Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = in vitro osteogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 427
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

18 pages, 46227 KiB  
Article
Hydroxyapatite Scaffold and Bioactive Factor Combination as a Tool to Improve Osteogenesis, In Vitro and In Vivo Experiments Using Phage Display Technology
by Debora Lo Furno, Ivana R. Romano, Vincenzo Russo, Maria Giovanna Rizzo, Giuliana Mannino, Giovanna Calabrese, Rosario Giuffrida, Simona D’Aprile, Lucia Salvatorelli, Gaetano Magro, Riccardo Bendoni, Laura Dolcini, Agata Zappalà, Salvatore P. P. Guglielmino, Sabrina Conoci and Rosalba Parenti
Int. J. Mol. Sci. 2025, 26(15), 7040; https://doi.org/10.3390/ijms26157040 - 22 Jul 2025
Viewed by 226
Abstract
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed [...] Read more.
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed peptide (SC1) selected via biopanning for its similarity to bone matrix proteins. The peptide, identified through sequence alignment as a mimotope of osteonectin (SPARC), was used to functionalize scaffolds. Results from SC1 were gathered at different time points (14, 28 and 46 days) and compared with those from nonfunctionalized hydroxyapatite (HA) scaffolds. In vitro experiments, by seeding human adipose-derived stem cells (hASCs), indicated satisfactory biocompatibility for both types of scaffolds. Histochemical observations showed that SC1, better than HA scaffolds, was able to improve hASC osteogenic differentiation, as evaluated through Alizarin Red staining (showing on average a darker staining of 100%). An increase was also observed, especially at early stages (14 days), for osterix (up to 60% increase) and osteonectin immunoexpression (up to 50% increase). In in vivo experiments, cell-free scaffolds of both types were subcutaneously implanted into the backs of mice and analyzed after 2, 4, 8 and 16 weeks. Also, in this case, SC1 more effectively promoted the osteogenic differentiation of infiltrated resident cells. In particular, increased immunoexpression of osterix and osteonectin (+30% and 35%, respectively) was found already at 2 weeks. It can be concluded that SC1 scaffolds may represent a valuable tool to address critical-sized bone defects. Full article
(This article belongs to the Special Issue Biomedical Applications of Mesenchymal Stem Cells)
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 479
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 602
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

13 pages, 3325 KiB  
Article
microRNA-200c Mitigates Pulpitis and Promotes Dentin Regeneration
by Tadkamol Krongbaramee, Chawin Upara, Matthew T. Remy, Long Jiang, Jue Hu, Kittiphoj Tikkhanarak, Bruno Cavalcanti, Hongli Sun, Fabricio B. Teixeira and Liu Hong
Int. J. Mol. Sci. 2025, 26(14), 6734; https://doi.org/10.3390/ijms26146734 - 14 Jul 2025
Viewed by 266
Abstract
MicroRNA (miR)-200c enhances osteogenesis, modulates inflammation, and participates in dentin development. This study was to investigate the beneficial potential of miR-200c in vital pulp therapy (VPT) by mitigating pulpitis and promoting dentin regeneration. We explored the miR-200c variations in inflamed pulp tissues from [...] Read more.
MicroRNA (miR)-200c enhances osteogenesis, modulates inflammation, and participates in dentin development. This study was to investigate the beneficial potential of miR-200c in vital pulp therapy (VPT) by mitigating pulpitis and promoting dentin regeneration. We explored the miR-200c variations in inflamed pulp tissues from patients with symptomatic irreversible pulpitis and primary human dental pulp-derived cells (DPCs) challenged with P.g. lipopolysaccharide (Pg-LPS). We further assessed the functions of overexpression of miR-200c on odontogenic differentiation, pulpal inflammation, and dentin regeneration in vitro and in vivo. Our findings revealed a noteworthy downregulation of miR-200c expression in inflamed pulp tissues and primary human DPCs. Through the overexpression of miR-200c via transfecting plasmid DNA (pDNA), we observed a substantial downregulation of proinflammatory cytokines interleukin (IL)-6 and IL-8 in human DPCs. Furthermore, this overexpression significantly enhanced the transcript and protein levels of odontogenic differentiation markers, including Runt-related transcription factor (Runx)2, osteocalcin (OCN), dentin matrix protein (DMP)1, and dentin sialophosphoprotein (DSPP). In a rat model of pulpitis induced by Pg-LPS, we demonstrated notable benefits by local application of pDNA encoding miR-200c delivered by CaCO3-based nanoparticles to reduce pulpal inflammation and promote dentin formation. These results underscore the significant impact of locally applied miR-200c in modulating pulpal inflammation and facilitating dentin repair, showcasing its ability to improve VPT outcomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 2396 KiB  
Review
Co-Culture Approaches in Cartilage and Bone Tissue Regeneration
by Iwona Deszcz and Julia Bar
Int. J. Mol. Sci. 2025, 26(12), 5711; https://doi.org/10.3390/ijms26125711 - 14 Jun 2025
Viewed by 663
Abstract
Cartilage and bone defects as well as osteoarthritis are prevalent worldwide, affecting individuals across all age groups, from young, active populations to older adults. The standard protocol in cartilage regeneration involves knee replacement surgery through the implantation of an endoprosthesis. Current clinical protocols [...] Read more.
Cartilage and bone defects as well as osteoarthritis are prevalent worldwide, affecting individuals across all age groups, from young, active populations to older adults. The standard protocol in cartilage regeneration involves knee replacement surgery through the implantation of an endoprosthesis. Current clinical protocols involving cell-based therapies are associated with limitations, including the lack of functional cartilage-like tissue and dedifferentiation of chondrocyte, particularly during monoculture. Similarly, in bone regeneration, the “gold standard” is the use of bone auto- or allografts, which are associated with immunological rejection, inadequate vascularization, and limited osteogenesis. To overcome these limitations, various co-culture techniques have been introduced as promising strategies for cartilage and bone tissue regeneration. These systems aim to mimic native microenvironments by promoting interactions between chondrocytes and mesenchymal stromal cells (MSCs) in cartilage repair and between osteogenic and angiogenic cells in bone regeneration. This paper introduces different co-culture systems focusing on in vitro crosstalk between MSCs derived from various sources and other somatic cell populations in cartilage and bone regeneration. Full article
(This article belongs to the Special Issue Recent Advances in Adult Stem Cell Research)
Show Figures

Figure 1

18 pages, 2287 KiB  
Article
The Mechanism of Simvastatin-Mediated M1 Macrophage Polarization Contributing to Osteogenesis and Angiogenesis
by Siyu Zhu, Yunmeng Tong, Jiaqian Huang, Yuzhu He, Wenqi Fu, Yaran Zang and Huiying Liu
Biomedicines 2025, 13(6), 1454; https://doi.org/10.3390/biomedicines13061454 - 12 Jun 2025
Viewed by 587
Abstract
Background: The immune response is essential for bone regeneration, and macrophages in the immune microenvironment contribute to bone metabolism and angiogenesis. Emerging evidence demonstrates that simvastatin is a promising candidate for bone repair and promotes bone formation both in vitro and in vivo. [...] Read more.
Background: The immune response is essential for bone regeneration, and macrophages in the immune microenvironment contribute to bone metabolism and angiogenesis. Emerging evidence demonstrates that simvastatin is a promising candidate for bone repair and promotes bone formation both in vitro and in vivo. However, the effect of simvastatin on macrophages and the following outcomes are still unclear. Objectives: This study aimed to investigate the potential immunomodulatory effect of simvastatin on M1 macrophages and its subsequent impact on osteogenesis and angiogenesis. Methods: Cell viability was assessed by CCK-8. Osteogenic and angiogenic markers were evaluated by RT-qPCR, Western blotting, and immunofluorescence. M1 macrophage phenotype was analyzed by flow cytometry. Osteogenesis was examined by histological staining, and angiogenic capacity was assessed using functional assays. Results: The present study found that simvastatin decreased M1 macrophage markers (CD86) and stimulated M1 macrophages to express high levels of pro-regenerative cytokines (BMP-2 and VEGF). In addition, simvastatin promoted osteogenic differentiation in MC3T3-E1 cells and angiogenic gene expression in HUVECs. Importantly, simvastatin enhanced the osteogenic capacity of MC3T3-E1 and the angiogenic potential of HUVECs by inhibiting M1 macrophage polarization in vitro. Conclusions: We demonstrated that simvastatin could confer favorable bone immunomodulatory properties and influence the crosstalk behavior between immune cells and osteoblasts and vascular endothelial cells to promote bone healing. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Graphical abstract

13 pages, 2740 KiB  
Article
PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation
by Yang Yi, Chengwei Wu, Xuzhao He, Wenjian Weng, Weiming Lin and Kui Cheng
Coatings 2025, 15(6), 703; https://doi.org/10.3390/coatings15060703 - 11 Jun 2025
Viewed by 353
Abstract
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, [...] Read more.
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, followed by melt-recrystallization to achieve high β-phase crystallinity. The substrates were then subjected to corona poling, a process involving high-voltage corona discharge to electrically polarize and align the molecular dipoles. Structural and electrical characterization revealed tunable microdomain surface potentials and piezoelectric coefficients, correlating with enhanced hydrophilicity. Notably, microdomain potential—produced by controlled polarization—was shown to directly regulate cellular responses. In vitro studies demonstrated that a corona-poled PVTF NP coating significantly improved bone marrow mesenchymal stem cell (BMSC) proliferation and early osteogenic differentiation. This work establishes a surface electropatterning approach and highlights the critical role of electrical heterogeneity in bone regeneration, offering a novel strategy for bioactive biomaterial design. Full article
Show Figures

Figure 1

20 pages, 8532 KiB  
Article
Synergistic Effect of Stauntonia hexaphylla (Thunb.) Decne Fruit and Leaf on RAW 264.7 Osteoclast and MC3T3-E1 Osteoblast Differentiation
by Reshmi Akter, Muhammad Awais, Md Niaj Morshed, Jong Hak Kim, Byoung Man Kong, Dong Wook Lee, Sung Keun Choi, Chang Soon Lee, Jong Chan Ahn and Deok Chun Yang
Biomolecules 2025, 15(6), 844; https://doi.org/10.3390/biom15060844 - 10 Jun 2025
Viewed by 874
Abstract
Stauntonia hexaphylla (Thunb.) Decne (SH) is known for its anti-inflammatory, analgesic, antioxidant, and anti-osteoporotic properties. This study investigated the composition of SH leaves and fruits and assessed their individual and combined effects in an in vitro osteoporosis model. Extracts with varying leaf-to-fruit ratios [...] Read more.
Stauntonia hexaphylla (Thunb.) Decne (SH) is known for its anti-inflammatory, analgesic, antioxidant, and anti-osteoporotic properties. This study investigated the composition of SH leaves and fruits and assessed their individual and combined effects in an in vitro osteoporosis model. Extracts with varying leaf-to-fruit ratios (SH82, SH55, SH28) were evaluated in MC3T3-E1 and RAW264.7 cells to examine osteogenesis and bone resorption biomarkers. SH leaves were rich in chlorogenic acids (CGAs) and flavonoids, while fruits contained phenolic acids with minimal flavonoids. Leaf extracts exhibited superior antioxidant activity and ROS suppression. Both leaf and fruit extracts enhanced ALP activity, calcium deposition, and collagen formation in MC3T3-E1 cells, with leaf extracts demonstrating greater efficacy. Additionally, osteoblastogenesis-related genes were upregulated, while TRAP activity and osteoclast-related gene expression were significantly inhibited. The combined extract exerted a synergistic effect, with SH28 showing the most pronounced osteogenic enhancement and TRAP inhibition. Key components, including neo-CGA, CGA, rutin, and luteolin-7-O-glucoside, positively influenced ALP and TRAP activities. These findings highlight the potential of SH, particularly at a high leaf-to-fruit ratio, as a promising natural agent for osteoporosis prevention. Full article
Show Figures

Graphical abstract

20 pages, 4491 KiB  
Article
Hydroxyapatite-Complexed Type I Collagen and Fibrinogen-Modified Porous Titanium Alloy Scaffold: Promoting Osteogenesis and Soft Tissue Integration
by Wenhao Tao, Gang Tian, Xu Han, Jianyong Gao, Yingchun Zhu and Xiaogang Xu
Micromachines 2025, 16(6), 692; https://doi.org/10.3390/mi16060692 - 9 Jun 2025
Viewed by 574
Abstract
Titanium and its alloy scaffolds are widely utilized in clinical settings; however, their biologically inert surfaces and inherent mechanical characteristics impede osteogenesis and soft tissue integration, thereby limiting their application. Selective laser melting (SLM) was employed to fabricate scaffolds with matched cortical bone [...] Read more.
Titanium and its alloy scaffolds are widely utilized in clinical settings; however, their biologically inert surfaces and inherent mechanical characteristics impede osteogenesis and soft tissue integration, thereby limiting their application. Selective laser melting (SLM) was employed to fabricate scaffolds with matched cortical bone mechanical properties, achieving a composite coating of hydroxyapatite complexed with trace elements of silicon, strontium, and fluoride (mHA), along with type I collagen (Col I) and fibrinogen (Fg), thus activating the scaffold surface. Initially, we utilized the excellent adhesive properties of dopamine to co-deposit mHA and polydopamine (PDA) onto porous Ti-6Al-4V scaffolds, which was followed by immobilization of type I collagen and fibrinogen onto PDA. This bioinorganic/bioprotein composite coating, formed via PDA bonding, exhibits excellent stability. Moreover, in vitro cell experiments demonstrate excellent biocompatibility of the porous Ti-6Al-4V scaffold with composite bioactive coatings on its surface. Preosteoblasts (MC3T3-E1) and human keratinocytes (HaCaT) exhibit enhanced adhesion and proliferation activity, and the osteogenic performance of the scaffold is significantly improved. The PDA-mHA-Col I-Fg composite-coated porous titanium alloy scaffold holds significant promise in enhancing the efficacy of percutaneous bone transplantation and requires further investigation. Full article
(This article belongs to the Section B2: Biofabrication and Tissue Engineering)
Show Figures

Figure 1

27 pages, 1354 KiB  
Review
Biomedical Applications of Functionalized Composites Based on Metal–Organic Frameworks in Bone Diseases
by Chenxi Yun, Zhe Yuan, Rim El Haddaoui-Drissi, Ruitong Ni, Yunyun Xiao, Zhenhui Qi, Jie Shang and Xiao Lin
Pharmaceutics 2025, 17(6), 757; https://doi.org/10.3390/pharmaceutics17060757 - 8 Jun 2025
Viewed by 1041
Abstract
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative [...] Read more.
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative medicine. Although bone grafts are the gold standard for treating bone defects, factors such as donor sources and immune responses limit their application. Functionalized nanomaterials have become an effective means of treating bone diseases due to their good biocompatibility and osteoinductivity, anti-inflammatory, and antibacterial properties. Metal–organic frameworks (MOFs) are porous coordination polymers composed of metal ions and organic ligands, featuring unique physical properties, including a high surface area–volume ratio and porosity. In regenerative medicine, MOFs function as the functions of drug carriers, metal ion donors, nanozymes, and photosensitizers. When combined with other functional materials, they regulate cellular reactive oxygen species, macrophage phenotypic transformation, bone resorption, osteogenesis, and mineralization, providing a new paradigm for bone tissue engineering. This study reviews the classification of functionalized MOF composites in biomedicine and the application of their synthesis techniques in bone diseases. The unique in vivo and in vitro applications of MOFs in bone diseases, including osteoarthritis, osteoporosis, bone tumors, osteomyelitis, and periodontitis, are explored. Their properties include excellent drug loading and sustained release abilities, high antibacterial activity, and bone induction abilities. This review enables readers to better understand the cutting-edge progress of MOFs in bone regeneration applications, which is crucial for the design of and functional research on MOF-related nanomaterials. Full article
Show Figures

Graphical abstract

15 pages, 2152 KiB  
Article
Injectable and Assembled Calcium Sulfate/Magnesium Silicate 3D Scaffold Promotes Bone Repair by In Situ Osteoinduction
by Wei Zhu, Tianhao Zhao, Han Wang, Guangli Liu, Yixin Bian, Qi Wang, Wei Xia, Siyi Cai and Xisheng Weng
Bioengineering 2025, 12(6), 599; https://doi.org/10.3390/bioengineering12060599 - 31 May 2025
Viewed by 667
Abstract
(1) Background: Osteonecrosis of the femoral head (ONFH), caused by insufficient blood supply, leads to bone tissue death. Current treatments lack effective bone regeneration materials to reverse disease progression. This study introduces an injectable and self-setting 3D porous bioceramic scaffold (Mg@Ca), combining MgO [...] Read more.
(1) Background: Osteonecrosis of the femoral head (ONFH), caused by insufficient blood supply, leads to bone tissue death. Current treatments lack effective bone regeneration materials to reverse disease progression. This study introduces an injectable and self-setting 3D porous bioceramic scaffold (Mg@Ca), combining MgO + SiO2 mixtures with α-hemihydrate calcium sulfate, designed to promote bone repair through in situ pore formation and osteoinduction. (2) Methods: In vitro experiments evaluated human bone marrow mesenchymal stem cell (h-BMSC) proliferation, differentiation, and osteogenic marker expression in Mg@Ca medium. Transcriptome sequencing identified bone development-related pathways. In vivo efficacy was assessed in a rabbit model of ONFH to evaluate bone repair. (3) Results: The Mg@Ca scaffold demonstrated excellent biocompatibility and supported h-BMSC proliferation and differentiation, with significant up-regulation of COL1A1 and BGLAP. Transcriptome analysis revealed activation of the PI3K-Akt signaling pathway, critical for osteogenesis. In vivo results confirmed enhanced trabecular density and bone volume compared to controls, indicating effective bone repair and regeneration. (4) Conclusions: The Mg@Ca scaffold offers a promising therapeutic approach for ONFH, providing a minimally invasive solution for bone defect repair while stimulating natural bone regeneration. Its injectable and self-setting properties ensure precise filling of bone defects, making it suitable for clinical applications. Full article
(This article belongs to the Special Issue Orthopaedic Bioengineering and Tissue Regeneration)
Show Figures

Figure 1

21 pages, 15328 KiB  
Article
An Electrospun DFO-Loaded Microsphere/SAIB System Orchestrates Angiogenesis–Osteogenesis Coupling via HIF-1α Activation for Vascularized Bone Regeneration
by Xujia Shan, Xiaoyan Yuan and Xiaohong Wu
Polymers 2025, 17(11), 1538; https://doi.org/10.3390/polym17111538 - 31 May 2025
Viewed by 589
Abstract
This study developed electrosprayed deferoxamine (DFO)-loaded poly(lactic-co-glycolic acid) microspheres (DFO-MS) combined with a sucrose acetate isobutyrate (SAIB) depot (DFO-MS@SAIB) for bone-defect repair, targeting the coordinated regulation of angiogenesis and osteogenesis in vascularized bone regeneration—where new blood vessels support functional bone integration. In vitro/in [...] Read more.
This study developed electrosprayed deferoxamine (DFO)-loaded poly(lactic-co-glycolic acid) microspheres (DFO-MS) combined with a sucrose acetate isobutyrate (SAIB) depot (DFO-MS@SAIB) for bone-defect repair, targeting the coordinated regulation of angiogenesis and osteogenesis in vascularized bone regeneration—where new blood vessels support functional bone integration. In vitro/in vivo evaluations confirmed its dual pro-angiogenic and pro-osteogenic effects via HIF-1α pathway activation. Background/Objectives: Emerging evidence underscores the indispensability of vascularization in bone-defect repair, a clinical challenge exacerbated by limited intrinsic healing capacity. While autologous grafts and growth-factor-based strategies remain mainstream, their utility is constrained by donor-site morbidity, transient bioactivity, and poor spatiotemporal control over angiogenic–osteogenic coupling. Here, we leveraged DFO, a hypoxia-mimetic HIF-1α stabilizer with angiogenic potential, to engineer an injectable DFO-MS@SAIB depot. This system was designed to achieve sustained DFO release, thereby synchronizing vascular network formation with mineralized tissue regeneration in critical-sized defects. Methods: DFO-MS were fabricated via electrospraying and combined with SAIB (DFO-MS@S) to form an injectable sustained-release depot. Their physicochemical properties, including morphology, encapsulation efficiency, degradation, release kinetics, and rheology, were systematically characterized. In vitro, the angiogenic capacity of HUVECs co-cultured with DFO-MS was evaluated; conditioned HUVECs were then co-cultured with BMSCs to assess the BMSCs’ cytocompatibility and osteogenic differentiation. In vivo bone regeneration in a rat calvarial defect model was evaluated using micro-CT, histology, and immunohistochemistry. Results: The DFO-MS@SAIB system achieved sustained DFO release, stimulating HUVEC proliferation, migration, and tubulogenesis. In a Transwell co-culture model, pretreated HUVECs promoted BMSC migration and osteogenic differentiation via paracrine signaling involving endothelial-secreted factors (e.g., VEGF). HIF-1α pathway activation upregulated osteogenic markers (ALP, Col1a1, OCN), while in vivo experiments demonstrated enhanced vascularized bone regeneration, with significantly increased bone volume/total volume (BV/TV) and new bone area compared with controls. Conclusion: The DFO-MS@SAIB system promotes bone regeneration via sustained deferoxamine release and HIF-1α-mediated signaling. Its angiogenesis–osteogenesis coupling effect facilitates vascularized bone regeneration, thereby offering a translatable strategy for critical-sized bone-defect repair. Full article
(This article belongs to the Topic Advances in Controlled Release and Targeting of Drugs)
Show Figures

Figure 1

14 pages, 2678 KiB  
Article
Doping of Hollow Urchin-like MnO2 Nanoparticles in Beta-Tricalcium Phosphate Scaffold Promotes Stem Cell Osteogenic Differentiation
by Enze Qian, Ahmed Eltawila and Yunqing Kang
Int. J. Mol. Sci. 2025, 26(11), 5092; https://doi.org/10.3390/ijms26115092 - 26 May 2025
Viewed by 372
Abstract
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. [...] Read more.
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. A template-casting method was used to prepare the porous H-MnO2/β-TCP scaffolds. As a control, solid manganese dioxide (S-MnO2) nanoparticles were also added into β-TCP scaffolds. Human bone mesenchymal stem cells (hBMSC) were seeded in the porous scaffolds and characterized through cell viability assay and alkaline phosphatase (ALP) assay. Results from in vitro protein loading and releasing experiments showed that H-MnO2 can load significantly higher proteins and release more proteins compared to S-MnO2 nanoparticles. When they were doped into β-TCP, MnO2 nanoparticles did not significantly change the surface wettability and mechanical properties of porous β-TCP scaffolds. In vitro cell viability results showed that MnO2 nanoparticles promoted cell proliferation in a low dose, but inhibited cell growth when the added concentration went beyond 0.5%. At a range of lower than 0.5%, H-MnO2 doped β-TCP scaffolds promoted the early osteogenesis of hBMSCs. These results suggested that H-MnO2 in the porous β-TCP scaffold has promising potential to stimulate osteogenesis. More studies would be performed to demonstrate the other functions of urchin-like H-MnO2 nanoparticles in the porous β-TCP. Full article
Show Figures

Figure 1

Back to TopTop