Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = in vitro half-life

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1215 KiB  
Article
Daptomycin-Loaded Nano-Drug Delivery System Based on Biomimetic Cell Membrane Coating Technology: Preparation, Characterization, and Evaluation
by Yuqin Zhou, Shihan Du, Kailun He, Beilei Zhou, Zixuan Chen, Cheng Zheng, Minghao Zhou, Jue Li, Yue Chen, Hu Zhang, Hong Yuan, Yinghong Li, Yan Chen and Fuqiang Hu
Pharmaceuticals 2025, 18(8), 1169; https://doi.org/10.3390/ph18081169 - 6 Aug 2025
Abstract
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short [...] Read more.
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short half-life, toxic side effects, and increasingly severe drug resistance issues. This study aimed to develop a biomimetic nano-drug delivery system to enhance targeting ability, prolong blood circulation, and mitigate resistance of DAP. Methods: DAP-loaded chitosan nanocomposite particles (DAP-CS) were prepared by electrostatic self-assembly. Macrophage membrane vesicles (MM) were prepared by fusion of M1-type macrophage membranes with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). A biomimetic nano-drug delivery system (DAP-CS@MM) was constructed by the coextrusion process of DAP-CS and MM. Key physicochemical parameters, including particle diameter, zeta potential, encapsulation efficiency, and membrane protein retention, were systematically characterized. In vitro immune escape studies and in vivo zebrafish infection models were employed to assess the ability of immune escape and antibacterial performance, respectively. Results: The particle size of DAP-CS@MM was 110.9 ± 13.72 nm, with zeta potential +11.90 ± 1.90 mV, and encapsulation efficiency 70.43 ± 1.29%. DAP-CS@MM retained macrophage membrane proteins, including functional TLR2 receptors. In vitro immune escape assays, DAP-CS@MM demonstrated significantly enhanced immune escape compared with DAP-CS (p < 0.05). In the zebrafish infection model, DAP-CS@MM showed superior antibacterial efficacy over both DAP and DAP-CS (p < 0.05). Conclusions: The DAP-CS@MM biomimetic nano-drug delivery system exhibits excellent immune evasion and antibacterial performance, offering a novel strategy to overcome the clinical limitations of DAP. Full article
(This article belongs to the Section Pharmaceutical Technology)
22 pages, 4856 KiB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 834
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

18 pages, 2562 KiB  
Article
Enhancing the Solubility and Oral Bioavailability of Trimethoprim Through PEG-PLGA Nanoparticles: A Comprehensive Evaluation of In Vitro and In Vivo Performance
by Yaxin Zhou, Guonian Dai, Jing Xu, Weibing Xu, Bing Li, Shulin Chen and Jiyu Zhang
Pharmaceutics 2025, 17(8), 957; https://doi.org/10.3390/pharmaceutics17080957 - 24 Jul 2025
Viewed by 283
Abstract
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life [...] Read more.
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life (t1/2), and low bioavailability. In this study, we proposed TMP loaded by PEG-PLGA polymer nanoparticles (NPs) to increase its efficacy. Methods: We synthesized and thoroughly characterized PEG-PLGA NPs loaded with TMP using an oil-in-water (O/W) emulsion solvent evaporation method, denoted as PEG-PLGA/TMP NPs. Drug loading capacity (LC) and encapsulation efficiency (EE) were quantified by ultra-performance liquid chromatography (UPLC). Comprehensive investigations were conducted on the stability of PEG-PLGA/TMP NPs, in vitro drug release profiles, and in vivo pharmacokinetics. Results: The optimized PEG-PLGA/TMP NPs displayed a high LC of 34.0 ± 1.6%, a particle size of 245 ± 40 nm, a polydispersity index (PDI) of 0.103 ± 0.019, a zeta potential of −23.8 ± 1.2 mV, and an EE of 88.2 ± 4.3%. The NPs remained stable at 4 °C for 30 days and under acidic conditions. In vitro release showed sustained biphasic kinetics and enhanced cumulative release, 86% at pH 6.8, aligning with first-order models. Pharmacokinetics in rats revealed a 2.82-fold bioavailability increase, prolonged half-life 2.47 ± 0.19 h versus 0.72 ± 0.08 h for free TMP, and extended MRT 3.10 ± 0.11 h versus 1.27 ± 0.11 h. Conclusions: PEG-PLGA NPs enhanced the solubility and oral bioavailability of TMP via high drug loading, stability, and sustained-release kinetics, validated by robust in vitro-in vivo correlation, offering a promising alternative for clinical antimicrobial therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

31 pages, 5930 KiB  
Article
A Novel Microencapsulated Bovine Recombinant Interferon Tau Formulation for Luteolysis Modulation in Cattle
by Emilio Lamazares, Aleikar Vásquez, Kelly Gancino, Felipe Sandoval, Javiera Yáñez-Torres, Miguel A. Gutierrez-Reinoso, Manuel García-Herreros, Paula Gädicke, Ignacio Cabezas, Florence Hugues, Thelvia I. Ramos, Frank Camacho, Karel Mena-Ulecia and Jorge R. Toledo
Biomolecules 2025, 15(7), 1009; https://doi.org/10.3390/biom15071009 - 14 Jul 2025
Viewed by 443
Abstract
Early embryonic loss is a major cause of reproductive inefficiency in cattle, primarily due to premature luteolysis. Interferon tau (IFN-τ), secreted by the trophoblast, plays a critical role in maternal recognition of pregnancy by maintaining corpus luteum function. However, its practical application has [...] Read more.
Early embryonic loss is a major cause of reproductive inefficiency in cattle, primarily due to premature luteolysis. Interferon tau (IFN-τ), secreted by the trophoblast, plays a critical role in maternal recognition of pregnancy by maintaining corpus luteum function. However, its practical application has been limited by its rapid degradation and short half-life in vivo. Here, we developed a novel formulation of recombinant bovine IFN-τ, combining chitosan-based microencapsulation with starch–chitosan hydrogel delivery, enabling sustained intrauterine release. This dual-delivery strategy offers a significant improvement over conventional IFN-τ administration methods that rely on repeated intrauterine infusions of soluble protein. The rbIFN-τ was expressed in Pichia pastoris, purified to 90.1% homogeneity, and structurally validated via homology modeling and molecular docking, confirming its interaction with type I interferon receptors. The encapsulated formulation retained antiviral activity, stimulated transcription of interferon-stimulated genes (PKR, OAS1, OAS2), and showed sustained release in vitro for up to 26 days. In vivo evaluation demonstrated safety and biological efficacy, with treated cattle showing inhibited luteolysis, sustained serum progesterone levels, and preserved corpus luteum integrity. This formulation represents a promising biotechnological approach to improve reproductive efficiency through a long-acting, species-specific IFN-τ delivery system. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

22 pages, 13140 KiB  
Article
Development and Characterization of Optimized Drug-Loaded Niosomes for Delivery of 5-FU and Irinotecan
by Kafilat O. Agbaje, Simeon K. Adesina and Amusa S. Adebayo
Pharmaceutics 2025, 17(7), 900; https://doi.org/10.3390/pharmaceutics17070900 - 11 Jul 2025
Viewed by 408
Abstract
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the [...] Read more.
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the synergism of 5-FU-IRT has provided incremental improvements in clinical outcomes, the short elimination half-life and off-target binding to healthy cells remain significant challenges. We postulated that nanoencapsulation of a combination of 5-FU and IRT in niosomes would prolong the drugs’ half-lives, while over-encapsulation lyophilized powder in Targit® oral capsules would passively the CRC microenvironment and avoid extensive systemic distribution. Methods: Ranges of formulation and process variables were input into design of experiment (DOE Fusion One) software, to generate screening experiments. Niosomes were prepared using the thin-film hydration method and characterized by size, the polydispersity index (PDI), morphology and intrastructure, and drug loading. Blank niosomes ranged in size from 215 nm to 257 nm. Results: After loading with the 5-FU-IRT combination, the niosomes averaged 251 ± 2.20 nm with a mean PDI of 0.293 ± 0.01. The surfactant-to-cholesterol ratio significantly influenced the niosome size and the PDI. The hydrophilic 5-FU exhibited superior loading compared to the lipophilic IRT molecules, which probably competed with other lipophilic niosome components in niosomes’ palisade layers. In vitro dissolution in biorelevant media showed delayed release until lower intestinal region (IRT) or colonic region (5-FU). Conclusions: Thus, co-nanoencapsulation of 5-FU/IRT in niosomes, lyophilization, and over-encapsulation of powder in colon-specific capsules could passively target the CRC cells in the colonic microenvironment. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

9 pages, 789 KiB  
Article
Pharmacokinetics of Molnupiravir in Cats with Naturally Occurring Feline Infectious Peritonitis
by Petra Černá, Luke Wittenburg, Jennifer Hawley, McKenna Willis, Britta Siegenthaler and Michael R. Lappin
Pathogens 2025, 14(7), 666; https://doi.org/10.3390/pathogens14070666 - 7 Jul 2025
Viewed by 692
Abstract
Antiviral drugs like EIDD-2801 (molnupiravir; MPV) have been successfully used in the treatment of feline infectious peritonitis (FIP). The previous study of the pharmacokinetics of MPV in healthy cats showed promise for its use and safety. The objective was to determine the pharmacokinetics [...] Read more.
Antiviral drugs like EIDD-2801 (molnupiravir; MPV) have been successfully used in the treatment of feline infectious peritonitis (FIP). The previous study of the pharmacokinetics of MPV in healthy cats showed promise for its use and safety. The objective was to determine the pharmacokinetics of molnupiravir in cats with naturally occurring FIP by measuring MPV and EIDD-193 (β-D-N4-hydroxycytidine; NHC) serum levels. Blood was collected from seven cats diagnosed with naturally occurring FIP treated at 1, 2, 4, 6 and 12 h post oral MPV administration and at 12 h post pill administration 7 days later. Serum concentrations of MPV and NHC were determined using a previously published high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) method. The mean dose of MPV was 15.44 mg/kg (SD ± 1.82). The mean peak serum concentration of MPV (Cmax) after a single PO dose of MPV was 38 ng/mL (SD ± 5). The mean peak serum concentration of NHC (Cmax) after a single PO dose of MVP was 1551 ng/mL (SD ± 720). the time to reach NHC Cmax (Tmax) was 2.6 h (SD ± 1.4), and the NHC elimination half-life was 1.6 h (SD ± 1.1). Minimal drug accumulation was seen in trough concentrations following twice-daily dosing for 7 days. The low MPV levels may be explained by fast conversion to its active metabolite NHC. The mean NHC concentrations at all time points were at least 4 times the reported in vitro IC50 for feline coronavirus strains and twice-daily dosing for seven days did not lead to drug accumulation within the serum. The results support the use of MPV in the treatment of FIP, and if therapeutic drug monitoring is to be performed, NHC should be measured. Full article
(This article belongs to the Special Issue Feline Coronavirus Infections)
Show Figures

Figure 1

8 pages, 1848 KiB  
Article
Different Kinetics of Complement Opsonization, Immune Uptake, and IL-6 Cytokine Response After Bolus Injection of Superparamagnetic Iron Oxide Nanoworms in Mice
by Yue Li and Dmitri Simberg
J. Nanotheranostics 2025, 6(3), 16; https://doi.org/10.3390/jnt6030016 - 27 Jun 2025
Cited by 1 | Viewed by 336 | Correction
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and [...] Read more.
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and infusion reactions. Here, we systematically map the temporal sequence of immune events following SPIO NW administration, including C3 opsonization, granulocyte uptake, and cytokine release. In both in vitro and in vivo models, C3 deposition occurred rapidly, peaking at approximately 5 min post-incubation or post-injection. Higher Fe/plasma ratios led to reduced C3 deposition per particle, although the absolute amount of C3 bound was greater in vivo than in vitro. Notably, C3 dissociation from the particle surface exhibited a consistent half-life of ~14 min, independent of the NW injected dose and circulation time. Immune uptake by blood granulocytes was delayed relative to opsonization, becoming prominent only at 60 min post-injection. Further, cytokine release, measured by plasma IL-6 levels, displayed an even slower profile, with peak expression at 6 h post-injection. Together, these results reveal a distinct sequential immune response to SPIO NWs: rapid C3 opsonization, delayed cellular uptake, and late cytokine response. Understanding these dynamics provides a basis for developing strategies to inhibit complement activation and improve the hemocompatibility of SPIO-based theranostic agents. Full article
Show Figures

Figure 1

12 pages, 1213 KiB  
Article
Synthesis and In Vitro Evaluation of a Scandium-44 Radiolabeled Nanobody as a PD-L1 PET Imaging Probe
by Viktoria E. Krol, Aditya Bansal, Manasa Kethamreddy, Jason R. Ellinghuysen, Daniel J. Vail, Fabrice Lucien-Matteoni, Haidong Dong, Sean S. Park and Mukesh K. Pandey
Pharmaceutics 2025, 17(6), 796; https://doi.org/10.3390/pharmaceutics17060796 - 19 Jun 2025
Viewed by 510
Abstract
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an [...] Read more.
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an attractive alternative for imaging than their full-length IgG counterpart. This work investigated the radiosynthesis and in vitro cell uptake of anti-PD-L1-B11-nanobody radiolabeled with 44Sc (t1/2 = 4.04 h) as an alternative to anti-PD-L1-B11-IgG, better suited for longer half-life radioisotopes such as 89Zr (t1/2 = 78.41 h). Methods: The proteins were conjugated with p-SCN-Bn-DTPA and radiolabeled at room temperature with 44Sc, achieving a radiochemical yield of a RCY of 94.8 ± 3.1% (n = 3) for [44Sc]Sc-B11-IgG and 73.6 ± 12.1% (n = 3) for [44Sc]Sc-B11-nanobody, before purification. Results: Significantly higher uptake in the PD-L1+ cells than PD-L1KO cells was observed for both probes. However, high non-specific uptake, particularly of the radiolabeled B11-nanobody, was also observed which may negatively impact its potential as a molecular imaging probe. Conclusions: Due to the high non-specific uptake in vitro, the 44Sc radiolabeled nanobody was not progressed to further in vivo evaluation. These results should, however, not discourage future evaluations of other nanobody based probes radiolabeled with 44Sc, due to their well-matched biological and physical half-life. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

11 pages, 1135 KiB  
Article
Pharmacokinetics and Ex Vivo Activity of 7-Methylxanthine, an Inhibitor of Monosodium Urate Crystallization
by Miguel D. Ferrer, Jaume Dietrich, Bernat Isern, Maria del Mar Pérez-Ferrer, Joan Albertí, Félix Grases and Antònia Costa-Bauzà
Biomedicines 2025, 13(6), 1411; https://doi.org/10.3390/biomedicines13061411 - 9 Jun 2025
Viewed by 532
Abstract
Background/Objectives: 7-Methylxanthine (7-MX) is a naturally occurring metabolite of caffeine and theobromine that can inhibit the crystallization of monosodium urate (MSU) and may be useful for the prevention or treatment of gout. However, the pharmacokinetics and ex vivo activity of 7-MX remain poorly [...] Read more.
Background/Objectives: 7-Methylxanthine (7-MX) is a naturally occurring metabolite of caffeine and theobromine that can inhibit the crystallization of monosodium urate (MSU) and may be useful for the prevention or treatment of gout. However, the pharmacokinetics and ex vivo activity of 7-MX remain poorly characterized. Methods: The present study assessed the pharmacokinetics of 7-MX in Sprague Dawley rats following a single oral dose (30 mg/kg), and the ex vivo inhibition of MSU crystallization by 7-MX in rat plasma after the repeated administration of oral 7-MX. Results: The pharmacokinetic analysis showed that 7-MX reached peak plasma concentration (Cmax ≈ 30 µM) at 30 min after administration (tmax), the terminal half-life was approximately 1.4 h, and there was no evidence of accumulation after repeated daily dosing. After repeated administration, the relationship between dose (30 or 60 mg/kg) and plasma concentration was proportional. In vitro and ex vivo crystallization assays demonstrated that 7-MX inhibited MSU crystallization in a concentration-dependent manner. The in vitro studies showed that 100 µM 7-MX inhibited up to 74% of MSU crystallization under supersaturated conditions (400 mg/L urate). The ex vivo experiments indicated that plasma from rats that received 30 or 60 mg/kg of 7-MX had 41.4% and 52.6% inhibition of crystallization, consistent with the measured plasma concentrations. Conclusions: These findings confirm that oral administration of 7-MX to rats led to a plasma level that was sufficient to decrease MSU crystallization in plasma, and there were no observable toxicities. These results support the potential of 7-MX as a safe oral treatment for gout, especially in combination with urate-lowering therapies, such as allopurinol. Further clinical investigations are warranted to confirm the therapeutic potential of 7-MX in humans. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

20 pages, 4435 KiB  
Article
89Zr-Radiolabelling of p-NCS-Bz-DFO-Anti-HER2 Affibody Immunoconjugate: Characterization and Assessment of In Vitro Potential in HER2-Positive Breast Cancer Imaging
by Maria-Roxana Tudoroiu-Cornoiu, Radu Marian Șerban, Diana Cocioabă, Dragoș Andrei Niculae, Doina Drăgănescu, Radu Leonte, Alina Catrinel Ion and Dana Niculae
Pharmaceutics 2025, 17(6), 739; https://doi.org/10.3390/pharmaceutics17060739 - 4 Jun 2025
Viewed by 671
Abstract
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the [...] Read more.
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the precision of molecular imaging, especially in oncology. Despite zirconium’s potential for skeletal accumulation, effective chelation with agents like deferoxamine (DFO) enables high-resolution imaging of antigen-specific tumours, such as HER2-positive breast cancer, offering insights into tumour biology and treatment response. Methods: 89Zr was produced at the ACSI TR-19 cyclotron via 89Y(p,n)89Zr reaction. Natural yttrium foils (250 μm) were irradiated with 12.9 MeV protons on target, with 100 μA·h. An HER2-targeting affibody was synthesized and conjugated with p-NCS-Bz-DFO (1:4 mass ratio) at 37 °C for 60 min (pH 9.2 ± 0.2), then purified on a PD-10 column. Radiolabelling was performed with [89Zr]Zr-oxalate at pH ranging from 7.0 to 9.0, with concentrations from 110 to 460 MBq/mL. Results: Final activity reached 2.95 ± 0.31 GBq/batch (EOB corrected), with ≥ 99.9% radionuclide and ≥95% radiochemical purities. The anti-HER2 affibody was successfully radiolabelled with 89Zr, resulting in a radiochemical purity of over 85% with molar activity of 26.5 ± 4.4 and 11.45 MBq/nmol at pH 7.0–7.5. In vitro tests on BT-474 and MCF-7 cell lines confirmed high uptake in HER2-positive cells, validating specificity and stability. Conclusions: The successful synthesis and labelling of the [89Zr]Zr-p-NCS-Bz-DFO-anti-HER2 affibody are promising achievements for its further application in targeted immuno-PET imaging for HER2-positive malignancies. Further in vivo studies are needed to support its clinical translation. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

16 pages, 4200 KiB  
Article
Tissue-Specific Fluorescent Protein Turnover in Free-Moving Flies
by Katherine S. Bell, Sebastian Ko, Sam Ali, Brett Bognar, Michael Khmelkov, Nick Rau, Oscar K. Peng, Mavi Eyuboglu, John Paine, Andy Tong, Anuj Saria, Siddharth Agrawal, Kelvin J. A. Davies and John Tower
Insects 2025, 16(6), 583; https://doi.org/10.3390/insects16060583 - 31 May 2025
Cited by 1 | Viewed by 747
Abstract
Conditional transgenic systems and multi-copy target transgenes were used to produce transient fluorescent protein expression in adult Drosophila melanogaster, with the goal of developing an in vivo assay of protein turnover. Free-moving flies were assayed at multiple time points using video, and [...] Read more.
Conditional transgenic systems and multi-copy target transgenes were used to produce transient fluorescent protein expression in adult Drosophila melanogaster, with the goal of developing an in vivo assay of protein turnover. Free-moving flies were assayed at multiple time points using video, and decay in fluorescence was used to calculate protein half-life. Additional experiments involved image capture of anesthetized flies. The half-life of eGFP was increased by the proteasome inhibitor bortezomib, both in vivo and in vitro, indicating proteasomal degradation of eGFP. The accumulation of eGFP in vivo was decreased by the protein synthesis inhibitor cycloheximide, without affecting half-life. The half-lives of several fluorescent proteins were determined, using both tissue-general and tissue-specific expression, in flies of both sexes and varying ages. Typical half-life values varied by fluorescent protein. DsRED showed a greater half-life than eGFP, and little if any degradation was detected for mCherry. Half-life also varied by tissue, with greater eGFP half-life observed in muscle relative to other tissues. Increased half-life with age was detected for DsRED but not for eGFP. Limited effects were observed for sex and female mating status. Taken together, the data indicate the in vivo assays are promising tools for the study of protein degradation regulated by protein sequence, subcellular compartment, tissue and small molecules. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

23 pages, 19950 KiB  
Article
Genomic Characterization and Pathogenicity of a Novel Birnavirus Strain Isolated from Mandarin Fish (Siniperca chuatsi)
by Hetong Zhang, Dandan Zhou, Junjian Dong, Yunyun Yan, Shanshan Liu, Xing Ye, Jianguo He and Chengfei Sun
Genes 2025, 16(6), 629; https://doi.org/10.3390/genes16060629 - 24 May 2025
Viewed by 412
Abstract
Background: Birnaviruses infect a wide range of aquatic and terrestrial hosts, including several economically important fish species. This study aimed to isolate and characterize a novel birnavirus strain from mandarin fish (Siniperca chuatsi), a high-value freshwater species in Chinese aquaculture. Methods: [...] Read more.
Background: Birnaviruses infect a wide range of aquatic and terrestrial hosts, including several economically important fish species. This study aimed to isolate and characterize a novel birnavirus strain from mandarin fish (Siniperca chuatsi), a high-value freshwater species in Chinese aquaculture. Methods: A novel strain, designated mandarin fish birnavirus (MFBV), was isolated from diseased fish and propagated in SCK cells. The complete genome was determined using high-throughput sequencing and RACE. Viral replication kinetics, tissue distribution, and pathogenicity were assessed through in vitro infection, RT-qPCR, histopathology, and experimental challenges. In addition, disinfectant sensitivity and environmental stability were evaluated. Results: The MFBV genome comprises two segments (A: 3539 bp; B: 2719 bp), and phylogenetic analysis revealed close relatedness to largemouth bass birnavirus (LBBV) and Lates calcarifer birnavirus (LCBV). MFBV displayed rapid replication in SCK cells, completing a replication cycle in 8–10 h. In juvenile and fry fish, an experimental infection caused acute disease with cumulative mortality ranging from 41.8% to 83.6%, with fry showing higher susceptibility. Viral RNA was detected in multiple tissues (7.9 × 106–7.9 × 107 copies/μg RNA), and histopathological lesions were observed in the intestine, spleen, and kidney. MFBV was highly sensitive to glutaraldehyde (20 ppm), while other disinfectants showed reduced efficacy. Viral half-life ranged from 36.5 to 144.5 h at room temperature. Conclusions: These findings demonstrate that MFBV can induce acute systemic infection in mandarin fish. The results offer new insights into the genomic and biological features of birnaviruses, contributing to improved disease management and viral taxonomy. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1462 KiB  
Article
Safety, Tolerability, and Pharmacokinetics of Filapixant, a Highly Selective P2X3 Receptor Antagonist, in an Ascending-Single-Dose First-in-Human Study
by Klaus Francke, Sybille Baumann, Isabella Gashaw, Stefan Klein, Beate Rohde, Oliver Zolk, Oliver M. Fischer and Christian Friedrich
Pharmaceuticals 2025, 18(5), 758; https://doi.org/10.3390/ph18050758 - 20 May 2025
Viewed by 582
Abstract
Background/Objectives: P2X3 receptor antagonists have been suggested as a potential treatment for urogenital, respiratory and pain conditions. This first-in-human (FiH) study evaluated filapixant, a new P2X3 receptor antagonist with high receptor selectivity. It was anticipated that filapixant would cause fewer taste-related side effects [...] Read more.
Background/Objectives: P2X3 receptor antagonists have been suggested as a potential treatment for urogenital, respiratory and pain conditions. This first-in-human (FiH) study evaluated filapixant, a new P2X3 receptor antagonist with high receptor selectivity. It was anticipated that filapixant would cause fewer taste-related side effects compared to the unselective P2X3/P2X2/3 antagonist gefapixant and the less selective P2X3 antagonist eliapixant. This study assessed the tolerability, safety and PK of filapixant, the effect of food on PK and relative BA of a tablet vs. solution. Methods: This study (NCT03212586) followed a randomized, double-blind single-ascending-dose design. A total of 72 healthy male subjects received a solution (6–60 mg) or immediate-release tablets (120–1250 mg) of filapixant or corresponding placebo in fasted state. The subjects at 60 mg were re-dosed with 60 mg tablets in both fasted and fed states. The endpoints included PK parameters, dose proportionality, adverse events, and taste assessments (taste strips; dysgeusia questionnaire). Results: Filapixant showed dose-proportional PK with a half-life (about 10–15 h), supporting once-daily dosing. Food minimally affected PK and BA was comparable between tablet and solution. Filapixant was well tolerated; however, the number of taste side effects was unexpectedly high. Comparing the results observed across clinical filapixant studies, the threshold for such side effects seems to be well below the in vitro IC50 for P2X2/3. Conclusions: Treatment with filapixant was safe and well tolerated. Filapixant showed dose-proportional PK, bioavailability similar to that of a solution and a tablet, and a minor effect of food on PK. The number of taste side effects was unexpectedly high considering the high in vitro P2X3 receptor selectivity. Factors other than selectivity are needed to explain taste profile differences between P2X3 antagonists. Full article
(This article belongs to the Special Issue P2X Receptors and Their Pharmacology)
Show Figures

Figure 1

14 pages, 8971 KiB  
Article
Polysaccharide Hydrogels Based on Cellulose and Chitosan for Drug Sustained-Release Applications
by Xueyan Jin, Hong Xu, Zhiping Mao, Xueling Feng and Yi Zhong
Appl. Sci. 2025, 15(10), 5601; https://doi.org/10.3390/app15105601 - 16 May 2025
Viewed by 438
Abstract
This study developed a novel water-soluble Cellulose Acetoacetate (CAA)-chitosan (CS) composite hydrogel drug delivery system. In this system, CAA and CS molecules are cross-linked via dynamic enamine bonds, forming a three-dimensional network structure suitable for drug encapsulation and controlled release. The primary objective [...] Read more.
This study developed a novel water-soluble Cellulose Acetoacetate (CAA)-chitosan (CS) composite hydrogel drug delivery system. In this system, CAA and CS molecules are cross-linked via dynamic enamine bonds, forming a three-dimensional network structure suitable for drug encapsulation and controlled release. The primary objective was to address the challenges associated with the short half-life and significant fluctuations in therapeutic concentration of cytokine drugs, such as interleukin-2 (IL-2). A hydrogel system with a three-dimensional spatial network structure was successfully constructed via dynamic enamine bonds cross-linking between the acetoacetate groups in CAA molecules and the amino groups in CS. This system exhibits the following characteristics: (1) Dynamic covalent bonds impart adjustable mechanical properties to the hydrogel, enabling precise control over gelation time and mechanical performance; (2) A hierarchical pore structure (average pore size of 100–200 μm) provides a three-dimensional confined space for efficient drug encapsulation, achieving an IL-2 encapsulation efficiency of 83.3 ± 3.1%; (3) In vitro release studies demonstrated that the cumulative release of IL-2 within 72 h ranged from 18.4% to 34.7%, indicating sustained-release behavior. Cell viability assays confirmed that the hydrogel maintained the survival rate of L929 cells above 85% (as determined by the CCK-8 method), and live/dead staining revealed no apparent cytotoxicity. Overall, this three-dimensional network hydrogel based on dynamic covalent bonds represents a promising strategy for low-dose, long-lasting cytokine delivery. Full article
Show Figures

Graphical abstract

15 pages, 1993 KiB  
Article
Nanostructured Lipoxin A4: Understanding Its Biological Behavior and Impact on Alzheimer’s Disease (Proof of Concept)
by Natália Cristina Gomes-da-Silva, Isabelle Xavier-de-Britto, Marilia Amável Gomes Soares, Natalia Mayumi Andrade Yoshihara, Derya Ilem Özdemir, Eduardo Ricci-Junior, Pierre Basílio Almeida Fechine, Luciana Magalhães Rebelo Alencar, Maria das Graças Muller de Oliveira Henriques, Thereza Christina Barja-Fidalgo, Cristian Follmer and Ralph Santos-Oliveira
Pharmaceutics 2025, 17(5), 649; https://doi.org/10.3390/pharmaceutics17050649 - 15 May 2025
Viewed by 640
Abstract
Background/Objectives: Lipoxins, particularly Lipoxin A4 (LXA4), are endogenous lipid mediators with potent anti-inflammatory and pro-resolving properties, making them promising candidates for the treatment of inflammatory and neurodegenerative disorders. However, their therapeutic application is limited by poor stability and bioavailability. This study aimed [...] Read more.
Background/Objectives: Lipoxins, particularly Lipoxin A4 (LXA4), are endogenous lipid mediators with potent anti-inflammatory and pro-resolving properties, making them promising candidates for the treatment of inflammatory and neurodegenerative disorders. However, their therapeutic application is limited by poor stability and bioavailability. This study aimed to develop and characterize nanomicelles encapsulating LXA4 (nano-lipoxin A4) to improve its pharmacological efficacy against Alzheimer’s disease (AD), a neurodegenerative condition marked by chronic inflammation and beta-amyloid (Aβ) accumulation. Methods: Nano-lipoxin A4 was synthesized using Pluronic F-127 as a carrier and characterized in terms of morphology, physicochemical stability, and in vitro activity against Aβ fibrils. Dissociation of Aβ fibrils was assessed via Thioflavin-T fluorescence assays and transmission electron microscopy. In vivo biodistribution and pharmacokinetic profiles were evaluated using technetium-99m-labeled nano-lipoxin A4 in rodent models. Hepatic biochemical parameters were also measured to assess potential systemic effects. Results: In vitro studies demonstrated that nano-lipoxin A4 effectively dissociated Aβ fibrils at concentrations of 50 nM and 112 nM. Electron microscopy confirmed the disruption of fibrillar structures. In vivo imaging revealed predominant accumulation in the liver and spleen, consistent with reticuloendothelial system uptake. Pharmacokinetic analysis showed a prolonged half-life (63.95 h) and low clearance rate (0.001509 L/h), indicating sustained systemic presence. Biochemical assays revealed elevated liver enzyme levels, suggestive of increased hepatic metabolism or potential hepatotoxicity. Conclusions: Nano-lipoxin A4 exhibits significant therapeutic potential for Alzheimer’s disease through effective modulation of Aβ pathology and favorable pharmacokinetic characteristics. However, the elevation in liver enzymes necessitates further investigation into systemic safety to support clinical translation. Full article
Show Figures

Graphical abstract

Back to TopTop