Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = in situ stress analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 798 KB  
Review
Utah FORGE: A Decade of Innovation—Comprehensive Review of Field-Scale Advances (Part 1)
by Amr Ramadan, Mohamed A. Gabry, Mohamed Y. Soliman and John McLennan
Processes 2026, 14(3), 512; https://doi.org/10.3390/pr14030512 (registering DOI) - 2 Feb 2026
Abstract
Enhanced Geothermal Systems (EGS) extend geothermal energy beyond conventional hydrothermal resources but face challenges in creating sustainable heat exchangers in low-permeability formations. This review synthesizes achievements from the Utah Frontier Observatory for Research in Geothermal Energy (FORGE), a field laboratory advancing EGS readiness [...] Read more.
Enhanced Geothermal Systems (EGS) extend geothermal energy beyond conventional hydrothermal resources but face challenges in creating sustainable heat exchangers in low-permeability formations. This review synthesizes achievements from the Utah Frontier Observatory for Research in Geothermal Energy (FORGE), a field laboratory advancing EGS readiness in 175–230 °C granitic basement. From 2017 to 2025, drilling, multi-stage hydraulic stimulation, and monitoring established feasibility and operating parameters for engineered reservoirs. Hydraulic connectivity was created between highly deviated wells with ~300 ft vertical separation via hydraulic and natural fracture networks, validated by sustained circulation tests achieving 10 bpm injection at 2–3 km depth. Advanced monitoring (DAS, DTS, and microseismic arrays) delivered fracture propagation diagnostics with ~1 m spatial resolution and temporal sampling up to 10 kHz. A data infrastructure of 300+ datasets (>133 TB) supports reproducible ML. Geomechanical analyses showed minimum horizontal stress gradients of 0.74–0.78 psi/ft and N–S to NNE–SSW fractures aligned with maximum horizontal stress. Near-wellbore tortuosity, driving treating pressures to 10,000 psi, underscores completion design optimization, improved proppant transport in high-temperature conditions, and coupled thermos-hydro-mechanical models for long-term prediction, supported by AI platforms including an offline Small Language Model trained on Utah FORGE datasets. Full article
Show Figures

Figure 1

18 pages, 3239 KB  
Article
Monitoring-Based Assessment of Deformation Behavior and Support Effectiveness in a Deep Hard Rock Drift
by Shaolong Qin, Xingdong Zhao, Jingyi Song, Shuzhao Ma, Fan Wang, Chenxi Wang and Yingjie Wang
Appl. Sci. 2026, 16(3), 1388; https://doi.org/10.3390/app16031388 - 29 Jan 2026
Viewed by 157
Abstract
To reveal the real deformation behavior and control mechanism of surrounding rock in hard rock drifts under deep high-stress conditions, a systematic study was conducted involving engineering geological investigation, in situ monitoring of surrounding rock microstrain, and numerical simulation, taking the −1465 m [...] Read more.
To reveal the real deformation behavior and control mechanism of surrounding rock in hard rock drifts under deep high-stress conditions, a systematic study was conducted involving engineering geological investigation, in situ monitoring of surrounding rock microstrain, and numerical simulation, taking the −1465 m deep main drift of Shaling Gold Mine as the engineering background. Joint and fissure characteristics of the surrounding rock were acquired via the traverse method, and dominant joint sets were identified to evaluate rock mass integrity, providing a geological basis for deformation analysis. On this premise, vibrating wire microstrain sensors were employed to continuously monitor the time-dependent deformation of surrounding rock at different depths in the drift roof and two sidewalls. The strain evolution law of deep hard rock surrounding rock under the combined action of excavation disturbance and high ground stress was systematically analyzed. The results demonstrate that the surrounding rock is dominated by compressive strain in the early stage after excavation, which gradually transforms into tensile strain over time, exhibiting distinct time-dependent deformation characteristics. The deformation magnitude of the surrounding rock decreases significantly with increasing distance from the drift exposure surface, and the overall deformation amplitude of the roof is greater than that of the two sidewalls. Integrating the monitoring results with the surrounding rock structural characteristics, a combined support scheme of “resin rock bolt + wire mesh + shotcrete” was proposed, and its control effect was verified using RS2 numerical simulation. The simulation results indicate that this support system can effectively constrain the near-surface surrounding rock deformation, reduce the degree of stress concentration, and significantly improve drift stability. The research findings provide engineering references for understanding the surrounding rock deformation and optimizing support parameters of deep hard rock drifts in metal mines. Full article
Show Figures

Figure 1

14 pages, 1822 KB  
Article
Development and Characterization of Novel St-R Translocation Triticale from a Trigeneric Hybrid
by Changtong Jiang, Miao He, Xinyu Yan, Qianyu Xing, Yunfeng Qu, Haibin Zhao, Hui Jin, Rui Zhang, Ruonan Du, Deyu Kong, Kaidi Yang, Anning Song, Xinling Li, Hongjie Li, Lei Cui and Yanming Zhang
Agronomy 2026, 16(3), 336; https://doi.org/10.3390/agronomy16030336 - 29 Jan 2026
Viewed by 211
Abstract
Triticale (×Triticosecale Wittmack), a synthetic hybrid of wheat (Triticum spp.) and rye (Secale cereale), is a valuable dual-purpose crop for its high yield and stress tolerance. Introducing beneficial alien chromatin is crucial for expanding genetic diversity and improving cultivars. [...] Read more.
Triticale (×Triticosecale Wittmack), a synthetic hybrid of wheat (Triticum spp.) and rye (Secale cereale), is a valuable dual-purpose crop for its high yield and stress tolerance. Introducing beneficial alien chromatin is crucial for expanding genetic diversity and improving cultivars. This study aimed to introduce Thinopyrum intermedium St genome chromatin into hexaploid triticale via trigeneric hybridization to develop novel germplasm. Six stable lines were selected from crosses between an octoploid wheat-Th. intermedium partial amphiploid line Maicao 8 and a hexaploid triticale cultivar Hashi 209. Agronomic traits were evaluated over two cropping seasons, revealing that the translocation lines exhibited superior agronomic performance compared to the parental triticales. These lines showed longer spikes, higher tiller numbers, and increased grain protein content, without compromising thousand-kernel weight. Cytogenetic analysis using sequential multicolor genomic in situ hybridization (smGISH), fluorescence in situ hybridization (FISH), and oligonucleotide probes, alongside validation with species-specific molecular markers, identified all six lines as St-R terminal translocation lines containing 14 rye chromosomes. Three lines carried a small terminal St segment on chromosome 1R, while the other three carried St segments on both 1RL and 4RS chromosomes. This work demonstrates that trigeneric hybridization is an effective strategy for inducing intergeneric recombination between Thinopyrum intermedium and rye chromosomes, leading to stable, small-segment terminal translocations. The developed St-R translocation lines represent a novel and valuable germplasm resource for enriching genetic diversity and breeding improved triticale cultivars with enhanced yield and quality traits. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics, 2nd Edition)
Show Figures

Figure 1

25 pages, 9037 KB  
Article
The Development and Performance Validation of a Real-Time Stress Extraction Device for Deep Mining-Induced Stress
by Bojia Xi, Pengfei Shan, Biao Jiao, Huicong Xu, Zheng Meng, Ke Yang, Zhongming Yan and Long Zhang
Sensors 2026, 26(3), 875; https://doi.org/10.3390/s26030875 - 29 Jan 2026
Viewed by 81
Abstract
Under deep mining conditions, coal and rock masses are subjected to high in situ stress and strong mining-induced disturbances, leading to intensified stress unloading, concentration, and redistribution processes. The stability of surrounding rock is therefore closely related to mine safety. Direct, real-time, and [...] Read more.
Under deep mining conditions, coal and rock masses are subjected to high in situ stress and strong mining-induced disturbances, leading to intensified stress unloading, concentration, and redistribution processes. The stability of surrounding rock is therefore closely related to mine safety. Direct, real-time, and continuous monitoring of in situ stress magnitude, orientation, and evolution is a critical requirement for deep underground engineering. To overcome the limitations of conventional stress monitoring methods under high-stress and strong-disturbance conditions, a novel in situ stress monitoring device was developed, and its performance was systematically verified through laboratory experiments. Typical unloading–reloading and biaxial unequal stress paths of deep surrounding rock were adopted. Tests were conducted on intact specimens and specimens with initial damage levels of 30%, 50%, and 70% to evaluate monitoring performance under different degradation conditions. The results show that the device can stably acquire strain signals throughout the entire loading–unloading process. The inverted monitoring stress exhibits high consistency with the loading system in terms of evolution trends and peak stress positions, with peak stress errors below 5% and correlation coefficients (R2) exceeding 0.95. Although more serious initial damage increases high-frequency fluctuations in the monitoring curves, the overall evolution pattern and unloading response remain stable. Combined acoustic emission results further confirm the reliability of the monitoring outcomes. These findings demonstrate that the proposed device enables accurate and dynamic in situ stress monitoring under deep mining conditions, providing a practical technical approach for surrounding rock stability analysis and disaster prevention. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 4485 KB  
Article
Research on In Situ Stress Measurement Based on the Combined Method of DIC and Drilling Stress Relief
by Lingting Ye, Liping Chen, Peng Zhao, Ruichuan Zhao and Yixiang Zhou
Buildings 2026, 16(3), 543; https://doi.org/10.3390/buildings16030543 - 28 Jan 2026
Viewed by 116
Abstract
Existing structural stress is an important parameter for evaluating the current state of a structure. In order to improve the accuracy of in situ stress measurement in the field, this paper proposes an in situ stress measurement method for existing structures, which combines [...] Read more.
Existing structural stress is an important parameter for evaluating the current state of a structure. In order to improve the accuracy of in situ stress measurement in the field, this paper proposes an in situ stress measurement method for existing structures, which combines Digital Image Correlation (DIC) technology with the drilling stress relief method. The method utilizes DIC technology to monitor the local displacement or strain caused by stress release from the drilled hole in real time, and further inverts the in situ stress state of the structure based on this data. First, the principle and specific implementation process of the method are introduced. Then, finite element simulations are used to analyze the influence of factors such as size effects, drill hole diameter, drill hole depth, and initial stress magnitude on the measurement results. Finally, experimental validation of the method’s effectiveness is conducted. The results show that the in situ stress measurement method based on the combination of DIC and stress relief has good application effects and prospects in the stress analysis of existing structures. The accuracy and effectiveness of the method are influenced by factors such as specimen size, drill hole diameter, drill hole depth, and stress magnitude. In practical engineering, a comprehensive evaluation should be made, considering the precision of DIC testing and the magnitude of in situ stress, to select appropriate drilling parameters and measurement ranges. During the subsequent stress inversion process, a size calibration factors is applied to adjust the theoretical results, significantly improving the method’s applicability under finite size conditions, and achieving good results. This research provides important references for the stress testing and evaluation of existing structures with finite sizes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 5789 KB  
Article
Environmental Drivers of Waterbird Colonies’ Dynamic in the Danube Delta Biosphere Reserve Under the Context of Climate and Hydrological Change
by Constantin Ion, Vasile Jitariu, Lucian Eugen Bolboacă, Pavel Ichim, Mihai Marinov, Vasile Alexe and Alexandru Doroșencu
Birds 2026, 7(1), 6; https://doi.org/10.3390/birds7010006 - 26 Jan 2026
Viewed by 217
Abstract
Climate change and altered hydrological regimes are restructuring wetland habitats globally, triggering cascading effects on colonial waterbirds. This study investigates how environmental drivers, including thermal anomalies, water-level fluctuations, and aqueous surface extent, influence the distribution and size of waterbird colonies (Ardeidae, [...] Read more.
Climate change and altered hydrological regimes are restructuring wetland habitats globally, triggering cascading effects on colonial waterbirds. This study investigates how environmental drivers, including thermal anomalies, water-level fluctuations, and aqueous surface extent, influence the distribution and size of waterbird colonies (Ardeidae, Threskiornithidae, and Phalacrocoracidae) in the Danube Delta Biosphere Reserve. We integrated colony census data (2016–2023) with remote-sensing-derived habitat metrics, in situ meteorological and hydrological measurements to model colony abundance dynamics. Our results indicate that elevated early spring temperatures and water level variability are the primary determinants of numerical population dynamics. Spatial analysis revealed a heterogeneous response to hydrological stress: while the westernmost colony exhibited high site fidelity due to its proximity to persistent aquatic surfaces, the central colonies suffered severe declines or local extirpation during extreme drought periods (2020–2022). A discernible eastward shift in bird assemblages was observed toward zones with superior hydrological connectivity and proximity to anthropogenic hubs, suggesting an adaptive spatial response that was consistent with behavioral flexibility. We propose an adaptive management framework prioritizing sustainable solutions for maintaining minimum lacustrine water levels to preserve critical foraging zones. This integrative framework highlights the pivotal role of remote sensing in transitioning from reactive monitoring to predictive conservation of deltaic ecosystems. Full article
(This article belongs to the Special Issue Resilience of Birds in Changing Environments)
Show Figures

Figure 1

18 pages, 7903 KB  
Article
Lateral Structure of Multi-Layer Thick Hard Roofs and Hydraulic Roof-Cutting Pressure Relief in Xiao Jihan Mine
by Hui Liu, Lichuang Chen, Xufeng Wang, Hui Gao, Chenlong Qian and Xuyang Chen
Appl. Sci. 2026, 16(2), 1127; https://doi.org/10.3390/app16021127 - 22 Jan 2026
Viewed by 47
Abstract
This study aims to address the pronounced stress concentration in roadway-surrounding rock under conditions of multiple thick and hard roof strata at Xiao jihan coal mine, China. The work was carried out on the 13216 working mining face as the engineering background. A [...] Read more.
This study aims to address the pronounced stress concentration in roadway-surrounding rock under conditions of multiple thick and hard roof strata at Xiao jihan coal mine, China. The work was carried out on the 13216 working mining face as the engineering background. A systematic investigation was conducted using a combination of theoretical analysis, numerical simulation, and field experiments. Under double mining disturbance, the lower thick hard roof behaves as a cantilever beam and the upper hard roof strata form a masonry beam structure, producing strong stress transfer to the roadway. The mechanical model indicates a peak stress of 28.90 MPa, 18.34 MPa higher than the in situ stress. Hydraulic roof cutting was designed at the upper thick hard roof horizon. UDEC simulations show that the vertical stress decreases from 26.10 MPa to 13.20 MPa. Field monitoring confirms pressure relief: the non-cutting zone shows a peak of 30.75 MPa, while the roof-cutting zone drops to 22.51 MPa, a 24.62% reduction. The findings of this study provide practical guidance for lateral structure regulation under similar geological and mining conditions. Full article
Show Figures

Figure 1

25 pages, 3591 KB  
Article
Remote Sensing Monitoring of Summer Heat Waves–Urban Vegetation Interaction in Bucharest Metropolis
by Maria Zoran, Dan Savastru and Marina Tautan
Atmosphere 2026, 17(1), 109; https://doi.org/10.3390/atmos17010109 - 21 Jan 2026
Viewed by 161
Abstract
Through a comprehensive analysis of urban vegetation summer seasonal and interannual patterns in the Bucharest metropolis in Romania, this study explored the response of urban vegetation to heat waves’ (HWs) impact in relation to multi-climatic parameters variability from a spatiotemporal perspective during 2000–2024, [...] Read more.
Through a comprehensive analysis of urban vegetation summer seasonal and interannual patterns in the Bucharest metropolis in Romania, this study explored the response of urban vegetation to heat waves’ (HWs) impact in relation to multi-climatic parameters variability from a spatiotemporal perspective during 2000–2024, with a focus on summer HWs periods (June–August), and particularly on the hottest summer 2024. Statistical correlation, regression, and linear trend analysis were applied to multiple long-term MODIS Terra/Aqua and MERRA-2 Reanalysis satellite and in situ climate data time series. To support the decline in urban vegetation during summer hot periods due to heat stress, this study found strong negative correlations between vegetation biophysical observables and urban thermal environment parameters at both the city center and metropolitan scales. In contrast, during the autumn–winter–spring seasons (September–May), positive correlations have been identified between vegetation biophysical observables and a few climate parameters, indicating their beneficial role for vegetation growth from 2000 to 2024. The recorded decreasing trend in evapotranspiration from 2000 to 2024 during summer HW periods in Bucharest’s metropolis was associated with a reduction in the evaporative cooling capacity of urban vegetation at high air temperatures, diminishing vegetation’s key function in mitigating urban heat stress. The slight decline in land surface albedo in the Bucharest metropolis due to increased urbanization may explain the enhanced air temperatures and the severity of HWs, as evidenced by 41 heat wave events (HWEs) and 222 heat wave days (HWDs) recorded during the summer (June–August) period from 2000 to 2024. During the severe 2024 summer heat wave episodes in the south-eastern part of Romania, a rise of 5.89 °C in the mean annual land surface temperature and a rise of 6.76 °C in the mean annual air temperature in the Bucharest metropolitan region were observed. The findings of this study provide a refined understanding of heat stress’s impact on urban vegetation, essential for developing effective mitigation strategies and prioritizing interventions in vulnerable areas. Full article
Show Figures

Figure 1

17 pages, 2288 KB  
Article
The Role of Matrix Shielding in the In Situ Fiber Strength and Progressive Failure of Unidirectional Composites
by Mostafa Barzegar, Jose M. Guerrero, Zahra Tanha, Carlos Gonzalez, Abrar Baluch and Josep Costa
J. Compos. Sci. 2026, 10(1), 47; https://doi.org/10.3390/jcs10010047 - 13 Jan 2026
Viewed by 290
Abstract
While carbon fiber strength is typically characterized through single-fiber tensile tests, these isolated measurements do not account for the local mechanical constraints present within a composite architecture. This study employs a synergistic computational micromechanics approach combining finite element analysis (FEA) and analytical modeling [...] Read more.
While carbon fiber strength is typically characterized through single-fiber tensile tests, these isolated measurements do not account for the local mechanical constraints present within a composite architecture. This study employs a synergistic computational micromechanics approach combining finite element analysis (FEA) and analytical modeling to investigate how the surrounding matrix influences the Stress Intensity Factor (SIF) and the apparent ultimate strength of embedded fibers. By calculating the J-integral, we demonstrate that the matrix provides a significant shielding effect, constraining crack opening displacements and substantially reducing the SIF. This mechanism results in a marked increase in in situ fiber tensile strength relative to dry fibers. Incorporating this matrix-adjusted Weibull distribution into a longitudinal failure model significantly improves the prediction of fiber-break density accumulation, showing closer correlation with experimental benchmarks than traditional models. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

32 pages, 3689 KB  
Article
Impact of Urban Morphology on Microclimate and Thermal Comfort in Arid Cities: A Comparative Study and Modeling in Béchar
by Fatima Zohra Benlahbib, Djamel Alkama, Naima Hadj Mohamed, Zouaoui R. Harrat, Saïd Bennaceur, Ercan Işık, Fatih Avcil, Nahla Hilal, Sheelan Mahmoud Hama and Marijana Hadzima-Nyarko
Sustainability 2026, 18(2), 659; https://doi.org/10.3390/su18020659 - 8 Jan 2026
Viewed by 315
Abstract
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, [...] Read more.
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, the regular-grid colonial fabric, a modern large-scale residential estate, and low-density detached housing, on local microclimatic conditions. An integrated methodological framework is adopted, combining qualitative morphological analysis, quantitative indicators including density, porosity, height-to-width ratio, and sky view factor, in situ microclimatic measurements, and high-resolution ENVI-met simulations performed for the hottest summer day. Results show that compact urban forms, characterized by low sky view factor values, markedly reduce radiative exposure and improve thermal performance. The vernacular Ksar, exhibiting the lowest SVF, records the lowest mean radiant temperature (approximately 45 °C) and the most favorable average comfort conditions (PMV = 3.77; UTCI = 38.37 °C), representing a reduction of about 3 °C, while its high-thermal-inertia earthen materials ensure effective nocturnal thermal recovery (PMV ≈ 1.06; UTCI = 27.8 °C at 06:00). In contrast, more open modern fabrics, including the colonial grid, large-scale estates, and low-density housing, experience higher thermal stress, reflecting vulnerability to solar exposure and limited thermal inertia. Validation against field measurements confirms model reliability. These findings highlight the continued relevance of vernacular bioclimatic principles for sustainable urban design in arid climates. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

21 pages, 10897 KB  
Article
Vertically Resolved Supercooled Liquid Water over the North China Plain Revealed by Ground-Based Synergetic Measurements
by Yuxiang Lu, Qiang Li, Hongrong Shi, Jiwei Xu, Zhipeng Yang, Yongheng Bi, Xiaoqiong Zhen, Yunjie Xia, Jiujiang Sheng, Ping Tian, Disong Fu, Jinqiang Zhang, Shuzhen Hu, Fa Tao, Jiefan Yang, Xuehua Fan, Hongbin Chen and Xiang’ao Xia
Remote Sens. 2026, 18(1), 160; https://doi.org/10.3390/rs18010160 - 4 Jan 2026
Viewed by 378
Abstract
Supercooled liquid water (SLW) in mixed-phase clouds significantly influences precipitation efficiency and aviation safety. However, a comprehensive understanding of its vertical structure has been hampered by a lack of sustained, vertically resolved observations over the North China Plain. This study presents the first [...] Read more.
Supercooled liquid water (SLW) in mixed-phase clouds significantly influences precipitation efficiency and aviation safety. However, a comprehensive understanding of its vertical structure has been hampered by a lack of sustained, vertically resolved observations over the North China Plain. This study presents the first systematic analysis of SLW vertical distribution and microphysics in this region, utilizing a year-long dataset (2022) from synergistic ground-based instruments in Beijing. Our retrieval approach integrates Ka-band cloud radar, microwave radiometer, ceilometer, and radiosonde data, combining fuzzy-logic phase classification with a liquid water content inversion constrained by column liquid water path. Key findings reveal a distinct bimodal seasonality: SLW primarily occurs at mid-to-upper levels (4–7.5 km) during spring and summer, driven by convective lofting, while winter SLW is confined to lower altitudes (1–2 km) under stable atmospheric conditions. The temperature-dependent occurrence probability of SLW clouds has an annual maximum at −12 °C. The diurnal variation in SLW in summer shows peaks in the afternoon and at night, corresponding to convective cloud activity. Spring, autumn, and winter do not exhibit strong diurnal variations. Retrieved microphysical properties, including liquid water content and droplet effective radius, are consistent with in situ aircraft measurements, validating our methodology. This analysis provides a critical observational benchmark and offers actionable insights for improving cloud microphysics parameterizations in models and optimizing weather modification strategies, such as seeding altitude and timing, in this water-stressed region. Full article
Show Figures

Figure 1

18 pages, 7623 KB  
Review
Natural Fracturing in Marine Shales: From Qualitative to Quantitative Approaches
by Chen Zhang, Yuhan Huang, Huadong Chen and Zongquan Hu
J. Mar. Sci. Eng. 2026, 14(1), 99; https://doi.org/10.3390/jmse14010099 - 4 Jan 2026
Viewed by 381
Abstract
Natural fractures in marine shales are crucial storage spaces and migration pathways for oil and gas, making the study of their formation mechanisms and distribution patterns essential for hydrocarbon exploration and development. This review systematically evaluates the progress in natural fracture studies, transitioning [...] Read more.
Natural fractures in marine shales are crucial storage spaces and migration pathways for oil and gas, making the study of their formation mechanisms and distribution patterns essential for hydrocarbon exploration and development. This review systematically evaluates the progress in natural fracture studies, transitioning from qualitative to quantitative approaches, with a focus on the genetic mechanisms, distribution patterns, and methodological advancements of fracture types. The review finds that: (1) Integrated “geological-geophysical-dynamic” analyses significantly improve the prediction accuracy of tectonic fracture networks compared to traditional stress-field models. Bedding-parallel fracture development is primarily controlled by the interplay between diagenetic evolution and in situ stress, with their critical opening conditions now being quantifiable; (2) Crucially, the application of micro-scale in situ techniques (e.g., Laser Ablation Inductively Coupled PlasmaMass Spectrometer, laser C-O isotope analysis, carbonate U-Pb dating) has successfully decoded the geochemical signatures and absolute timing of fracture fillings, revealing multiple episodes of fluid activity directly tied to hydrocarbon migration. (3) The combined application of multiple techniques holds promise for deepening the understanding of the coupling mechanisms between fractures. The combined application of these techniques provides a robust framework for deciphering the coupling mechanisms between fracture dynamic evolution and hydrocarbon migration, offering critical insights for future exploration. Full article
Show Figures

Figure 1

15 pages, 2246 KB  
Article
Mechanical Enhancements of Electrospun Silica Microfibers with Boron Nitride Nanotubes
by Dingli Wang, Nasim Anjum, Zihan Liu and Changhong Ke
Nanomaterials 2026, 16(1), 69; https://doi.org/10.3390/nano16010069 - 3 Jan 2026
Viewed by 376
Abstract
We investigate the mechanical properties of electrospun boron nitride nanotube (BNNT)-reinforced silica nanocomposite microfibers. The incorporation of small amounts of BNNTs (0.1, 0.3, and 0.5 wt.%) into silica results in significant enhancements in the bulk mechanical performance, including up to a 26.4% increase [...] Read more.
We investigate the mechanical properties of electrospun boron nitride nanotube (BNNT)-reinforced silica nanocomposite microfibers. The incorporation of small amounts of BNNTs (0.1, 0.3, and 0.5 wt.%) into silica results in significant enhancements in the bulk mechanical performance, including up to a 26.4% increase in Young’s modulus, a 19.4% increase in tensile strength, and a 12.8% increase in toughness. These improvements are attributed to the excellent nanotube alignment achieved via electrospinning and the effective transfer of interfacial loads at the BNNT–silica interface. Micromechanical analysis based on in situ Raman measurements reveals that the maximum interfacial shear stress in the electrospun BNNT–silica microfiber reaches about 341 MPa. This study provides new insights into the process–structure–property relationship and reinforcement mechanisms in nanotube-reinforced ceramic nanocomposites, thereby advancing the development of lightweight, strong, tough, and durable ceramic materials. Full article
Show Figures

Figure 1

15 pages, 2857 KB  
Article
Fatigue Strength Analysis and Structural Optimization of Motor Hangers for High-Speed Electric Multiple Units
by Rui Zhang, Chi Yang and Youwei Song
J. Exp. Theor. Anal. 2026, 4(1), 2; https://doi.org/10.3390/jeta4010002 - 31 Dec 2025
Viewed by 241
Abstract
This study investigates the fatigue strength of a motor hanger used in high-speed electric multiple units (EMUs). Finite element analysis and field measurements revealed that reduced weld penetration significantly increases stresses in welded regions. Line tests demonstrated that a 100 Hz torque ripple [...] Read more.
This study investigates the fatigue strength of a motor hanger used in high-speed electric multiple units (EMUs). Finite element analysis and field measurements revealed that reduced weld penetration significantly increases stresses in welded regions. Line tests demonstrated that a 100 Hz torque ripple induces elastic vibration of the hanger, serving as the primary driver of stress propagation, with stress and acceleration levels increasing proportionally with the torque ripple amplitude. This 100 Hz excitation lies close to the hanger’s constrained modal frequency of about 109 Hz, creating a near-resonance condition that amplifies dynamic deformation at the welded joints and accelerates fatigue crack initiation. Hangers with lower in situ modal frequencies exhibited higher equivalent stresses. Joint dynamic simulation further showed that increasing motor mass reduces the longitudinal acceleration of the hanger, while enhancing the radial stiffness of rubber nodes markedly decreases both longitudinal and vertical vibration accelerations as well as stress responses. Based on these insights, a structural improvement scheme was developed. Strength analysis and on-track tests confirmed substantial reductions in overall and weld stresses after modification. Fatigue bench tests indicated that the critical welds of the improved hanger achieved a service life of 15 million km, more than twice that of the original structure (7.08 million km), thereby satisfying operational safety requirements. Full article
Show Figures

Figure 1

25 pages, 9580 KB  
Article
Research on Mechanical Characteristics of Portal Frame Anti-Uplift Structure
by Tingting Ma, Jun He, Guolin Gao, Zhiyun Yao, Yihang Duan, Xu Zhang and Zixian Jin
Buildings 2026, 16(1), 58; https://doi.org/10.3390/buildings16010058 - 23 Dec 2025
Viewed by 292
Abstract
The complexity of the loading mode and action mechanism is demonstrated in the portal frame anti-uplift structure. The stress evolution process of the portal frame structure during the excavation of the upper foundation pit is revealed through in situ structural stress tests and [...] Read more.
The complexity of the loading mode and action mechanism is demonstrated in the portal frame anti-uplift structure. The stress evolution process of the portal frame structure during the excavation of the upper foundation pit is revealed through in situ structural stress tests and numerical modeling analysis reflecting the small strain characteristics of stratum. The stress distribution of uplift piles and anti-floating plates is analyzed, with the axial force of piles and the development law of bending moment in plates being specifically examined. It is emphasized that the load of the uplift pile is generated by friction between the pile and soil caused by stratum floating, which is predominantly produced during the excavation of the upper block and the unloading of the surcharge. The pile 11# is observed to be under tension in the middle and compressed at both ends, with the extreme value of tensile stress of these 24 piles being located at 0.15 times the pile length below the top of the middle pile. The main loads of the anti-floating plate are identified as backfilling, foundation buoyancy, and lateral soil pressure. The lower part of the two pile spans is subjected to tension, while the upper part is under compression, with the bending moment extremes being located on the side where the frame is first formed. A significant increase in stiffness is exhibited by the frame structure after its formation, and the influence from the excavation of other blocks is markedly reduced. The most adverse condition is determined to occur during the integral removal of the upper surcharge. The reference value of these research results is confirmed for clarifying the stress mechanism of anti-uplift portal frame structures and optimizing key technical parameters in structural design and construction. Full article
Show Figures

Figure 1

Back to TopTop