Liang and Jianping Chen
Pharmaceuticals 2025, 18(12), 1881; https://doi.org/10.3390/ph18121881 - 12 Dec 2025
Viewed by 188
Abstract
Objective: The six-helix bundle (6-HB) is critical for HIV-1 membrane fusion. To disrupt this process, peptide inhibitors have been meticulously designed to target interactions within the 6-HB regions, thereby blocking membrane fusion and exerting inhibitory effects. Current peptide inhibitors like Enfuvirtide suffer from [...] Read more.
Objective: The six-helix bundle (6-HB) is critical for HIV-1 membrane fusion. To disrupt this process, peptide inhibitors have been meticulously designed to target interactions within the 6-HB regions, thereby blocking membrane fusion and exerting inhibitory effects. Current peptide inhibitors like Enfuvirtide suffer from drug resistance and short in vivo half-life. This study aims to design novel anti-HIV-1 peptides by integrating heptad-repeat rules and membrane-anchor strategies. Methods: Artificial peptides were designed using HR rules from the HIV-1 gp41 6-HB motif and membrane-anchor modifications. Results: EK35S-Palm has emerged as a highly promising candidate for HIV-1 inhibition, exhibiting robust binding affinity to the target and effectively impeding the 6-HB spontaneous formation. Discussion: HR-based design avoids viral sequence homology, and membrane anchoring enhances local agent concentration, improving pharmacokinetics. The HR binding and membrane stabilization of EK35S-Palm provide synergistic inhibition. Conclusions: Integrating HR structural design with membrane-anchor strategies yields potent HIV-1 fusion inhibitors. EK35S-Palm demonstrates superior efficacy and stability over current therapies. These approaches hold great potential for overcoming the current therapy limitations and advancing the more effective and durable HIV-1 fusion inhibitors. Full article
Show Figures

Graphical abstract

19 pages, 11898 KB  
Article
NSUN2 Negatively Regulates TP53 mRNA Stability to Promote the Malignant Progression of Nasopharyngeal Carcinoma
by Lemei Zheng, Jianxia Wei, Xiaolong Li, Mengna Li, Changning Xue, Shipeng Chen, Qingqing Wei, Songqing Fan, Wei Xiong, Ming Zhou and Hongyu Deng
Cancers 2025, 17(24), 3950; https://doi.org/10.3390/cancers17243950 - 10 Dec 2025
Viewed by 277
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, often diagnosed at advanced stages. The 5-methylcytosine (m5C) RNA modification plays a crucial role in tumorigenesis, influencing cell proliferation, differentiation, metabolism, invasion, metastasis, and immune evasion. NSUN2, a key m5C methyltransferase, has been [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, often diagnosed at advanced stages. The 5-methylcytosine (m5C) RNA modification plays a crucial role in tumorigenesis, influencing cell proliferation, differentiation, metabolism, invasion, metastasis, and immune evasion. NSUN2, a key m5C methyltransferase, has been implicated in various cancers, but its role in NPC remains unclear. Methods: NSUN2 expression in NPC tissues was explored by bioinformatics analysis, qPCR, Western blot, and immunohistochemistry. Functional roles of NSUN2 in proliferation, apoptosis, migration, and invasion were evaluated in NPC cell lines using CCK-8, colony formation, flow cytometry, wound-healing and transwell assays. The mechanism by which NSUN2 regulates TP53 was investigated by m5C-RIP, RNA stability assays, dual-luciferase reporter assay and rescue experiments. The NSUN2/TP53 axis was further validated in vivo through xenograft mouse models. Results: NSUN2 is significantly overexpressed in NPC tissues, and its high expression correlates with poor prognosis. Functional assays reveal that NSUN2 promotes NPC cell proliferation, migration, and invasion and inhibits apoptosis. Mechanistically, NSUN2 negatively regulates TP53 expression by increasing m5C modification at the CDS 1228 site, thereby decreasing TP53 mRNA stability and expression. Knockdown of TP53 counteracts the inhibitory effects of NSUN2 knockdown on proliferation, migration, and invasion in NPC cells. Additionally, in vivo experiments revealed that NSUN2 knockdown suppresses tumor growth in xenograft models, while TP53 knockdown reverses the growth-inhibitory effect of NSUN2 knockdown on xenograft tumors. Conclusions: Our findings indicate that NSUN2 partially negatively regulates TP53 mRNA stability, promoting malignant progression and acting as an oncogene in NPC by downregulating TP53 through m5C modification. Thus, targeting the NSUN2/TP53 axis could be a potential therapeutic strategy for NPC. Full article
(This article belongs to the Special Issue Cancer Stem Cells: The Origin of Tumor Relapse and Metastasis)
Show Figures

Figure 1

19 pages, 4836 KB  
Article
Robust Functionality and Regulation of Selectively Expressed RNA as AAV Vectors and In Vitro Transcribed Molecules
by Frederik Rastfeld, Nils Hersch, Georg Dreissen, Hajaani Manoharan, Laura Wagner, Lukas Lövenich, Elke Barczak, Hildegard Büning, Rudolf Merkel and Bernd Hoffmann
Pharmaceutics 2025, 17(12), 1595; https://doi.org/10.3390/pharmaceutics17121595 - 10 Dec 2025
Viewed by 291
Abstract
Background/Objectives: Selectively expressible RNA (seRNA) molecules represent a promising new platform for the induction of cell type-specific protein expression. Based on the sense–antisense interaction of the seRNA antisense domain with target cell-specific RNA molecules, the partial degradation of the seRNA molecule induces the [...] Read more.
Background/Objectives: Selectively expressible RNA (seRNA) molecules represent a promising new platform for the induction of cell type-specific protein expression. Based on the sense–antisense interaction of the seRNA antisense domain with target cell-specific RNA molecules, the partial degradation of the seRNA molecule induces the activation of an internal ribosomal entry site to initiate translation. The selective expression of seRNA encoded proteins exclusively in target cells works both in vitro and in vivo but is associated with a lower expression intensity compared with classical mRNAs. Furthermore, seRNAs have so far been transfected into cells by plasmid-encoded seRNA expression systems, which is limiting their broad medical applicability. Here, we focus on the characterization of plasmid-based seRNA uptake and activation as well as on options to transfer the seRNA technology to additional vector systems to increase target cell-specific effector expression. Methods: seRNA constructs were generated as expression plasmids, AAV, DNA minicircles and IVT-RNA and delivered into different eukaryotic cell lines by transfection/transduction. Analyses were performed using fluorescence microscopy and, for quantitative analyses, flow cytometry. RNA stability and expression analyses were performed using qRT-PCR. Results: We show that seRNA-based plasmid systems are efficiently transfected into cells but that reduced RNA steady-state levels are present compared with control expression plasmids. This effect is most likely based on reduced transcription efficiency rather than seRNA stability. Furthermore, seRNA transcription from viral vectors or circular DNA significantly increased the effector expression of seRNAs and enabled linear expression regulation while maintaining target cell-specific activation and inactivation in non-target cells. Optimal results were achieved by adapting the technology to in vitro transcribed seRNA. Conclusions: Our data show that seRNA technology develops its full functionality regardless of the type of transfer vector used. Furthermore, expression strength can be regulated within a wide range while maintaining consistent functionality which will enable broad applicability in medicine in the future. Full article
Show Figures

Graphical abstract

Back to TopTop