Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = in vitro genotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2276 KiB  
Article
Phytochemical Profile, Toxicological Screening, Antitumor Activity, and Immunomodulatory Response of Saline Extract from Euphorbia hirta L. Leaves
by Jainaldo Alves da Costa, Amanda de Oliveira Marinho, Robson Raion de Vasconcelos Alves, Matheus Cavalcanti de Barros, Isabella Coimbra Vila Nova, Sheilla Andrade de Oliveira, João Victor de Oliveira Alves, Vitória Figueiredo Silva, Magda Rhayanny Assunção Ferreira, Alisson Macário de Oliveira, Luiz Alberto Lira Soares, Carina Scanoni Maia, Fernanda das Chagas Ângelo Mendes Tenório, Virgínia Maria Barros de Lorena, Roberto Araújo Sá, Thiago Henrique Napoleão, Leydianne Leite de Siqueira Patriota, Maria Lígia Rodrigues Macedo and Patrícia Maria Guedes Paiva
Molecules 2025, 30(15), 3105; https://doi.org/10.3390/molecules30153105 - 24 Jul 2025
Viewed by 343
Abstract
Euphorbia hirta L. is traditionally used to treat tumors and has demonstrated anticancer effects. This study evaluated the phytochemical composition, toxicity, and antitumor activity of saline extract (SE) from E. hirta leaves in mice. Phytochemical analysis included thin layer chromatography, high-performance liquid chromatography, [...] Read more.
Euphorbia hirta L. is traditionally used to treat tumors and has demonstrated anticancer effects. This study evaluated the phytochemical composition, toxicity, and antitumor activity of saline extract (SE) from E. hirta leaves in mice. Phytochemical analysis included thin layer chromatography, high-performance liquid chromatography, and quantification of phenols, flavonoids, and proteins. Acute toxicity (2000 mg/kg) assessed mortality, hematological, biochemical, histological parameters, water/feed intake, and body weight. Genotoxicity was evaluated via comet and micronucleus assays. Antitumor activity was tested in vitro and in vivo on sarcoma 180. SE contained 107.3 mg GAE/g phenolics and 22.9 mg QE/g flavonoids; the presence of gallic and ellagic acids was detected. Protein concentration was 12.16 mg/mL with lectin activity present. No mortality, organ damage, or genotoxic effects occurred in toxicity tests. SE demonstrated in vitro cytotoxicity against sarcoma cells (IC50: 10 µg/mL). In vivo, SE (50–200 mg/kg) reduced tumor weight by 70.2–72.3%. SE modulated IL-2, IL-4, IL-6, IL-17, IFN-γ, and TNF-α in tumor environment. Tumors showed inflammatory infiltrate, necrosis, and fibrosis after treatment. These findings position the extract as a promising candidate for further development as a safe, plant-based antitumor agent. Full article
(This article belongs to the Special Issue Natural Products in Anticancer Activity: 2nd Edition)
Show Figures

Figure 1

19 pages, 1944 KiB  
Article
Impact of Polystyrene Microplastics on Human Sperm Functionality: An In Vitro Study of Cytotoxicity, Genotoxicity and Fertility-Related Genes Expression
by Filomena Mottola, Maria Carannante, Ilaria Palmieri, Lorenzo Ibello, Luigi Montano, Mariaceleste Pezzullo, Nicola Mosca, Nicoletta Potenza and Lucia Rocco
Toxics 2025, 13(7), 605; https://doi.org/10.3390/toxics13070605 - 19 Jul 2025
Viewed by 513
Abstract
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to [...] Read more.
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to PS-MPs levels (105 and 210 μg/mL) for 30–60–90 min. Semen parameters, genome stability, sperm DNA fragmentation (SDF) and reactive oxygen species (ROS) production were analyzed before and after exposure. Moreover, we also evaluated the expression level of spermatozoa-specific expressed genes essential for the fusion with oocyte (DCST1, DCST2, IZUMO1, SPACA6, SOF1, and TMEM95). After PS-MP exposure, semen concentration and morphology did not differ, while sperm vitality and motility decreased in a time-dependent manner. In addition, sperm agglutination was observed in the groups exposed to both PS-MPs concentrations tested. A time- and concentration-dependent reduction in genomic stability, as well as increased SDF and ROS production, was also observed. Moreover, all investigated transcripts were down-regulated after PS-MP exposure. Our results confirm the oxidative stress-mediated genotoxicity and cytotoxicity of PS-MPs on human spermatozoa. The sperm agglutination observed after treatment could be due to the aggregation of PS-MPs already adhered to the sperm membranes, hindering sperm movement and fertilizing capability. Interestingly, the downregulation of genes required for sperm–oocyte fusion, resulting from data on the in vitro experimental system, suggests that PS-MP exposure may have implications for sperm functionality. While these findings highlight potential mechanisms of sperm dysfunction, further investigations using in vivo models are needed to determine their broader biological implications. Possible environmental and working exposure to pollutants should be considered during the counselling for male infertility. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

45 pages, 4295 KiB  
Review
Recent Trends and Challenges on the Non-Targeted Analysis and Risk Assessment of Migrant Non-Intentionally Added Substances from Plastic Food Contact Materials
by Pablo Miralles, Esther Fuentes-Ferragud, Cristina Socas-Hernández and Clara Coscollà
Toxics 2025, 13(7), 543; https://doi.org/10.3390/toxics13070543 - 28 Jun 2025
Viewed by 634
Abstract
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical [...] Read more.
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical workflows for non-targeted analysis, alongside a consideration of risk assessment and toxicological prioritization frameworks. Conventional plastics (e.g., polyethylene, polypropylene, or polyethylene terephthalate) as well as emerging materials (e.g., bioplastics and recycled polymers) exhibit different NIAS profiles, including oligomers, degradation products, additives, and contaminants, requiring specific approaches for migration testing, extraction, and detection. Advanced techniques, such as ultra-high-performance liquid chromatography or two-dimensional gas chromatography coupled with high-resolution mass spectrometry, have enabled non-targeted analysis approaches. However, the field remains constrained by spectral library gaps, limited reference standards, and inconsistent data processing protocols, resulting in heavy reliance on tentative identifications. Risk assessment procedures mainly employ the Threshold of Toxicological Concern and classification by Cramer’s rules. Nevertheless, addressing genotoxicity, mixture effects, and novel hazards from recycled or bio-based polymers remains challenging with these approaches. Future priorities and efforts may include expanding spectral databases, harmonizing analytical protocols, and integrating in vitro bioassays with computational toxicology to refine hazard characterization. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

15 pages, 5282 KiB  
Article
Quinazoline Derivative kzl052 Suppresses Prostate Cancer by Targeting WRN Helicase to Stabilize DNA Replication Forks
by Jia Yu, Gang Yu, Sha Cheng, Liangliang Hu, Ningning Zan, Bixue Xu, Ying Cao and Heng Luo
Int. J. Mol. Sci. 2025, 26(13), 6093; https://doi.org/10.3390/ijms26136093 - 25 Jun 2025
Viewed by 322
Abstract
WRN helicases play a key role in DNA replication, repair, and other processes in a variety of tumors. It has become one of the hot targets of genotoxic drugs, but the effect and mechanism of targeting WRN against prostate cancer is still unclear. [...] Read more.
WRN helicases play a key role in DNA replication, repair, and other processes in a variety of tumors. It has become one of the hot targets of genotoxic drugs, but the effect and mechanism of targeting WRN against prostate cancer is still unclear. In our previous study, we found a quinazoline compound kzl052, which has a WRN-dependent inhibitory effect on prostate cancer cells, but its molecular mechanism needs to be further explored. In this study, kzl052 significantly inhibited the growth of PC3 (IC50 = 0.39 ± 0.01 μM) and LNCaP (IC50 = 0.11 ± 0.01 μM) cells in vitro and showed a good inhibition effect on PCa in vivo. It inhibits PC3 cell growth by binding to WRN proteins and affecting its non-enzymatic function. Then the mechanism of kzl052 against prostate cancer progression was revealed to be by regulating the stability of DNA replication forks and the RB pathway. This study will provide a theoretical basis and treatment strategy for targeting WRN helicase in the treatment of prostate cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

11 pages, 244 KiB  
Article
Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches
by Sangwon Gil and Kyung-Min Lim
Cosmetics 2025, 12(4), 133; https://doi.org/10.3390/cosmetics12040133 - 24 Jun 2025
Viewed by 536
Abstract
Althaea rosea flower extract (ARFE) is widely used as a food and cosmetic ingredient. However, the systemic safety of ARFE for use in cosmetics has not been confirmed, yet. Here, we adopted the threshold of toxicological concern (TTC) and history of safe food [...] Read more.
Althaea rosea flower extract (ARFE) is widely used as a food and cosmetic ingredient. However, the systemic safety of ARFE for use in cosmetics has not been confirmed, yet. Here, we adopted the threshold of toxicological concern (TTC) and history of safe food consumption approaches to evaluate the systemic safety of ARFE as a cosmetic ingredient. A systematic literature review identified 48 chemical constituents in ARFE, 92.6% of which are common food components. Through a literature review, 48 chemical constituents of ARFE were identified. To exclude the potential genotoxicity issues, in silico predictions of an in vitro AMES test and additional literature reviews were performed, demonstrating that all the chemical constituents of ARFE have no genotoxicity issues. To evaluate the systemic toxicity of ARFE, a comparison with the dietary intake of ARFE was performed. The daily dietary intake of ARFE through tea products was estimated to be 66.67 mg/kg/day. Since exposure to ARFE through cosmetic use ranges from 0.0045 to 5.380 mg/kg/day, which is far lower than dietary intake, it is unlikely to pose any additional health risk. The TTC approach along with in silico predictions of dermal absorption also revealed that systemic exposure doses (SEDs) of all the chemical constituents are below TTC thresholds, further supporting its systemic safety for use in cosmetics. Full article
(This article belongs to the Topic New Challenges in the Cosmetics Industry)
17 pages, 1433 KiB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 407
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

21 pages, 2171 KiB  
Article
Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile
by José Rafael da Silva Araujo, Rafael de Felício, Camila Marinho da Silva, Palloma Lima de Oliveira, Silvany de Sousa Araújo, Laís Roberta Deroldo Sommaggio, Adriana Fabiana Corrêa da Silva, Paulo Henrique Valença Nunes, Bruno Oliveira de Veras, Erwelly Barros de Oliveira, Jaciana dos Santos Aguiar, Maria Aparecida Marin-Morales, Daniela Barretto Barbosa Trivella, Ana Maria Benko-Iseppon, Márcia Vanusa da Silva and Ana Christina Brasileiro-Vidal
Pharmaceuticals 2025, 18(6), 863; https://doi.org/10.3390/ph18060863 - 10 Jun 2025
Viewed by 554
Abstract
Background: Commiphora leptophloeos has long been used in Latin American folk medicine for the treatment of respiratory and gastrointestinal disorders. Therefore, toxicological and phytochemical investigations are required to assess the safety and support the evidence-based use of its bark in medicinal applications. [...] Read more.
Background: Commiphora leptophloeos has long been used in Latin American folk medicine for the treatment of respiratory and gastrointestinal disorders. Therefore, toxicological and phytochemical investigations are required to assess the safety and support the evidence-based use of its bark in medicinal applications. This study aimed to evaluate the aqueous bark extract of C. leptophloeos, focusing on its chemical composition and its antioxidant, cytotoxic, and genotoxic properties. Methods: The aqueous extract was obtained by decoction of dried bark samples. Phytochemical characterization was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and data were processed using the NP3 MS Workflow 1.1.4 software, allowing for the annotation of key secondary metabolites. Antioxidant activity was assessed through multiple in vitro assays, including DPPH, ABTS, phosphomolybdenum, and reducing power tests. Cytotoxicity was evaluated using the MTT assay, while genotoxicity was investigated through the Ames test and micronucleus assay. Results: Phytochemical analysis revealed several flavonoids, with procyanidin B2 annotated as a major compound. The extract exhibited strong antioxidant activity, with EC50 values of 5.43 μg/mL (DPPH), 12.40 μg/mL (ABTS), 35.20 μg/mL (phosphomolybdenum), and 31.27 μg/mL (reducing power). The MTT assay showed no cytotoxic effects at concentrations up to 6400 μg/mL. Furthermore, both the Ames and micronucleus assays showed the absence of genotoxic effects at concentrations up to 1600 μg/plate and 400 μg/mL, respectively. Conclusions: The aqueous bark extract of C. leptophloeos demonstrates strong antioxidant potential and a favorable safety profile, with no detectable cytotoxicity or genotoxicity at concentrations effective in antioxidant assays. Further studies are recommended to confirm and validate its traditional medicinal properties using appropriate in vivo models, followed by pre-clinical evaluations. Full article
(This article belongs to the Special Issue Pharmacologically Active Compounds from Plants)
Show Figures

Graphical abstract

20 pages, 5338 KiB  
Article
New Insights into the Anticancer Effects and Toxicogenomic Safety of Two β-Lapachone Derivatives
by José Rivaldo De Lima, Alexandre José Da Silva Góes, Elizabeth Fernanda De Oliveira Borba, Meykson Alexandre da Silva, Rodrigo Ribeiro Alves Caiana, Maria do Desterro Rodrigues, Mariza Severina De Lima Silva, Cristiano Aparecido Chagas, Blandine Baratte, Thomas Robert, Stéphane Bach, Isabelle Ourliac-Garnier, Pascal Marchand and Teresinha Gonçalves Da Silva
Pharmaceuticals 2025, 18(6), 837; https://doi.org/10.3390/ph18060837 - 3 Jun 2025
Viewed by 821
Abstract
Background/Objectives: β-Lapachone (β-lap) is an o-naphthoquinone with potent antitumor activity. However, its clinical application is hindered by poor solubility and toxicity. Thiosemicarbazone derivatives of β-lap (BV3 and BV5) have demonstrated enhanced selectivity and anticancer efficacy in leukemia cells. Therefore, this study aimed [...] Read more.
Background/Objectives: β-Lapachone (β-lap) is an o-naphthoquinone with potent antitumor activity. However, its clinical application is hindered by poor solubility and toxicity. Thiosemicarbazone derivatives of β-lap (BV3 and BV5) have demonstrated enhanced selectivity and anticancer efficacy in leukemia cells. Therefore, this study aimed to evaluate the therapeutic potential of these derivatives in solid tumors. Furthermore, the mechanism of tumor cell death, the involvement of protein kinase inhibition, and the toxicogenetic safety of BV3 and BV5 were investigated. Methods: The cytotoxic effects of BV3 and BV5 were assessed in cancer cell lines and a non-cancerous cell line. The compounds were most effective against HeLa (human cervical adenocarcinoma) cells. For that reason, this type of cell was chosen to study how the compounds might cause cell death, using flow cytometry. Kinase inhibition assays were conducted in vitro and in silico, followed by genotoxicity assessments to determine toxicogenetic safety. Results: BV3 and BV5 derivatives significantly inhibited cancer cell proliferation after 72 h, with IC50 values ranging from 2.8 to 36.9 µM. BV3 demonstrated superior selectivity (selectivity index: 15.6) when compared to β-lap (selectivity index: 1.9) in HeLa cells. Morphological changes and flow cytometry analysis revealed features of apoptosis and/or necrosis in HeLa cells treated with the compounds BV3 and BV5. Furthermore, among the kinases tested, BV3 and BV5 were more effective in inhibiting the activity of the protein kinases JAK3 and GSK3β. This result was also confirmed by the in silico studies. Additionally, genotoxicity assays indicated an overall favorable toxicogenetic safety profile; however, BV5 exhibited potential genotoxicity at high concentrations. Conclusions: The findings underscore the anticancer potential of BV3 and BV5 in solid tumors and highlight their mechanism of action, which involves protein kinases. The findings also show that the drugs are selective and relatively safe. Full article
Show Figures

Figure 1

18 pages, 2949 KiB  
Article
Ozone Aggravated the Toxicity of Fine Particulate Matter by Impairing Membrane Stability and Facilitating Particle Internalization
by Jing He, Tong Wang, Han Li, Yemian Zhou, Yun Liu and An Xu
Toxics 2025, 13(6), 446; https://doi.org/10.3390/toxics13060446 - 28 May 2025
Viewed by 395
Abstract
The combined pollution of fine particulate matter (PM2.5) and ozone (O3) is increasing synergistically on a global scale, posing a serious threat to human health. However, the joint toxicity and the underlying mechanisms associated with co-exposure to PM2.5 [...] Read more.
The combined pollution of fine particulate matter (PM2.5) and ozone (O3) is increasing synergistically on a global scale, posing a serious threat to human health. However, the joint toxicity and the underlying mechanisms associated with co-exposure to PM2.5 and O3 remain poorly understood. Through complementary in vivo animal models and in vitro cellular assays, the results demonstrate that although there was no synergistic cytotoxicity effect between PM2.5 and O3, the presence of O3 significantly enhanced the genotoxicity of PM2.5 by inducing severe DNA double-strand breaks. Furthermore, O3 exposure significantly exacerbated the bioaccumulation of PM2.5 by disturbing the cellular membrane integrity, thus leading to synergistic toxicity in bronchial cells and mouse lungs. Astaxanthin (AST) effectively antagonized the adverse effects of PM2.5 and O3 co-exposure by maintaining cell membrane integrity. These findings enhance our understanding of the pathophysiological mechanisms induced by co-exposure to PM2.5 and O3, and provide a promising therapeutic strategy for treating respiratory diseases caused by unavoidable exposure to these pollutants. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

12 pages, 1801 KiB  
Article
New Synthetic Opioids: What Do We Know About the Mutagenicity of Brorphine and Its Analogues?
by Monia Lenzi, Sofia Gasperini, Sabrine Bilel, Giorgia Corli, Francesca Rombolà, Patrizia Hrelia and Matteo Marti
Int. J. Mol. Sci. 2025, 26(11), 5084; https://doi.org/10.3390/ijms26115084 - 26 May 2025
Viewed by 538
Abstract
Since 2019, a growing number of structurally diverse, non-Fentanyl-related novel synthetic opioids (NSOs) have emerged, but little is still known on the toxic profile of several of the molecules belonging to this class. Regarding long-term toxicity, few studies have investigated the genotoxic potential [...] Read more.
Since 2019, a growing number of structurally diverse, non-Fentanyl-related novel synthetic opioids (NSOs) have emerged, but little is still known on the toxic profile of several of the molecules belonging to this class. Regarding long-term toxicity, few studies have investigated the genotoxic potential of NSOs, and no genotoxic data at all are available for the subclass of Brorphine-like benzimidazolone opioids. To deepen and broaden our understanding of their toxicological profile, this study was aimed at evaluating the genotoxicity of Brorphine and four of its analogues (Orphine, Fluorphine, Chlorphine and Iodorphine) on human lymphoblastoid TK6 cells employing a flow cytometric protocol of the “In Vitro Mammalian Cell Micronucleus (MN) test”. The results show a statistically significant MNi increase for Fluorphine, Chlorphine and Iodorphine, but not for Brorphine and Orphine, demonstrating for the first three the ability to induce chromosomal damage. Afterwards, Brorphine and Orphine were tested on TK6 cells also in the presence of an exogenous metabolic activation system (S9 mix) to consider the possible genotoxic hazard posed by their metabolites as well. Also, under this experimental condition, no statistically significant increase in the MNi frequency was detected. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

17 pages, 2325 KiB  
Article
Exploring Antioxidant, Antimicrobial and Anti-Inflammatory Effects of Juglans regia and Pfaffia paniculata Extracts: Implications for Intestinal Dysbiosis and Colorectal Cancer Risk Associated with Oral Pathogens
by Diego Garcia Miranda, Lucas de Paula Ramos, Nina Attik, Nicole Van Der Heijde Fernandes Silva, Pyetra Claro Camargo, Gabriela Ferraz de Araujo, Nicole Fernanda dos Santos Lopes, Maria Cristina Marcucci, Cristina Pacheco-Soares, Bruno Henrique Godoi, Giovanna Arruda Caires, Hugo Vigerelli and Florence Carrouel
Pharmaceutics 2025, 17(6), 693; https://doi.org/10.3390/pharmaceutics17060693 - 25 May 2025
Viewed by 2688
Abstract
Background/Objectives: Colorectal neoplasms rank as the third most prevalent cancer globally and stand as the second leading cause of cancer-related mortality. Its etiology is multifaceted, pointing to the role of microorganisms within the human microbiota in its development. Notably, the high prevalence of [...] Read more.
Background/Objectives: Colorectal neoplasms rank as the third most prevalent cancer globally and stand as the second leading cause of cancer-related mortality. Its etiology is multifaceted, pointing to the role of microorganisms within the human microbiota in its development. Notably, the high prevalence of oral pathogens like Fusobacterium nucleatum and Parvimonas micra is implicated in inducing gut dysbiosis and stimulating the proliferation and metastasis of cancer cells. Therefore, this study aimed to evaluate in vitro the biological effects of extracts from Juglans regia and Pfaffia paniculata. Methods: Phytochemical analysis was carried out by HPLC, and the antioxidant effect was determined by DPPH. Antimicrobial activity was investigated on F. nucleatum and P. micra planktonic and biofilms. Metabolic activity and genotoxicity were performed. Results:J. regia and P. paniculata expressed CE50 37.26 and 1367.57 mcg, respectively. The extracts exhibited a minimum bactericidal concentration of 1.73 and 0.48 mg/mL for J. regia and P. paniculata, respectively. Reduction superiorly 90% of P. micra biofilms. Metabolic activity was varied proportionally to the extract concentration, and no genotoxic effects were observed. Conclusions: The J. regia extract has great antioxidant activity and could be used as an alternative in combating pathogens associated with the onset of dysbiosis and tumor progression in colorectal neoplasms. Nevertheless, further studies are needed to validate their clinical applicability. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

46 pages, 1292 KiB  
Review
Genotoxicity of Coffee, Coffee By-Products, and Coffee Bioactive Compounds: Contradictory Evidence from In Vitro Studies
by Maryam Monazzah and Dirk W. Lachenmeier
Toxics 2025, 13(5), 409; https://doi.org/10.3390/toxics13050409 - 18 May 2025
Viewed by 891
Abstract
Coffee and coffee by-products, such as coffee cherries, coffee flowers, coffee leaves, green beans, roasted coffee, instant coffee, spent coffee grounds, and silverskin, contain a complex mixture of bioactive compounds that may exhibit both genotoxic and antimutagenic effects. This article evaluates in vitro [...] Read more.
Coffee and coffee by-products, such as coffee cherries, coffee flowers, coffee leaves, green beans, roasted coffee, instant coffee, spent coffee grounds, and silverskin, contain a complex mixture of bioactive compounds that may exhibit both genotoxic and antimutagenic effects. This article evaluates in vitro studies on the genotoxic potential of coffee and coffee by-products, with a focus on different preparation methods, roasting processes, and key chemical constituents. Furthermore, given the growing interest in utilizing coffee by-products for novel food applications, this review sought to identify knowledge gaps regarding their safety. The impact of metabolic activation, particularly the role of enzymatic detoxification and bioactivation, was examined to better understand the effects on genetic material. The findings suggest that while certain compounds in coffee can induce DNA damage under specific conditions, the overall evidence does not indicate a significant genotoxic risk to consumers. However, further studies, particularly in vivo and human studies, appear necessary to ensure the requirements of novel food applications for some coffee by-products. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

25 pages, 2932 KiB  
Systematic Review
Assessing the Impact of Nanoplastics in Biological Systems: Systematic Review of In Vitro Animal Studies
by Maria Viana, Fernanda S. Tonin and Carina Ladeira
J. Xenobiot. 2025, 15(3), 75; https://doi.org/10.3390/jox15030075 - 17 May 2025
Cited by 1 | Viewed by 3658
Abstract
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map [...] Read more.
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map the current evidence on the biological effects of NPs. In vitro animal studies assessing cellular damage caused by exposure to any type of NP were searched on PubMed, Web of Science, and Scopus. Data on primary outcomes related to genotoxicity and cytotoxicity (cell viability, oxidative stress, inflammation, DNA and cytoplasmic damage, apoptosis) were extracted from the included studies, and overall reporting quality was assessed. A total of 108 articles published between 2018 and 2024, mostly by China (54%), Spain (14%), and Italy (9%), were included. Polystyrene (PS) was the most frequently studied polymer (85%). NP sizes in solution ranged from 15 to 531 nm, with a higher prevalence in the 40–100 nm range (38%). The overall quality of studies was rated as moderate (60%), with many lacking essential details about cell culture conditions (e.g., pH of the medium, passage number, substances used). A higher frequency of negative effects from NP exposure was observed in respiratory cell lines, while immune, digestive, and hepatic cell lines showed greater resistance. Nervous, urinary, and connective tissue systems were impacted by NPs. Positively charged and smaller PS particles were consistently associated with higher toxicity across all systems. In summary, this review highlights the multifactorial nature of NP toxicity, influenced by size, surface charge, and polymer type. It also reveals a significant knowledge gap, stemming from the predominant use of immortalized monocultures exposed to commercially available PS NPs, the limited use of environmentally relevant particles, and the underutilization of advanced experimental models (e.g., organ-on-chip systems) that better mimic physiological conditions. Full article
(This article belongs to the Section Nanotoxicology and Nanopharmacology)
Show Figures

Graphical abstract

18 pages, 1215 KiB  
Article
Evaluation of the Genotoxicity and Cytotoxicity of Bioceramic Endodontic Sealers in HepG2 and V79 Cell Lines: An In Vitro Study Using the Comet and Micronucleus Assays
by Antonija Tadin, Marija Badrov, Danijela Juric Kacunic, Nada Galic, Matea Macan, Ivan Kovacic and Davor Zeljezic
J. Funct. Biomater. 2025, 16(5), 169; https://doi.org/10.3390/jfb16050169 - 9 May 2025
Viewed by 582
Abstract
Background: The primary objective of this study was to evaluate the cytotoxic and genotoxic effects of calcium silicate-based sealers (BioRoot RCS and MTA Fillapex) compared to an epoxy-based sealer (AH Plus). Materials and methods: The study was conducted in vitro with the cell [...] Read more.
Background: The primary objective of this study was to evaluate the cytotoxic and genotoxic effects of calcium silicate-based sealers (BioRoot RCS and MTA Fillapex) compared to an epoxy-based sealer (AH Plus). Materials and methods: The study was conducted in vitro with the cell lines HepG2 and V79 to evaluate cytotoxicity and genotoxicity using the comet and micronucleus assays. Eluates of the materials were tested at two different concentrations (3 cm2/mL and 0.5 cm2/mL) after an exposure time of 72 h. Data were analyzed using the Mann–Whitney and Kruskal–Wallis tests (p < 0.05). Results: At lower concentrations in both cell lines, MTA Fillapex showed no significant difference in the measured comet assay parameters compared to the negative control (p > 0.05). In addition, it showed significantly lower genotoxic effects compared to AH Plus for all comet assay parameters, concentrations, and cell lines (p ≤ 0.001). BioRoot RCS showed lower primary DNA damage (p ≤ 0.001) than AH Plus, only at higher concentrations and in the HepG2 cell line. Concerning the two tested bioceramic sealers, BioRoot RCS showed higher tail intensity values compared to MTA Fillapex (p < 0.05). In contrast to the results of the comet assay, BioRoot RCS significantly reduced the number of nuclear buds and nucleoplasmic bridges in the HepG2 cell line compared to MTA Fillapex, whereas reduction in the V79 cell line was only observed for nuclear buds (p < 0.05). Both materials increased the number of apoptotic cells compared to the negative control (p < 0.05). In comparison to AH Plus, BioRoot RCS and MTA Fillapex significantly reduced the number of cells with micronuclei and increased the number of cells with undamaged chromatin (p < 0.05). Conclusions: The findings suggest that MTA Fillapex and BioRoot RCS exhibit superior biocompatibility over AH Plus, as evidenced by their lower cytotoxic and genotoxic effects in vitro. These results support the use of calcium silicate-based sealers in clinical practice, highlighting the need for further studies to evaluate their performance in vivo and their implications for patient safety. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

23 pages, 6860 KiB  
Article
Cosmetic Potential of Haberlea rhodopensis Extracts and Extracellular Vesicles in Human Fibroblast Cells
by Milena Georgieva, Bela Vasileva, Penyo Ivanov, Kamelia Hristova-Panusheva, Tsvetelina Paunova-Krasteva, Ivan Lesov, Zlatina Gospodinova, Natalia Krasteva, George Miloshev and Vasil Georgiev
Cosmetics 2025, 12(3), 90; https://doi.org/10.3390/cosmetics12030090 - 1 May 2025
Viewed by 2271
Abstract
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological [...] Read more.
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological and functional changes. This study investigates the impact of Haberlea rhodopensis in vitro culture extracts, native and enriched with EVs, on key cellular processes, including morphology, mitochondrial dynamics, lysosomal activity, gene expression, and genotoxicity in human dermal fibroblasts. The extracellular vesicles were identified in terms of shape, size, and morphology using dynamic light scattering, negative staining and observation under a transmission electron microscope. A comprehensive in vitro analysis was conducted utilizing light microscopy to assess cellular morphology and lysosomal mass, fluorescence microscopy for actin cytoskeletal organization, mitochondrial integrity, and nuclear morphology, and gene expression profiling for markers associated with collagen synthesis (COL1A1, COL3A1), senescence (CDKN1A), and oxidative stress response (NFE2L2). Additionally, cell cycle progression was evaluated, and genotoxicity was assessed using the neutral comet assay. Haberlea rhodopensis in vitro culture extracts and EVs were found to preserve fibroblast morphology, enhance mitochondrial mass, and upregulate collagen-related gene expression. These effects were concentration-dependent. The extracts exhibited biocompatibility with minimal genotoxic effects, indicating their potential as safe bioactive agents for skin rejuvenation. The findings suggest that Haberlea rhodopensis in vitro culture extracts and their enrichment with extracellular vesicles hold promise for cosmetic and dermatological applications, particularly in enhancing collagen production, preserving cellular integrity, and mitigating age-related alterations in skin fibroblasts. Further studies are warranted to elucidate the underlying molecular mechanisms and optimize formulation strategies for clinical translation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

Back to TopTop