Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy and Selection Criteria for ARFE Constituent Analysis
2.2. Classification of Chemical Compounds in A. rosea Flower Extract into Cramer Class
2.3. In Silico Prediction of Genotoxicity Assay
2.4. Estimation of Systemic Exposure Dosages
2.5. Food Consumption Assessment
3. Results
3.1. Identification of Chemical Constituents of A. rosea Flower Extract
3.2. Assessment of Genotoxicity of A. rosea Flower Extract
3.3. Systemic Exposure Dosages of the Chemical Constituents of A. rosea Flower Extract from the Use in Cosmetics
3.4. The Safety Assessment Using the TTC Approach
3.5. The History of Safe Food Consumption of A. rosea Flower Supporting the Safety of ARFE in Cosmetics
- -
- 1 to 2 teaspoons: One teaspoon of dried flowers weighs about 2 to 3 g.
- -
- Daily Intake: Minimum intake = 2 g, maximum intake = 6 g. Thus, the average intake of dried flowers can be estimated as 4 g per a cup and when two cups are consumed daily.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of cosmetic regulatory frameworks around the world. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- Humane Society of International. 45 Countries Have Full or Partial Bans on Cosmetics Animal Testing. Available online: https://www.humaneworld.org/en/issue/animals-in-research (accessed on 19 April 2025).
- Silva, R.J.; Tamburic, S. A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. Cosmetics 2022, 9, 90. [Google Scholar] [CrossRef]
- Barthe, M.; Bavoux, C.; Finot, F.; Mouche, I.; Cuceu-Petrenci, C.; Forreryd, A.; Chérouvrier Hansson, A.; Johansson, H.; Lemkine, G.F.; Thénot, J.-P. Safety testing of cosmetic products: Overview of established methods and new approach methodologies (NAMs). Cosmetics 2021, 8, 50. [Google Scholar] [CrossRef]
- Nikodinoska, I.; Spohr, C.; Dillon, G.P.; Moran, C.A. Skin and eye irritancy assessment of six lactic acid bacteria strains. Regul. Toxicol. Pharmacol. 2023, 141, 105406. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Hwang, J.H.; Lim, K.M. Alternatives to In Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-Like Epithelium and Epidermis Models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Vaillancourt, E.; Thomas, R.; Carmichael, P.; Ouedraogo, G.; Kojima, H.; Barroso, J.; Ansell, J.; Barton-Maclaren, T.; Bennekou, S.H. Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul. Toxicol. Pharmacol. 2021, 125, 105026. [Google Scholar] [CrossRef]
- Bury, D.; Head, J.; Keller, D.; Klaric, M.; Rose, J. The Threshold of Toxicological Concern (TTC) is a pragmatic tool for the safety assessment: Case studies of cosmetic ingredients with low consumer exposure. Regul. Toxicol. Pharmacol. 2021, 123, 104964. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Barlow, S.M.; Jacobs, K.L.M.; Vitcheva, V.; Boobis, A.R.; Felter, S.P.; Arvidson, K.B.; Keller, D.; Cronin, M.T.; Enoch, S. Thresholds of Toxicological Concern for cosmetics-related substances: New database, thresholds, and enrichment of chemical space. Food Chem. Toxicol. 2017, 109, 170–193. [Google Scholar] [CrossRef]
- Mahony, C.; Bowtell, P.; Huber, M.; Kosemund, K.; Pfuhler, S.; Zhu, T.; Barlow, S.; McMillan, D.A. Threshold of toxicological concern (TTC) for botanicals-Concentration data analysis of potentially genotoxic constituents to substantiate and extend the TTC approach to botanicals. Food Chem. Toxicol. 2020, 138, 111182. [Google Scholar] [CrossRef]
- Kawamoto, T.; Fuchs, A.; Fautz, R.; Morita, O. Threshold of Toxicological Concern (TTC) for Botanical Extracts (Botanical-TTC) derived from a meta-analysis of repeated-dose toxicity studies. Toxicol. Lett. 2019, 316, 1–9. [Google Scholar] [CrossRef]
- Nohynek, G.J.; Antignac, E.; Re, T.; Toutain, H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol. Appl. Pharmacol. 2010, 243, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lee, E.Y.; Hillman, P.F.; Nam, S.J.; Lim, K.M. Safety assessment of Cnidium officinale rhizome extract in cosmetics using the Threshold of Toxicological Concern (TTC) approach. Regul. Toxicol. Pharmacol. 2023, 142, 105433. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, E.Y.; Nam, S.J.; Lim, K.M. Safety assessment of Paeonia lactiflora root extract for a cosmetic ingredient employing the threshold of toxicological concern (TTC) approach. Regul Toxicol Pharmacol 2024, 149, 105620. [Google Scholar] [CrossRef]
- Rana, P.; Pathania, D.; Gaur, P.; Patel, S.K.; Bajpai, M.; Singh, N.T.; Pandey, R.; Shukla, S.V.; Pant, A.B.; Ray, R.S.; et al. Regulatory frameworks for fragrance safety in cosmetics: A global overview. Toxicol. Res. 2025, 41, 199–220. [Google Scholar] [CrossRef]
- Patlewicz, G.; Worth, A.; Yang, C.; Zhu, T. Editorial: Advances and Refinements in the Development and Application of Threshold of Toxicological Concern. Front. Toxicol. 2022, 4, 882321. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Hougaard Bennekou, S.; Koutsoumanis, K.P.; Machera, K. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J. 2019, 17, e05708. [Google Scholar]
- Bernauer, U.; Bodin, L.; Chaudhry, Q.; Coenraads, P.; Dusinska, M.; Ezendam, J.; Gaffet, E.; Galli, C.; Panteri, E.; Rogiers, V. SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation-12th Revision-Final Opinion–SCCS/1647/22-Corrigendum 2; European Comission: Brussels, Belgium, 2023. [Google Scholar]
- Personal Care Products Council CIR Science and Support Committee. Decision Tree for the Safety Assessment of Botanical Cosmetic Ingredients. Available online: https://www.cir-safety.org/sites/default/files/Botanical%20Decision%20Tree%20CIR%20June%202012%202.pdf (accessed on 19 April 2025).
- NIFDC. Technical Guidelines for Application of Threshold of Toxicological Concern (TTC) Method. Available online: https://www.zmuni.com/en/news/2024-in-review-key-cosmetic-regulatory-updates-in-china/ (accessed on 19 April 2025).
- Cramer, G.; Ford, R.; Hall, R. Estimation of toxic hazard—A decision tree approach. Food Cosmet. Toxicol. 1976, 16, 255–276. [Google Scholar] [CrossRef]
- Re, T.A.; Mooney, D.; Antignac, E.; Dufour, E.; Bark, I.; Srinivasan, V.; Nohynek, G. Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products. Food Chem. Toxicol. 2009, 47, 1246–1254. [Google Scholar] [CrossRef]
- NIFDC. China Compliant Cosmetic Ingredients: History of Safe Consumption Guidelines—Draft. Available online: https://cisema.com/en/china-compliant-cosmetic-ingredients-history-of-safe-consumption-guidelines-draft-for-comments/ (accessed on 19 April 2025).
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1. [Google Scholar]
- Fahamiya, N.; Shiffa, M.; Aslam, M. A comprehensive review on Althaea rosea Linn. J. Pharm. Res. 2016, 6, 6888–6894. [Google Scholar]
- Shehzad, M.R.; Hanif, M.A.; Rehman, R.; Bhatti, I.A.; Hanif, A. Hollyhock. In Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 381–391. [Google Scholar]
- Shah, S.; Akhtar, N.; Akram, M.; Shah, P.A.; Saeed, T.; Ahmed, K.; Asif, H. Pharmacological activity of Althaea officinalis L. J. Med. Plants. Res. 2011, 5, 5662–5666. [Google Scholar]
- Castillo-Carrión, M.; Martínez-Espinosa, R.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Viuda-Martos, M.; Lucas-González, R. Nutritional, fatty acids, (poly) phenols and technological properties of flower powders from Fuchsia hybrida and Alcea rosea. Foods 2024, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Hage-Sleiman, R.; Mroueh, M.; Daher, C.F. Pharmacological evaluation of aqueous extract of Althaea officinalis flower grown in Lebanon. Pharm. Biol. 2011, 49, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, M.; Shimizu, N.; Oshima, Y.; Takahashi, M.; Murakami, M.; Hikino, H. Hypoglycemic activity of twenty plant mucilages and three modified products. Planta Medica 1987, 53, 8–12. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. 2016. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-althaea-officinalis-l-radix_en.pdf (accessed on 1 June 2025).
- European Medicines Agency. 2009. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-althaea-officinalis-l-radix_en.pdf (accessed on 1 June 2025).
- Lee, G.; Yeom, A.; Won, K.D.; Park, C.-M.; Joung, M.-S.; Lee, G.Y.; Jeong, C.-S. Evaluation of Alcea rosea L. callus extract as a natural cosmetic ingredient. J. Soc. Cosmet. Sci. Korea 2018, 44, 295–302. [Google Scholar]
- Azadeh, Z.; Asgharian, S.; Habtemariam, S.; Lorigooini, Z.; Taheri, A. A review of botanical, phytochemical, and pharmacological properties of Alcea rosea L. Future Nat. Prod. 2023, 9, 88–99. [Google Scholar]
- Yang, C.; Rathman, J.F.; Bienfait, B.; Burbank, M.; Detroyer, A.; Enoch, S.J.; Firman, J.W.; Gutsell, S.; Hewitt, N.J.; Hobocienski, B. The role of a molecular informatics platform to support next generation risk assessment. Comput. Toxicol. 2023, 26, 100272. [Google Scholar] [CrossRef]
- ChinaCosIng. Althaea Rosea Flower Extract. Available online: https://zhg.cirs-group.com/cosmetic-ingredient-report/iecic/63e0ae6d83f9bdb57625da7a/%E8%9C%80%E8%91%B5%EF%BC%88ALTHAEA%20ROSEA%EF%BC%89%E8%8A%B1%E6%8F%90%E5%8F%96%E7%89%A9 (accessed on 4 June 2025).
- Stribling, P.; Ibrahim, F. Dietary fibre definition revisited-The case of low molecular weight carbohydrates. Clin. Nutr. ESPEN 2023, 55, 340–356. [Google Scholar] [CrossRef]
- Khandelwal, N.; Abraham, S.K. Protective effects of common anthocyanidins against genotoxic damage induced by chemotherapeutic drugs in mice. Planta Medica 2014, 80, 1278–1283. [Google Scholar] [CrossRef]
- Taj, S.; Nagarajan, B. Inhibition by quercetin and luteolin of chromosomal alterations induced by salted, deep-fried fish and mutton in rats. Mutat. Res./Genet. Toxicol. 1996, 369, 97–106. [Google Scholar] [CrossRef]
- Li, G.; Zhou, J.; Sun, M.; Cen, J.; Xu, J. Role of luteolin extracted from Clerodendrum cyrtophyllum Turcz leaves in protecting HepG2 cells from TBHP-induced oxidative stress and its cytotoxicity, genotoxicity. J. Funct. Foods 2020, 74, 104196. [Google Scholar] [CrossRef]
- Cai, Q.; Rahn, R.O.; Zhang, R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997, 119, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Syeda, R.; Roshan, S. Anti Genotoxic Activity of Luteolin on Cyclophosphamide Induced Genotoxicity in Albino Mice. J. Popul. Ther. Clin. Pharmacol. 2022, 29, 347–353. [Google Scholar]
- Fernando, P.; Ko, D.O.; Piao, M.J.; Kang, K.A.; Herath, H.; Hyun, J.W. Protective effect of luteolin against oxidative stress-mediated cell injury via enhancing antioxidant systems. Mol. Med. Rep. 2024, 30, 121. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef] [PubMed]
- Rosales, T.K.O.; Hassimotto, N.M.A.; Lajolo, F.M.; Fabi, J.P. Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants 2022, 11, 506. [Google Scholar] [CrossRef]
- Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release 2019, 296, 190–201. [Google Scholar] [CrossRef]
No. | Chemicals | CAS | Chemical Class | Contents (%) |
---|---|---|---|---|
1 | Water | 7732-18-5 | 8.67 | |
2 | Fat | 2.67 | ||
3 | Proteins | 12.1 | ||
4 | Ash | 7.62 | ||
5 | Carbohydrates (Total carbohydrates) | 68.95 | ||
6 | Hexanoic acid | 142-62-1 | Fatty Acids | 0.00 |
7 | Octanoic acid | 124-07-2 | Fatty Acids | 0.00 |
8 | Decanoic acid | 334-48-5 | Fatty Acids | 0.00 |
9 | Dodecanoic acid | 143-07-7 | Fatty Acids | 0.00 |
10 | Tridecanoic acid | 638-53-9 | Fatty Acids | 0.00 |
11 | Tetradecanoic acid | 544-63-8 | Fatty Acids | 0.02 |
12 | Pentadecanoic acid | 1002-84-2 | Fatty Acids | 0.00 |
13 | Hexadecanoic acid | 57-10-3 | Fatty Acids | 0.39 |
14 | Heptadecanoic acid | 506-12-7 | Fatty Acids | 0.01 |
15 | Octadecanoic acid | 57-11-4 | Fatty Acids | 0.10 |
16 | Arachidic acid | 506-30-9 | Fatty Acids | 0.09 |
17 | Docosanoic acid | 112-85-6 | Fatty Acids | 0.04 |
18 | Tricosanoic acid | 2433-96-7 | Fatty Acids | 0.01 |
19 | Tetracosanoic acid | 557-59-5 | Fatty Acids | 0.02 |
20 | (Z)-tetradec-9-enoic acid | 544-64-9 | Fatty Acids | 0.01 |
21 | (Z)-hexadec-9-enoic acid | 373-49-9 | Fatty Acids | 0.00 |
22 | (Z)-heptadec-10-enoic acid | 29743-97-3 | Fatty Acids | 0.02 |
23 | (Z)-octadec-9-enoic acid | 112-80-1 | Fatty Acids | 0.18 |
24 | (Z)-icos-9-enoic acid | 29204-02-2 | Fatty Acids | 0.01 |
25 | (9Z,12Z)-octadeca-9,12-dienoic acid | 60-33-3 | Fatty Acids | 0.29 |
26 | (9E,12E)-octadeca-9,12-dienoic acid (Linolaidicacid) | 506-21-8 | Fatty Acids | 0.05 |
27 | (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid | 463-40-1 | Fatty Acids | 0.50 |
28 | (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid (Gamma-Linolenic acid) | 506-26-3 | Fatty Acids | 0.04 |
29 | 11,14-eicosadienoic acid | 5598-38-9 | Fatty Acids | 0.10 |
30 | (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid | 506-32-1 | Fatty Acids | 0.06 |
31 | 4-Hydroxybenzoic acid | 99-96-7 | Phenolic Acid | 0.00148 |
32 | Gallic acid | 149-91-7 | Phenolic Acid | 0.00081 |
33 | Protocatechuic acid | 99-50-3 | Phenolic Acid | 0.00041 |
34 | Syringic acid | 530-57-4 | Phenolic Acid | 0.00204 |
35 | Caffeic acid (+derivatives) | 331-39-5 | Phenolic Acid | 0.0501 |
36 | Chlorogenic acid | 327-97-9 | Phenolic Acid | 0.02 |
37 | Ferulic acid | 1135-24-6 | Phenolic Acid | 0.00494 |
38 | P-Coumaric acid | 501-98-4 | Phenolic Acid | 0.0359 |
39 | Hydrocinnamic acid | 501-52-0 | Phenolic Acid | 0.0234 |
40 | Cyanidin (Cy-3-O-β-glucopyranoside) | 13306-05-3 | Anthocyanins | 0.0147 |
41 | Malvidin (Mv-3-O-β-glucopyranoside+ Mv-3,5-O-β-glucopyranoside) | 10463-84-0 (643-84-5) | Anthocyanins | 0.1301 |
42 | Pelargonidin (Pg-3-O-β-glucopyranoside) | 134-04-3 | Anthocyanins | 0.057 |
43 | Petunidin (Pt-3-O-β-glucopyranoside) | 13270-60-5 | Anthocyanins | 0.100 |
44 | Anthocyanin I-III | - | Anthocyanins | 0.2395 |
45 | Gallocatechin gallate | 5127-64-0 | Flavonoid | 0.0535 |
46 | Naringin (Naringin glycoside I+II) | 10236-47-2 | Flavonoid | 1.6070 |
47 | Apigenin (Apigenin glycoside II+III) | 520-36-5 | Flavonoid | 0.0171 |
48 | Luteolin (Luteolin glycoside II) | 491-70-3 | Flavonoid | 0.7224 |
49 | Kaempherol (+Kaempherol glycoside II+III) | 520-18-3 | Flavonoid | 0.0258 |
50 | Quercetin (Quercetin glycosides) | 117-39-5 | Flavonoid | 0.1260 |
51 | Rutin | 0.0620 | ||
Total (%) | 105.24% |
No. | Cramer Class | Chemical | Classification | Genotoxicity | TTC Threshold (µg/kg bw/Day) | Leave-on Skin and Hair (SCCS) 20.786 mg/kg | |
---|---|---|---|---|---|---|---|
Results | Detail | Realistic (µg/kg bw/Day) | |||||
1 | I | 4-Hydroxybenzoic acid | Phenolic acid | - | AMES | 46 | 0.00615 |
2 | I | Gallic acid | Phenolic acid | - | AMES | 46 | 0.00337 |
3 | I | Protocatechuic acid | Phenolic acid | - | IN SILLICO | 46 | 0.00170 |
4 | I | Syringic acid | Phenolic acid | - | IN SILLICO | 46 | 0.00848 |
5 | I | Caffeic acid | Phenolic acid | - | AMES | 46 | 0.20828 |
6 | I | Ferulic acid | Phenolic acid | - | IN SILLICO | 46 | 0.08314 |
7 | I | P-Coumaric acid | Phenolic acid | - | IN SILLICO | 46 | 0.02054 |
8 | I | Hydrocinnamic acid | Phenolic acid | - | IN SILLICO | 46 | 0.14924 |
9 | II | Chlorogenic acid | Phenolic acid | - | AMES | 2.3 | 0.09728 |
10 | III | Cyanidin | Anthocyanins | - | IN SILLICO | 2.3 | 0.06111 |
11 | III | Malvidin | Anthocyanins | - | IN SILLICO | 2.3 | 0.54085 |
12 | III | Pelargonidin | Anthocyanins | - | IN SILLICO | 2.3 | 0.23696 |
13 | III | Petunidin | Anthocyanins | - | IN SILLICO | 2.3 | 0.41572 |
14 | III | Anthocyanins I-III | Anthocyanins | IN VIVO | 2.3 | 0.99565 | |
15 | III | Gallocatechin gallate | Flavonoid | - | IN SILLICO | 2.3 | 0.22241 |
16 | III | Naringenin (Naringin glycoside) | Flavonoid | - | IN SILLICO | 2.3 | 6.68062 |
17 | III | Apigenin (Apigenin glycoside) | Flavonoid | - | AMES | 2.3 | 0.07109 |
18 | III | Luteolin (luteolinglycosideii) | Flavonoid | + | IN SILICO (genotox concern) | 2.3 | 3.00316 |
19 | III | Kaempherol | Flavonoid | - | IN VIVO | 2.3 | 0.10726 |
20 | III | Quercetin (Quercetin glycoside) | Flavonoid | - | IN VIVO | 2.3 | 0.52381 |
21 | III | Rutin | Flavonoid | - | IN VIVO (Carcinogenesis study) | 2.3 | 0.25775 |
Chemical (Formula) | M.W. | LogKow | Melting Point | Boiling Point | Vapor Pressure (mmHg, 25 °C) | Applied Conc. (µg/mL) | Applied Amount µg/cm2 | 24 h Cumulative Permeation (%) | Tier 0 SED µg/kg/Day | Tier 2 SED µg/kg/Day |
---|---|---|---|---|---|---|---|---|---|---|
Naringin (C27H32O14) | 580.5 | −0.52 | 349.84 | 843.85 | 7.00 × 10−24 | 32 | 0.435 | >1.00 | 6.681 | >0.067 |
Luteolin (C15H10O6) | 286.24 | 2.36 | 212.22 | 499.19 | 2.19 × 10−13 | 14 | 0.190 | 50.00 | 3.003 | 1.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, S.; Lim, K.-M. Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches. Cosmetics 2025, 12, 133. https://doi.org/10.3390/cosmetics12040133
Gil S, Lim K-M. Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches. Cosmetics. 2025; 12(4):133. https://doi.org/10.3390/cosmetics12040133
Chicago/Turabian StyleGil, Sangwon, and Kyung-Min Lim. 2025. "Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches" Cosmetics 12, no. 4: 133. https://doi.org/10.3390/cosmetics12040133
APA StyleGil, S., & Lim, K.-M. (2025). Assessment of Systemic Safety of Althaea rosea Flower Extract for Use in Cosmetics: Threshold of Toxicological Concern and History of Safe Consumption Approaches. Cosmetics, 12(4), 133. https://doi.org/10.3390/cosmetics12040133